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ABSTRACT

This study developed a multivariate distribution model for the compressibility and piezocone penetration test (CPTU)
indices of Jiangsu inorganic soft clays based on a compiled database. Analytical expressions for the marginal
probability density distributions of soil variables and correlation coefficients were presented. Based on the
constructed model, bivariate and multivariate correlations for predicting the primary and secondary compression
indices were proposed. Performance of the developed correlations was evaluated in detailed. The results indicated
that the constructed multivariate distribution model provided a favorable way to capture the multivariate
dependencies among the compressibility and CPTU indices of Jiangsu clays. Nevertheless, caution shall be exercised
when the model and corresponding correlations are used in other soils such as silts and sands.
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1 INTRODUCTION

Soil compressibility has been a major concern for
settlement-related issues in geotechnical engineering. In
regular site characterization projects, plenty of soil
samples have to be collected and thus design costs are
significantly increased. To achieve a more efficient and
economic evaluation of soil compression behavior, the
piezocone penetration testing (CPTU) technique has
been gradually used in recent studies (e.g., Bersan et al.
2013; Reid 2015; Tonni et al. 2016). Past research
indicated that the three CPTU measurements including
cone tip resistance (qz), sleeve frictional resistance (fs),
and pore water pressure (u2) are all a function of soil
stiffness, fines contents and soil fabrics. These factors
also impact the behavior of soil compression, and
therefore it is not unreasonable to establish correlations
between soil compressibility and CPTU indices.

Despite recent active studies, it seems that most
research only focused on bivariate correlations among
these soil parameters, such as predicting the slope of
the critical state line in e-lgp’ space (1i0) using the
normalized frictional resistance (F) or soil behavior
type index (Ic) (e.g., Reid 2015), or predicting the
secondary compressibility index (C,) using the
normalized cone tip resistance (Q:) (e.g., Bersan et al.
2013; Tonni et al. 2016).

This study applied the multivariate distribution
model approach to capture the correlations among two
compressibility parameters, i.e., primary and secondary
compressibility indices (Cc and C,), and three CPTU
indices, including Q:, Fr and I, for Jiangsu inorganic
soft clays based on a compiled database. Furthermore,

bivariate and multivariate correlations for predicting C.
and C, using different CPTU indices are derived using
the constructed multivariate distribution model, and
their performances are examined in detail. Implications
and cautions in applying the developed correlations are
also discussed. It shall be mentioned that the Ic used in
this study follows the definition given by Been and
Jefferies (1992) as below, because the involved excess
pore water pressure item (Bg) shall be useful to predict
Ccand C, (e.g., Tonni et al. 2016)

I, = \/{3— lg[ Q. (1- Bq)+1}}2 +(5+131gF ) (1)

2 DATABASE

The compiled database only involves data points for
Jiangsu inorganic soft clays. Data points corresponding
to organic soils were discarded as they show quite
different behavior compared to other soils, e.g., the
compressibility of peat is generally more significant
than clays. All C; and C, data were obtained from one
dimensional oedometer tests. In some experimental
tests, the e-Igp’ curves did not approximate a straight
line, and thus it is difficult to determine C; and C,. A
more accurate way is to use the (1+e)-Igp’ curves as an
alternative (Hong et al. 2012). Then C. = CcL(1+ec),
where ec is void ratio at the end of primary
consolidation at current effective stress, and Cc_ is the
slope of (1+¢e)-lgp’ curves.

Using the above methods, 72 sets of {Qx, Fr, ¢, Cc,
C} were obtained for the Jiangsu inorganic soft clays.
The C. and C, in the database vary within the ranges of
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0.203 — 0.779 and 0.0078 — 0.0287, respectively. These
two ranges correspond to medium to very high
compressibility according to Mesri (1973). The whole
database will be used in the following sections to
establish a multivariate distribution model.

3 MARGINAL DISTRIBUTIONS

The first step to develop a multivariate distribution
model is to quantify the marginal probability density
functions (PDFs) of involved soil parameters. For the
convenience of presentation, the five soil parameters
are denoted as Y1 = Q, Y2=F, Ya=l¢, Ya=Cq, and Ys
= C,. Liu et al. (2016) applied the Box-Cox method to
convert a non-Gaussian soil variable (Y) to a standard
normal variable (X) as follows:

A
x_Y -1-4a )
b

where 1 is a transformation power, a and b are scaling
and shifting parameters.

The above formula is suitable for A£0. For A=0, a
natural logarithmic transformation is advised. The
estimation of optimal A value can be readily achieved
using Matlab library function boxcox. Liu et al. (2016)
did not present the PDF of Y. In this study, the
following approximation method is proposed to address
this issue (Cramer 1999),

()X Ly 3
9(Y)=f(X)g =g Y (%) )

where g(Y) and f(X) are PDFs of Y and X, respectively.
The above approximation holds on the basis of the
simple idea that the integral of g(Y) over dY always
equals to that of f(X) over dX. Using this method, the
marginal PDFs of Y variables are estimated and they are
compared with sample histograms in Fig. 1. The three
transformation parameters (4, a, b) and P-values of the
Kolmogorov-Smirnov test (KS-P) for the transformed X

variables are also presented in Fig. 1.
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Fig. 1. Marginal PDFs of soil variables

Fig. 1 indicates that the estimated PDFs agree well
with the sample histograms. The KS-P values are larger
than 0.05, indicating that there is no strong evidence to
reject the hypothesis that the X variables individually

follow a standard normal distribution. Thus the above
transformation is effective and the estimated PDFs of Y
variables are rational for the investigated database.

