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ABSTRACT

In the random finite element method (RFEM), there arises an inevitable issue of discretization error from two
sources: error due to finite element (FE) discretization and error due to random field (RF) discretization. The present
paper investigates the contributions of these two errors to the total discretization error. The active lateral force on a
retaining wall with spatially variable clay is considered. Two separate meshes are defined, FE mesh and RF mesh,
and they are generated at different resolutions. Spatial averaging (SA) method is adopted for discretization of
random fields. The active lateral force is then simulated for different combinations of FE mesh and RF mesh. It is
found that the two errors tend to accumulate for the SA method, with a dominant contribution from the RF
discretization error. This study also provides suggestions for allowable mesh sizes to control the discretization error

in the current retaining wall problem.
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1 INTRODUCTION

The random finite element method (RFEM) (e.g.,
Fenton et al. 2005) is increasingly used in geotechnical
engineering. The RFEM must meet a number of
challenges for its implementation. A major challenge is
the discretization error. The discretization error is the
discrepancy between the true solution for the
continuous mathematical model and the approximate
RFEM solution. In the RFEM, this error comes from
two sources at least. One is the finite element (FE)
discretization, and the other is the random field (RF)
discretization. The former is obvious. The latter is
because a discrete random field is needed to feed soil
properties into finite element analysis. Hence, the
discretization error in the RFEM depends on several
factors such as boundary conditions, response of
interest, discretization method, element size, scale of
fluctuation (SOF), and type of autocorrelation function
(Fenton 1994).

In the geotechnical community, the authors are
aware of two studies that have been fully devoted to the
issue of discretization error for spatially variable
undrained shear strength: Ching and Phoon (2013) and
Huang and Griffiths (2015). They both considered a
similar problem (soil column subjected to axial
compressive loading). To control the discretization
error, they reported a dimensionless ratio of the element
size to the SOF, where SOF is the distance over which
property values are significantly correlated. However,
their recommended ratios of (element size)/SOF are
very different. In fact, Ching and Phoon’s (2013)

recommendation is almost ten times smaller than
Huang and Griffiths’ (2015) recommendation. Apart
from this difference, what is less understood in both
studies, and in past studies, is how the two components
of the discretization error (FE discretization error and
RF discretization error) interact with each other and
affect the solution. Insights from this can help to reduce
the discretization error in a more effective way. The
present paper therefore aims to address the following
questions: (1) do the two components of the
discretization error accumulate or compensate?, and (2)
which component is larger? The present paper also
provides suggestions for the allowable (element
size)/SOF to achieve a certain error tolerance in the
retaining wall problem. Note that the conclusions of the
paper may no longer be valid if, for example, a
different autocorrelation function or a different
discretization method is adopted.

2 METHODOLOGY

2.1 Random field model

This paper models spatial variability of soil as
random fields. The random field is assumed to be
second-order stationary, which needs three parameters:
(1) mean, (2) variance, and (3) autocorrelation function.
The first two are constant everywhere. The third, which
defines the correlation between two points, is a function
of their separation distance rather than their absolute
positions. One of the common autocorrelation functions
used in the geotechnical engineering literature is the
single exponential model. In two dimensions, it defines
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the correlation between two points with separation
distance of Ax and Az as follows:
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where 0x and J; are, respectively, SOFs in the x and z
directions. In the present study, 6x = 6; = 9.

The Fourier series method (FSM) (Jha & Ching
2013) is employed to simulate a two-dimensional
lognormal random field. Moreover, among different
random field discretization methods, the spatial
averaging (SA) method is adopted. In SA, the field
value for an element is represented by the spatial
average of the field over the element.

2.2 Finite element model

The backfill for the retaining wall is a rectangular
area of size Ly x L, = 16 m x 8 m, restrained by a wall
of height H = 5 m (Fig. 1). Only cohesive soil is
considered. A more comprehensive study should
consider frictional materials as well. The conclusions of
the paper may not be applicable to the frictional
materials. The undrained shear strength (s)) is
simulated as a lognormal random field with a mean
value = 20 kN/m? and variance = 62 (kN/m?)2. The soil
unit weight is 20 kN/m3, the Young’s modulus is 100
MN/m?, and the Poisson ratio is 0.3. The active lateral
force, Py, is calculated as follows. The wall nodes are
incrementally displaced in the horizontal direction until
the mobilized reaction force on the wall reaches a
minimum value, and P, is taken to be the minimum
value (Fenton et al. 2005).
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Fig. 1. The FEM model for the retaining wall problem.

