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Introduction

(1) The Deep Mixing Method (DMM) was developed 1n
Japan as one of soil stabilization methods to improve
soft clay for foundation ground in the late of 1970’s

(2) In construction, cement slurry 1s injected into clay
layer and in-situ clay 1s mixed with cement slurry
and stabilized by forming strong columns in order

to prevent settlement and slip failure

(3) Most of the analysis in Deep Mixing Method (DMM)
was performed under 2-D plane strain condition



Objective of Study

® To verify the effectiveness of three-dimensional (3-D)
finite difference model by DMM unit cell analysis.

® To establish a three-dimensional numerical procedure for
DMM 1mproved ground included two different
configurations, namely wall type and pile type under
embankment loading.

® To examine the numerical difference of DMM 1mproved
ground between two dimensional (2-D) plain strain
analysis and 3-D analysis.



Literature Review
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® A most general review of the strength properties of cement
stabilization was presented by Mitchell (1976). Mitchell gave
the following relationships between g, and curing time :

{

o

qu<r>=qu<ro>+z<.1og[i]

K =480a,, for granular soil and 70a,, for fine grain soil

® There are Several Factors Affecting the Strength of the Cement
Columns :
(1) Type of Cement
(2) Cement Content
(3) Curing Time
(4) Curing Temperature
(5) Soil Minerals
(6) Soil pH



1996

T |

T

T TR

abiten

3
il
&
i
P
Column
Ec ] vl:

W %%% A

V

3

Rigid Base

S LN T AR Py

HiHH H_\_;HHU




® [t is convenient to classify the conventional design methods of
DMM improved ground

(1) The improved ground subjected to vertical loading only

Group column type wWall type

Block type




Methodology



Data Collection
DMM Unit Cell

DMM Improved Ground at AIT

campus

Typical Bangkok Subsoil

3-D Numerical Results
Ground Settlement

Numerical Analysis of DMM Unit Cell

Mathematical
(Alamgir et al,
1996)
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Geometry (Mesh Generation and I.C and B.C.)
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Results
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* Pile type
e Wall type

Establish a 2-D Plain Strain Analysis
Procedure of DMM Improved Ground
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Data Collection



Location of Borehole and In-situ Test
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Consolidation Tests of Soil Samples from Filed Site
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Numerical Analysis of DMM Unit Cell



te Difference Mesh of Cement Treated Unit Cell
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Input Parameters for Numerical Analysis of
Cement Treated Unit Cell

Model Apply E K G v Y
load (x10%kpa) | (x10%kpa) | (x103kpa) (kEN/m>)
a
(kaz)
Soil Linear- 500 5 8.33 1.79 04 | 13.73
elastic
Column | Linear- 500 50 27.78 20.83 | 0.2 | 13.73
elastic

L/a=20,n(=b/a)=4,0/E=010,E/E=10,a=0.5m




Comparison of Settlement Profile of
Cement Treated Unit Cell

Normalized Settlement, St/F
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Stress Concentration Ratio with Depth of
Cement Treated Unit Cell
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3-D Numerical Modeling of
Full-Scale DMM Improved Ground
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Equivalent Surcharge Pressures due to
Stage Construction of Testing Embankment

Number of Lift Equivalent Equivalent
(m) incremental Cumulative
Surcharge Surcharge
Ao, (kPa) . (kPa)
1 13.87 13.87
2 15.51 29.38
3 14.73 44.11
4 13.8 57.91
S 11.24 69.15




Surcharge Pressure on DMM Improved Ground Due to
Construction of Testing Embankment
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Geometry of Full-Scale DMM Improved Ground
at AIT Campus




Layout of Various Instrumentations
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Selected Instrumentations for Numerical Comparison
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Unconfined Compressive Tests of In-situ Mixed Sample

Sample Depth Cement content q, E;, Remark
No. m a a, t/m? t/m?
kg/m’ %
CSB1- 7.0 150 15 31.45 3990 Wall
70A type
CSB2- 2.5 100 10 17.07 | Avg. | 1547 | Avg. | Pile
25A type
CSB2-25 2.5 100 10 23.22 1596 Pile
type
22.74 2872 e

CSB2-50 5.0 100 10 27.94 5488 Pile
type




Failure Criterion of Modified Cam-Clay Model (FLAC3D
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Normal Consolidation Line and Swelling Line for an