4 CORRELATION MATRIX

The next step is to calculate the correlation matrix
of X variables, which is formed by the Pearson’s
correlation coefficients (d;) between all pairwise Xi-X;
data. It is considered useful to quantify the uncertainties
within ¢;j values, especially when sample size is limited.
Zou et al. (2017) applied the Fisher’s Z transformation
to indirectly address this issue as follows,

1 (1+6; 1 (4)
2 il o, =———
ZIJ 2 n[l—éij] ] NIJ _3

where zj is the transformed correlation coefficient, ojj is
the standard deviation of zj, and Nj; is the sample size
of X;-X; data.

It is argued that z;; approximately follows a normal
distribution and therefore its PDF is traceable (Cramer
1999). Based on the PDF transformation technique in
Equation (3), it is also possible to provide the analytical
expression for the PDF of dj;, as follows,

dz,
o(6)= (g =5 1) O

Using Equation (5), the PDFs of ¢j are estimated,
and they are compared with the histograms obtained
from the bootstrapping techniques suggested by Ching
et al. (2014) in Fig. 2. It is indicated that the estimated
PDFs match the histograms favorably. Therefore,
Equation (5) provides a rational way to report the PDFs
of gjj values.

200 200 200 200
- ,J Eh J(mhk
0 0
9 -

-0.8 -04 0 04 -09 0.6 -0.3 .3 0.6 -03
J, J 9, ds
)

Frequency

Frequency
=
=] (=)
-
“  Frequency
>
I S
“«  Frequency
=
=3 S

&

1)
=3
S
oy
)
=3
S

)
=3
=3

12
0 J%L

0 03 06 09

=3
w
=3
=N
=]
=)

Frequency
=
=] (=]
> S %
¢ Frequency
>
=3 S
-
*°  Frequency
=
(=)

)
=3
S

—] Bootstrapping
Fisher transformation

Frequency
)

(=]
Frequency
S
(=)

0 0
correlation matrix (C) 04 06 08 1 04 06 08 1
d. d.
X1 X2 X3 X4 X5 34 200 35
X1 1 -0.1750 -0.6285 -0.6875 -0.6400 é‘
X2 |-0.1750 107425 0.4172 0.4495 S 100
X3 | -0.6285 0.7425 1 0.7346 0.7433 g 1
X4 |-0.6875 0.4172 0.7346 1 0.9616 =,
X5 | -0.6400 0.4495 0.7433 0.9616 1 09 095 1
645

Fig. 2. Estimated PDFs of ¢i; for pairwise variables

The estimated median values of d;; are also tabulated
in Fig. 2. A strong correlation between C¢ and C, is
observed as das reaches 0.96. This is reasonable because
the ratio of C4/C. generally remains constant for
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common soils according to Mesri (1973). It is also
found that Ic is the most effective CPTU index to
predict Cc, followed by Q: and F. This observation is
consistent with the previous study conducted by Reid
(2015). Therefore, the correlation matrix presented in
Fig. 2 shall be reasonable in the context of existing
geotechnical knowledge.

5 DERIVED CORRELATIONS

The multivariate distribution model constructed in
the previous two sections provides a prior joint PDF for
the involved soil parameters (Ching et al. 2014; Liu et
al. 2016). It is possible to establish correlations among
Cc, Cy and CPTU parameters for the Jiangsu inorganic
clays based on the constructed model. This is achieved
using a Bayesian updating and a back transformation
process. The detailed derivation procedure is available
in the literature (e.g., Liu et al. 2016; Zou et al. 2017)
and thus it is not presented here. The following four
bivariate correlations for Jiangsu inorganic soft clays
are derived and compared with data and trends from
literature:
® C,-C. correlation as shown in Fig. 3(a). The C./C.
concept proposed by Mesri (1973) is also
illustrated in Fig. 3(a);

® C,-Q: correlation as shown in Fig. 3(b). The
empirical trend recommended by Bersan et al.
(2013) and Tonni et al. (2016) for the Venice
Lagoon sands and silts is also given in Fig. 3(b);

® C.-F correlation as shown in Fig. 3(c). The data
points of 410 from 31 worldwide sites reported by
Reid (2015) are also illustrated in Fig. 3(c). Albeit
Ao is different from C, i.e., 110 is obtained from
isotropic consolidation test whereas C. is from
one-dimensional oedometer test, 110 data are still
used here to achieve a qualitative comparison
because they share same definition and evaluate
similar soil behavior;

® C.-F correlation as shown in Fig. 3(d). Again, the
data reported by Reid (2015) are introduced in Fig.
3(d) for a qualitative comparison.

