

Prof. Bob Whiteley
Senior Principal

Radar reflection at interfaces

$$R = rac{\sqrt{K_1} - \sqrt{K_2}}{\sqrt{K_1} + \sqrt{K_2}}$$

Reflected energy = R x Incident energy

Table 1: Typical Dielectric values

Relative dielectric constant, K	Radar pulse velocity (metres/nanosecond)
1	
· ·	0.3
80	0.03
4 – 10	0.09 to 0.12
4 – 10	0.13
8 – 11	0.09
	4 – 10 4 – 10

Reflection amplitude of a GPR pulse from an interface such as concrete /air is governed by the reflection coefficient, R, which is given by,

$$R = \frac{\sqrt{K_1} - \sqrt{K_2}}{\sqrt{K_1} + \sqrt{K_2}}$$

where K_1 and K_2 are the dielectric constants of two materials and the reflected signal amplitude = R x incident signal amplitude. Note that the sign of R may be positive or negative depending on the relative magnitudes of K_1 and K_2 .

Portable GPR antenna & back-pack control unit

Acquisition system, voice communication & computer

GPR image of airfilled void behind concrete liner

Radar Test Facility for Concrete

GPR Images of Deteriorated Concrete & Voids

GPR Profiling of the Hard Shoulder

Geotechnical Case Study

AIRPORT RUNWAY CONDITION ASSESSMENT, Vanuatu

GPR Field Operations

GPR for Airport Runway Testing

Interpretation of GPR: Airport Runway