Isotropic Compression Test for
Modified Cam-Clay Model (FLAC3D)
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Input Parameters for 3-D Finite Difference Analysis of

DMM Improved Ground
Depth K G M A k Peo Py v, k n
(m) | (x10%kpa) | (x103kpa) (x10%kpa) | (Pa) (cm/sec)
2.0-4.0 1.46 0.56 0.899 | 0.481 | 0.0962 0.109 1 |8.792 | 1.23x107 | 0.701
4.0-6.0 1.67 0.64 0.899 | 0.486 | 0.0972 0.123 1 ]9.022 | 1.62x107 | 0.71
6.0-8.0 2.30 0.88 0.899 | 0.251 | 0.0502 0.125 1 |5.352 | 9.80x10-® | 0.593

Input Parameters for Modified Cam-clay Model




Mohr-Coulomb Failure Criterions (FF/LAC3D)
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Input Parameters for Mohr-Coulomb Model

Depth K G c’ ¢ o | w(deg.) k n
(m) (x10%kpa) | (x10%kpa) | (kPa) | (deg.) | (kPa) (cm/sec)
0.0-2.0 2 1.2 30 28 | 56.42 0 2.20x1077 | 0.597
8.0-9.0 12.2 4.68 10 30 17.32 0 1.50x10¢ | 0.35
9.0-13.0 4.67 2.8 15 28 | 28.21 0 1.62x107 | 0.615
Backfill 2 1.2 30 28 | 56.42 0
Pile Type 18.78 11.27 20 36 |27.53 0 2.50x10% | 0.399
Wall Type 26.09 15.66 20 36 |27.53 0 2.50x10-3 | 0.399




Comparison of Settlement between 3-D Numerical
Prediction and Field Observation for
Treated and Untreated Zones
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Comparison of Settlement between
3-D Numerical Prediction and Field Observation

for Untreated Zone
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Z-Displacement (Settlement) Contours of the DMM
Improved Ground of Pile Type
at the End of Instrumentation

Contour of Z-Displacement
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Z-Displacement (Settlement) Contours of the DMM
Improved Ground of Wall Type
at the End of Instrumentation
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Comparison of Excess Pore Water Pressure between
3-D Numerical Prediction and Field Observation
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Comparison of Excess Pore Water Pressure between
3-D Numerical Prediction and Field Observation
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Pore Water Distribution of the DMM Improved Ground
at the End of Instrumentation

Contour of Pore Pressure
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Comparison of Lateral Movement between
3-D Numerical Prediction and Field Observation
for Treated and Untreated Zones
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Y-Displacement (Lateral Movement) Contours of the
DMM Improved Ground of Pile Type
at the End of Instrumentation

Contour of Y-Displacement

Plane: on behind
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Y-Displacement (Lateral Movement) Contours of the
DMM Improved Ground of Wall Type
at the End of Instrumentation

Contour of Y-Displacement

Flane: on behind
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2-D Plain Strain Analysis of
Full-Scale DMM Improved Ground



Finite Difference Mesh for 2-D Plane Strain Analysis
of DMM Improved Ground




Geometry of 2-D Plain Strain Analysis of
DMM Improved Ground
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Input Parameters for 2-D Plain Strain Analysis of

DMM Improved Ground
Depth K G M A k Peo Py v, k n
(m) | (x10%kpa) | (x103kpa) (x10%kpa) | (Pa) (cm/sec)
2.0-4.0 1.46 0.56 0.899 | 0.481 | 0.0962 0.109 1 |8.792 | 1.23x107 | 0.701
4.0-6.0 1.67 0.64 0.899 | 0.486 | 0.0972 0.123 1 ]9.022 | 1.62x107 | 0.71
6.0-8.0 2.30 0.88 0.899 | 0.251 | 0.0502 0.125 1 |5.352 | 9.80x10-® | 0.593

