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Evaluation of the spatial variability of cone penetration resistance inside an earth-fill dam composed
of materials with different particle sizes with use of geostatistics
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ABSTRACT

In this study, an evaluation method is proposed for the spatial variability of the soil strength derived from the results
of cone penetration tests (CPTs) conducted inside an earth-fill dam composed of mixed materials with different particle
size distributions. First, in order to reduce the influence of outliers, which have high values or low values, on the
modeling of the random field, the measured values are divided into outliers and the others, namely, high, middle, and
low groups, respectively. Second, a statistical model is determined for each of the three groups, and the spatial
variability of the soil strength considering the outliers is evaluated based on the simulation results of the three groups.
The novelty of the approach exists in the re-composition of the simulated values of the three groups. In the proposed
method, the measured values are statistically modeled, including the spike-like distribution affected by the outliers.
Finally, the estimated values obtained by the proposed method and the measured values are compared at the same
location to confirm their correspondence. As a result, it is verified that the proposed method can be used to reasonably
simulate the spatial variability of the soil strength inside an earth-fill dam considering outliers.
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1 INTRODUCTION
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sometimes partially contain gravel, as gravel is /7] values '
commonly used to reinforce soil structures. Due to the

outliers caused by the gravel, it becomes difficult to
apply the geostatistical method for the evaluation of the
spatial variability of the soil strength. Therefore, an
evaluation method is proposed in this paper for the
spatial variability of the cone tip resistance inside an
earth-fill dam composed of materials with different
particle sizes.

In the present work, first, the outliers are separated
from the other data in order to identify the geostatistical
parameters of the measured CPT values. To reduce the
influence of the outliers on the modeling of the random
field, the measured values are then divided into three
groups, namely, high, middle, and low, respectively, as
shown in Fig. 1. Second, a statistical model is
determined for each of the three groups, and a
geostatistical simulation is applied for each group. The
unique feature is the re-composition of the three groups
to incorporate the effect of the outliers into the spatial

Fig. 1. Distribution of tip resistance in cone penetration tests
(CPTs).

the spike-like distribution of the tip resistance affected
by the outliers shown in Fig. 1, the locations where the
outliers appear are evaluated. Finally, the simulated
values for the three groups are re-composed.
Furthermore, the measured values are compared with the
simulated values at the same location, and the accuracy
of the proposed method is validated.

2 STATISTICAL MODELS

For evaluating the soil strength inside a dam, the N-
values calculated from the CPTs, Nc, were employed
here. The conversion formula used to derive N was
presented by Suzuki et al. (2003), while Nishimura et al.



(2017) used N¢ to identify the weak areas of a river dyke.
At the studied site, CPTs were conducted at 15 points
at the top of the dam at intervals of 2 m along the
embankment axis, as shown in Fig. 2. The geological
cross section of the dam is given in Fig. 3. The height of
the dam is 6.6 m, and the soil profile is classified into
four layers, namely, backfill sand (Bs), alluvial clay
(Ac), alluvial gravel (Ag), and weathered slate (PI-w).

The soil parameters for the points where test results
do not exist can be estimated using a statistical model.
To determine the statistical model properly, the
maximum likelihood method (MLE) and the semi-
variogram, which is one of the geostatistical methods,
are employed here, namely, the mean function and the
standard deviation are determined by the MLE, and the
covariance function, the horizontal correlation distance
Iy, and that of depth direction I, are identified by the
semi-variogram, respectively. The detailed procedure
for determining the statistical model is described in
Nishimura et al. (2016).

Since the measured values contain outliers which can
cause the mis-estimation of the statistical parameters, the
outliers should be separated from the original data. Thus,
outliers which have values close to the maximum or
minimum values of the measured values are defined, as
shown in Fig. 1. In order to reduce the effects of outliers
when modeling the random field inside a dam, the N¢
values are divided into three groups, namely, high, Y,
middle, Ym, and low, Y.

Measured data categorized into Ym are used to
determine the geostatistical parameters. In Fig. 4, the
semi-variogram values are modeled by the regression
function. The root mean squared error (RMSE) in Y is
calculated from the residual error between the semi-
variogram values and the regression function and
depends on the threshold values for separating the N-
values into the three groups. The threshold values
between the high and low groups are determined so that
the RMSE is minimized. From among the many
candidates for the threshold values, a pair of values that
corresponds to the minimum case of the RMSE is finally
determined as the optimal case, and the statistical models
for the three groups are identified, as shown in Table 1.
The correlation distances of Y are reasonable compared
with the published values (Phoon and Kulhawy, 1999).
In addition, the semi-variograms derived from all the
data and those calculated from the optimal case of Yum
are presented in Fig. 4. The figure shows that the
correspondence of the regression function is improved in
the optimal case of Y.

3 RE-COMPOSITION OF SIMULATION
RESULTS

To evaluate the safety of soil structures, information
on the outliers inside the soil structures is important. To
simulate each spatial variability of the CPT N-value, Nc,
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Fig. 2. Plan view of dam and testing points of CPTs.
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Fig. 3. Geological cross section of dam.

Table 1. Statistical models of Yn, Yr, and Ym.

Mean function Standard deviation
u=0.321 0.371
Covariance function (i,j=1,2,...,M)

Y C=0371"N,exp(~|x —x,|/ 445z, ~7,|/041) (i)

N,=0.298 (% —x]|#0,z-2]=0)
N,=0377  (x-x]|#0z-2]|=0)
N,=0.790 (% -x]|=0,z-2]=0)
C=0377 (i=])

YuYy: C=0 (i#])
C=0377 (i= )

M : Number of measurements, N .: Nugget effect parameter

£ 15 15
§’ & — ' 14 — =S
é 0.59 -= Semi-variogram 0.5
3 0 — Regression function 0
0 5 10 15 20 0 5 10 15 20
Distance between two data (m) Distance between two data (m)
(a) All data. (b) Optimal case of Ywm data.