2.3 Random finite element mesh layout

In practice, RFEM often adopts an identical mesh to
discretize the FE and RF models. This way of
discretization, hereafter called the conventional RFEM,
mixes the two components of the discretization error
together. As stated earlier, the total discretization error
in the RFEM has at least two components. One pertains
to FE and the other to RF. To decompose the
discretization error into these two components, the
present paper defines two separate meshes: FE mesh
and RF mesh. The FE mesh consists of square elements
with a side length of Irg, while the RF mesh consists of

square elements with a side length of Irr. Both meshes
are generated at different resolutions. As shown in
Figure 2a, 39 different combinations of FE and RF
mesh resolutions are considered. Note that the dashed
line in Figure 2a represents the conventional RFEM in
which I = Irr = I. As an illustration, the case with
Ire/H = 1/5 and Ire/H = 1/1.25 is shown in Figure 2b. In
finite element analysis, it is common to refine the mesh
only in regions with a steep stress gradient. This saves
the computation time without sacrificing accuracy.
However, in the present study, the mesh is uniformly
refined over the entire domain for sake of simplicity.
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Fig. 2. (a) Different combinations of FE and RF mesh resolutions
(b) The case with Ire/H = 1/5 and Ire/H = 1/1.25 (filled circle)

3 RESULTS FOR A FIXED SOF

In this section, the discretization error is studied for
a fixed value of SOF. The results for various SOFs will
be presented in the next section. A fixed SOF (6 = 1m)
is considered. Two thousand Monte Carlo simulations
are performed for each of the 39 combinations of FE
and RF mesh resolution. In each random field
realization, sy values are assigned to the RF mesh using
the SA method, and P, value is simulated. Figure 3
shows the mean of P, E(P2), normalized by the mean of
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Pas, E(Pas). The subscript s denotes the case where s, is
treated as a single random variable (homogeneous sy).

1.4 T
1./ H=1/160
Finest FE FE
mesh . IFE/U:US()
13F fe] IFE/11:1/40 E
+ IFE/H=1/20
g.:r a IFE/H=1/10
= 1.2F o ., /H=1/5
E Conventional
~a RFEM
=)
=
Coarser RF
mesh
Coarser FE
1F mesh
10 10" 10
IRF/H

Fig. 3. The normalized mean Pa for § =1 m.

3.1 FE discretization error for a fixed RF mesh

In Figure 3, the effects of FE and RF discretization
errors are mixed. To focus on the FE discretization
error, the results for a fixed RF mesh but a variable FE
mesh are shown in Figure 4 (Ire/H is fixed at 1/2.5).
Although not shown, similar trends as in Figure 4 are
observed for other fixed values of Irr. It is evident that
a coarser FE mesh tends to make the model soil mass
“stronger” than that produced by the finest FE mesh.
This is manifested by a decrease in E(P,) with a coarser
FE mesh. This observation is consistent with the
general understanding in FE community that a coarse
mesh tends to behave overly strong.
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Fig. 4. The effect of the FE discretization error (Ir/H = 1/2.5).

3.2 RF discretization error for a fixed FE mesh

To focus on the RF discretization error, the results
for a fixed FE mesh (finest FE mesh) but a variable RF
mesh are shown in Figure 5. It is evident that a coarser

RF mesh tends to make the model soil mass stronger
than that produced by the finest RF mesh. This is
because weak spots are suppressed by SA. This
behavior is manifested by a decrease in E(Pa) with a
coarser RF mesh.
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Fig. 5. The effect of the RF discretization error (Ire is the finest).