Input Parameters for Modified Cam-clay Model




Input Parameters for Mohr-Coulomb Model

Depth K G c’ ¢ o 7 k n
(m) (x10%kpa) | (x10%kpa) | (kPa) | (deg.) | (kPa) | (deg.) | (cm/sec)
0.0-2.0 2 1.2 30 28 | 56.42 0 2.20x107 | 0.597
8.0-9.0 12.2 4.68 10 30 17.32 0 1.50x10¢ | 0.35
9.0-13.0 4.67 2.8 15 28 28.21 0 1.62x107 | 0.615
Backfill 2 1.2 30 28 | 56.42 0
Pile Type 6.71 4.03 20 36 |27.53 0 2.50x10% | 0.399
Wall Type 6.21 3.73 20 36 27.53 0 2.50x10% | 0.399
/

Scaled by Column Spacing, s




Comparison of Settlement between 3-D Numerical

Prediction and 2-D Plain Strain Analysis
for Instrumentations
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Comparison of Settlement between 3-D Numerical
Prediction and 2-D Plain Strain Analysis
for Instrumentations
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(1)According to the settlement performance of unit cell analysis,
good agreement 1s found between the numerical results and
mathematical solutions (Alamgir et al ,1996). Consequently, the
effectiveness of numerical procedures 1s verified for DMM
composite ground

(2)For excess pore water pressure, the predicted trends were in
agreement with those of the measurement. The numerical
results indicate that the calculated pore pressure is sensitive to
the input permeability £ of unimproved soil.



(3)The predicted lateral movements from analysis at the pile type
improvement show good agreement with the field observation.
Examining the lateral displacement and the pattern of deformation
curves , 1t can be found that the relative movement between
improved zone and unimproved zone seems not obvious.

(4)From 2-D numerical simulation, 1t can be concluded that the 3-D
analysis 1s capable of revealing more realistic deformation of
DMM 1mproved ground than that of 2-D plane strain analysis and
can give better predictions.



Recommendations

(1)To examine the interface behaviors of the improved zones and the
unimproved zones at the wall type improvement in detail during

and after construction of the embankment.

(2)To mvestigate the effects of construction parameters of DMM
improved ground such as : (1) column diameter, D (2) column
length, L and (3) column spacing, s and (4) configuration pattern
on deformation performance.



The End



® M. Terashi and H. Tanaka (1983) presented that the treated
soll behaves as elastic material with very low permeability
and that soft soil consolidate one-dimensionally under
decreasing loading due to gradual stress concentration to
treated soil.



Location of Testing Embankment for

DMM Improvement Ground
at AIT Campus
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(2)For DMM unit cell analysis, the compressive stress in the column
increases as the depth increasing while in the soil decreases with
the increasing depth. It can be concluded that the relative stiffness
of column and soil have significant influence on the magnitude of
load transfer because the factor influence the mobilization of shear
stress and the distribution of load sharing.

(2)The predicted settlement 1n the analysis show good agreement with
the field observation. Comparison indicates that the performance
of settlement could be well predicted with the proper selection of
the soil parameters and material models.



Yield function: f(q,p) = q2 + sz(P —p.)

6sin @'
3 —sin¢@'

Frictional constant: M =

The slopes of the normal consolidation line: A=C c / hl(l O)

The slopes of the swelling lines: K =~ C ¢ / ]Il(l O)

x 1s usually chosen in the range of one-fifth to one-third of A



q> =M’[p(p., — p)]
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Initial values for specific volume:

v, =0, —;un(l;co )+ Kln(p;))
1

K = Uy Py
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Column Displacement:
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cz)ﬂdc — 0 . —7, md Az =0

4 (64 az Cc

(G + Ao

(674

do 4

cz

=—7

dz d “

C

d(f _Es(l_lgc)acz

(674

dz a’(1+v,)

. (Ni/a)(l_ﬂc)Esaq
O..1 =0, +
7 7 all+v,)

AH (AH/a)z(l_ﬂc)Esacj
e R )




Soil Displacement:
(0, +Ac . )lﬂbz — (b —Ar) J— o, N, [72192 —n(b—Ar) J+ 7., 271(b— Ar)Az = 0

dO-SNZ _ (n _AR)Z-NZ
dz  aAR(n—AR/2)

do,.  (n=AR)I-pg.e"" | a,

dz  2a°AR(n—AR/2)1+v,)

_ (AH/@)n- ARl - eV E o
O ... =0 ..
gl = S ZaAR( AR/Z)(]-I—V )

AH (AH/a)n—AR)1 - B,e |y
W Oy —
E 4AR( —~AR/2)1+V,)