The following conclusions are obtained from Fig. 3:

® The proposed C,-C. correlation agrees well with
the C./C. concept and the C,/C. of Jiangsu
inorganic soft clays varying within a narrow range
of 0.033 to 0.046.

® The proposed C,-Q: correlation agrees with that
given by Bersan et al. (2013) only in trend. The
empirical correlation suggested by Bersan et al.
(2013) systematically underestimates C, values for
the Jiangsu inorganic soft clays. A possible
explanation is that their correlation was developed
based on sands and silts, which show less notable
compressibility than the soft clays in this study.
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Fig. 3. Developed correlations for predicting Cc and Cq

® The proposed Cc-F: correlation overestimates the
compressibility of soils reported by Reid (2015)
significantly. Except for the difference between Ao
and Cg, this overestimation is more likely to be
attributed to the fact that their data mainly contain
tailings, sands, and silty clays, whereas soft clay
data are quite limited.

® The proposed Cc-I¢ correlation agrees with the data
reported by Reid (2015) in trend; nevertheless, the
latter are much more scattered than expected.

The above results indicate that existing CPTU-based
empirical correlations and data may significantly
underestimate the compressibility of Jiangsu inorganic
soft clays, perhaps due to the impact of biased sample
in soil types.

By comparing the developed bivariate correlations
with experimental data, it is found in Fig. 3 that the
correlations agree well with the Jiangsu database in
both trend and range. Therefore, it seems that
constructed multivariate distribution model can do
justice to the Jiangsu clay. Based on the constructed
model, the following two correlations are derived for
predicting C. and C, using all three CPTU indices:

C, =(~0.05Q¢* ~0.026F*** —2.3071,>* +1.096) " (6)

t
Ca = (—0.008Q:)-542 —0.006 FrO.ZOS _ 0553|(:245 i 0.15)1646 (7)

Comparisons between measured and predicted C.
and C,, values using the above multivariate correlations
are shown in Fig. 3(e) and 3(f), respectively.

To assess the performance of the above proposed
correlations, the leave-one-out cross-validation method
is used. In this method, each set of sample data is
omitted from the database to construct a new
multivariate distribution model, and the omitted Y
variables are then predicted using the new model. The
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differences between all omitted and predicted Y values

are assumed to approximate the error of the model

developed using whole database. This method has

demonstrated its effectiveness in Ching and Wu (2017).

The following four performance metrics are selected
to achieve a quantitative evaluation and comparison:

(1) R? to evaluate the accuracy of prediction in a
normalized scale;

(2) EJe], mean value of prediction error (g), to evaluate
the systematic bias of prediction error, which is
defined as ¢ = measurement/prediction;

(3) COVJe], coefficient of variation of ¢, which
indicates scatter between predicted and measured
values. Note that E[¢] and COVI[e] essentially
describe the PDF of &, which approximately
follows lognormal distribution in this study;

(4) AlCc, corrected Akaike information criterion, to
consider the model complexity due to introducing
more model parameters in multivariate analysis
(Burnham and Anderson 2002):

2
AICc:an—ZIn(L)+M (8)
ny - I’]p -1
where np is number of model parameters in correlations,
ny = 72 is sample size, and L is the maximum value of
log-likelihood function for the model. By assuming that
¢ follows lognormal distribution, In(L) is calculated by

=N TR R IR 9)
In(L)= 5 In(27) 5 In{ny;gi] 5 iZ:l“lngi
Egs. (8) and (9) imply that an increase in prediction
error (¢) and number of model parameters (ny) will lead
to the increase of AlCc. Therefore, the correlation with
lowest AICc value is the optimal one with highest
accuracy and least model parameters.
The calculated values of the four performance
metrics are also shown in Fig. 3. The following extra
conclusions are drawn from Fig. 3:
® All correlations provide unbiased estimates of Cc
and C, because E[¢] is close to 1;

® The uncertainties within CPTU-based correlations
are notable because their R? values are low and
COV]Je] values are high;

® Multivariate correlations are superior to bivariate
correlations because the R? values are higher and
AICc values are lower for the former. That is to
say, the increase of prediction accuracy is more
significant than the increase of model complexity.

Based on the above analysis, it is recommended to
use Egs. (6) and (7) to predict the compressibility of
Jiangsu inorganic soft clays from CPTU data. However,
as discussed previously, caution shall be exercised
when these correlations are extended to other soils.
Most probably, these correlations may overestimate Ce
and C, values of sands and silts significantly, according
to some data reported in the literature.

6 CONCLUSION

This study developed a multivariate distribution
model for two compressibility indices (C. and C,) and
three CPTU indices (Qi, Fr, Ic) for Jiangsu inorganic
soft clays. The following conclusions are obtained:

(1) Among the three CPTU indices, Ic is the most
effective parameter for predicting C. and C,,
followed by Qt and F..

(2) Notable uncertainty in the estimation C. and C, of
using CPTU indices is observed.

(3) Multivariate correlations are superior to bivariate
correlations as the prediction error can be reduced.
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