3.3 Discretization error for the conventional RFEM

Recall that the conventional RFEM adopts equal FE
and RF meshes (Ire = Irr = 1), so a coarser FE mesh
implies that the RF mesh is coarser as well. The total
discretization error for the conventional RFEM can be
decomposed into FE and RF discretization errors, as
described below. Consider the solid line (finest FE
mesh) and dashed line (conventional RFEM) in Figure
3. These lines are reproduced in Figure 6 for ease of
illustration. Three points are marked in Figure 6: Points
A (conventional RFEM), B (finest FE mesh), and C
(finest FE and RF mesh). It is clear that the vertical
difference between A and C is the total discretization
error for the conventional RFEM. Note that A and B are
with the same Irr, but B is with Ire = the finest Ire. It is
then clear that the vertical difference between A and B
is the FE discretization error for the conventional
RFEM. Note that B and C are with the same Irg, but C
is with Irg = the finest Igr. It is then clear that the
vertical difference between B and C is the RF
discretization error for the conventional RFEM. As a
result, the FE and RF discretization errors can be
separated.

Figure 7 shows how the FE and RF discretization
errors vary with mesh size in the conventional RFEM
(lee = Ire = 1). It can be seen that the RF discretization
error is larger than the FE discretization error. More
importantly, the FE and RF discretization errors are
both negative, so the total discretization error becomes
even larger: the FE and RF discretization errors
“accumulate”.
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conventional RFEM solution — the standard deviation
of the reference solution)/(the standard deviation of the
reference solution). (1/8)aiow iS Selected such that the
absolute value of the relative error does not exceed a
certain “error tolerance” for both the relative errors in
the mean and standard deviation. Two error tolerances
are considered: 0.01 and 0.05. The most conservative
(1/8)anow value over various SOFs is adopted for
conservatism. The suggested (1/8)a0w are as follows. If
the error tolerance is 0.01, (1/8)aiow iS about 0.03. If the
error tolerance is 0.05, (1/8)aiow is about 0.13. Note that
these suggestions may be restricted to the current

5 CONCLUSIONS
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Fig. 6. The decomposition of the total discretization error for the
conventional RFEM into the FE and RF discretization errors.
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Fig. 7. The variation of the FE and RF discretization errors in the
conventional RFEM (Ire=Irr=I)

4 RESULTS FOR VARIOUS SOFS

This section studies the discretization error for
various SOFs. The analyses in the previous section are
repeated for SOF/(height of wall), 8/H, = {0.02, 0.1, 0.2,
0.5, 1, 2, 10, 50, 300}. Although not shown, the
qualitative observations made in the previous sections
still hold true for various SOFs. In the following, the
allowable mesh size for the conventional RFEM
considering various SOFs is investigated.

4.1 Suggestions for allowable mesh size

The allowable normalized mesh size, (1/8)aliow, iS
suggested as follows. The suggestion is based on the
relative error with respect to the reference solution. The
reference solution refers to the solution produced by the
finest FE and RF meshes. The relative error is defined
as (the mean of the conventional RFEM solution — the
mean of the reference solution)/(the mean of the
reference solution) or (the standard deviation of the

In this paper, the discretization error of the random
finite element method (RFEM) for spatially variable
undrained shear strength is decomposed into two
components: error due to finite element (FE)
discretization and error due to random field (RF)
discretization. Two separate meshes, FE and RF meshes,
are used to study the contribution of each component.
Spatial averaging (SA) discretization method is
considered. Based on a series of analyses on the active
lateral force (P.) on a retaining wall problem, the
following conclusions are obtained: (1) The FE
discretization error tends to make the model soil
“stronger” than that produced by the finest FE mesh;
(2) The RF discretization error tends to makes the
model soil stronger than that produced by the finest RF
mesh; (3) In the conventional RFEM (equal-size FE
and RF meshes), the FE and RF discretization errors
accumulate, and the RF discretization error is larger
than the FE discretization error; (4) The allowable
normalized mesh size, (1/8)aiow, that keeps the relative
error within a certain error tolerance is as follows. If the
error tolerance is 0.01, (1/8)anow is about 0.03. If the
error tolerance is 0.05, (1/8)anow is about 0.13; (5) The
conclusions of the paper may no longer be valid if, for
example, a different discretization method or a different
soil type is adopted.
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