Fig. 4. Semi-variograms in horizontal direction.

based on the statistical model for each of the three
groups, the geostatistical software library GSLIB
(Deutsch and Journel, 1992) is used as a conditional
simulation tool. By combining the simulation results of
the three groups, namely, Ru, Rwm, and Ry, the proper
spatial distribution of N¢, Rg, can be evaluated.
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In the re-composition of the simulation results, the
spike-like distribution of the tip resistance affected by
the outliers, presented in Fig. 1, is utilized to evaluate the
locations of the outliers. In Fig. 5, difference values Du
and Dy, between the simulation value from middle group
Rwm and the threshold values between the high and low
groups, are defined, namely, Du(X, z) = Tu-Rm(X, ) and
DL(x, ) = Rm(X, 2)-Tv, respectively. It is assumed that
spatially, around the points where the values of Dy or D
are small, the probability of the existence of outliers is
high.

In addition, the rate of outliers of high strength,
included in the simulated results, and the rate of outliers
of low strength are assumed to be same as the
classification rate for the high range taken from the
measured values, Py, and for the low range, P.. Py and
P are defined in Table 2. The flowchart given in Fig. 6
is used to derive the re-composed results of the
simulation, Rg. The procedure shown in the figure is
repeated to obtain a large number of realizations for the
random field.

4 EVALUATION OF SPATIAL DISTRIBUTION
OF SOIL STRENGTH INSIDE DAM AND
VALIDATION

The spatial distribution of the expected values for the
N-value from the CPTs, N, and the spatial distribution
of the probability of N.>6.25 are given in Figs. 7 and 8,
respectively. N = 6.25 corresponds to the threshold
value, Tu, between the high and middle groups.
According to Fig. 7, the expected value for N¢ in the
dominant space is N¢<4, while there are particularly
weak areas around x = 10~17 m and z = 1~9 m. On the
other hand, the spatial distribution of the strong areas
inside the dam is given in Fig. 8. The probability of the
occurrence of outliers of high strength is more than 0.5
within x =5~25mand z=0.5~3 m.

To validate the proposed method, part of the data is
intentionally removed from the measured data, and the
remaining data are applied to the simulation. The
simulated values and the removed data are compared at
the same location to verify their correspondence. In Figs.
9 and 10, a comparison of the soil strength distribution
at x = 6 m, between the expected values and the in-situ
data, and a comparison of the probability density
function at x = 6 m, between the simulated values and
the in-situ data, are presented, respectively.

According to Fig. 9, the expected values roughly
follow the measured values, except for around z = 6 m
and z = 8 m. It seems that the difference is caused by the
great variability in the soil strength of the measured
values. The expected values simulate the trend of the
measured values well, but the expected values
occasionally yield mis-estimations of the measured
values. In Fig. 10, since the shapes of the probability
density functions correspond well, namely, both of the
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Fig. 5. Definition of Du and DL.

Calculate Dy and D, at all evaluation
points, N, respectively.
v

Compute the number of combination points
for high and low ranges,
Npsim and Ny giv, respectively.
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Fig. 6. Flowchart of re-composition of simulation results.

Table 2. Variables for re-composition of simulation results.

N 4831 (Number of all evaluation points)
Nos 1955 (Number of all in-situ data)

Nog = Niog + Nyog + Niog
Ngy 2876 N =N —Ngg

= Nyssiv + Nysia + Nisi

Nuos 224 (In-siudataofhighrange)
Nmog 1619 (In-situ data of middle range)
N_oog 112 (In-situdata of low range)
Py 115% P,=N.g/Nes
PL 57% P =N_5z/N
Nusim 329 Ny =PRN =Ny
Nvsim 2382 NMSIM = NSIM _(NHSIM + NLSIM)
Nicwo 165 N....=P N-=N...

distributions have the peak around N.=2, it is confirmed
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that the proposed method can simulate the measured
data.

5 CONCLUSION

In this paper, an evaluation method has been
proposed for the spatial variability of the soil strength
derived from the results of cone penetration tests (CPTs)
performed inside an earth-fill dam composed of mixed
materials with different particle size distributions. The
concluding remarks are summarized below.

1. The measured values were classified into three
groups, namely, high, middle, and low, by the threshold
values between the high and low groups. The threshold
values were determined so that the RMSE would be
minimized. Since the influence of outliers on the random
field modeling of the Ywm group was reduced by their
removal, the correlation distances could be properly
estimated. As a result, the horizontal value was about 10
times that of the vertical one.

2. Itis seen in the CPTs that the spatial distributions
of the weak areas and the strong areas originated from
the amount of gravel mixed into the soil and affect the
soil strength. In other words, the weak areas contain a
smaller amount of gravel, while the strong areas contain
a larger amount of gravel. The novelty of the proposed
method is in the re-composition of the simulation values
of the three groups, namely, high, Yu, middle, Yum, and
low, Y. The Yn and Y groups model the outliers of the
high strength and the low strength, respectively. In the
proposed method, the rate of outliers is determined from
the measured values. The simulated values for each of
the three groups are re-composed so as to follow the
determined rate, and the locations of the outliers are
determined based on the simulated values of the middle
range, Ywm.

3. As aresult of a comparison between the simulated
values and the measured values, the distribution of these
values at the same place roughly corresponded, and the
shapes of the probability density functions were also
similar. Thus, it has been verified that the proposed
method can be used to reasonably simulate the spatial
variability of the soil strength considering outliers.
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