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ABSTRACT 

 
In the random finite element method (RFEM), there arises an inevitable issue of discretization error from two 

sources: error due to finite element (FE) discretization and error due to random field (RF) discretization. The present 

paper investigates the contributions of these two errors to the total discretization error. The active lateral force on a 

retaining wall with spatially variable clay is considered. Two separate meshes are defined, FE mesh and RF mesh, 

and they are generated at different resolutions. Spatial averaging (SA) method is adopted for discretization of 

random fields. The active lateral force is then simulated for different combinations of FE mesh and RF mesh. It is 

found that the two errors tend to accumulate for the SA method, with a dominant contribution from the RF 

discretization error. This study also provides suggestions for allowable mesh sizes to control the discretization error 

in the current retaining wall problem. 
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1 INTRODUCTION 

The random finite element method (RFEM) (e.g., 

Fenton et al. 2005) is increasingly used in geotechnical 

engineering. The RFEM must meet a number of 

challenges for its implementation. A major challenge is 

the discretization error. The discretization error is the 

discrepancy between the true solution for the 

continuous mathematical model and the approximate 

RFEM solution. In the RFEM, this error comes from 

two sources at least. One is the finite element (FE) 

discretization, and the other is the random field (RF) 

discretization. The former is obvious. The latter is 

because a discrete random field is needed to feed soil 

properties into finite element analysis. Hence, the 

discretization error in the RFEM depends on several 

factors such as boundary conditions, response of 

interest, discretization method, element size, scale of 

fluctuation (SOF), and type of autocorrelation function 

(Fenton 1994). 

In the geotechnical community, the authors are 

aware of two studies that have been fully devoted to the 

issue of discretization error for spatially variable 

undrained shear strength: Ching and Phoon (2013) and 

Huang and Griffiths (2015). They both considered a 

similar problem (soil column subjected to axial 

compressive loading). To control the discretization 

error, they reported a dimensionless ratio of the element 

size to the SOF, where SOF is the distance over which 

property values are significantly correlated. However, 

their recommended ratios of (element size)/SOF are 

very different. In fact, Ching and Phoon’s (2013) 

recommendation is almost ten times smaller than 

Huang and Griffiths’ (2015) recommendation. Apart 

from this difference, what is less understood in both 

studies, and in past studies, is how the two components 

of the discretization error (FE discretization error and 

RF discretization error) interact with each other and 

affect the solution. Insights from this can help to reduce 

the discretization error in a more effective way. The 

present paper therefore aims to address the following 

questions: (1) do the two components of the 

discretization error accumulate or compensate?, and (2) 

which component is larger? The present paper also 

provides suggestions for the allowable (element 

size)/SOF to achieve a certain error tolerance in the 

retaining wall problem. Note that the conclusions of the 

paper may no longer be valid if, for example, a 

different autocorrelation function or a different 

discretization method is adopted. 

2 METHODOLOGY 

2.1 Random field model 
This paper models spatial variability of soil as 

random fields. The random field is assumed to be 

second-order stationary, which needs three parameters: 

(1) mean, (2) variance, and (3) autocorrelation function. 

The first two are constant everywhere. The third, which 

defines the correlation between two points, is a function 

of their separation distance rather than their absolute 

positions. One of the common autocorrelation functions 
used in the geotechnical engineering literature is the 

single exponential model. In two dimensions, it defines 



 

 

the correlation between two points with separation 

distance of Δx and Δz as follows: 
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where δx and δz are, respectively, SOFs in the x and z 

directions. In the present study, δx = δz = δ. 

The Fourier series method (FSM) (Jha & Ching 

2013) is employed to simulate a two-dimensional 

lognormal random field. Moreover, among different 

random field discretization methods, the spatial 

averaging (SA) method is adopted. In SA, the field 

value for an element is represented by the spatial 

average of the field over the element. 

2.2 Finite element model 

The backfill for the retaining wall is a rectangular 

area of size Lx × Lz = 16 m × 8 m, restrained by a wall 

of height H = 5 m (Fig. 1). Only cohesive soil is 

considered. A more comprehensive study should 

consider frictional materials as well. The conclusions of 

the paper may not be applicable to the frictional 

materials. The undrained shear strength (su) is 

simulated as a lognormal random field with a mean 

value = 20 kN/m2 and variance = 62 (kN/m2)2. The soil 

unit weight is 20 kN/m3, the Young’s modulus is 100 

MN/m2, and the Poisson ratio is 0.3. The active lateral 

force, Pa, is calculated as follows. The wall nodes are 

incrementally displaced in the horizontal direction until 

the mobilized reaction force on the wall reaches a 

minimum value, and Pa is taken to be the minimum 

value (Fenton et al. 2005). 

 

 
Fig. 1. The FEM model for the retaining wall problem. 

 

2.3 Random finite element mesh layout 

In practice, RFEM often adopts an identical mesh to 

discretize the FE and RF models. This way of 

discretization, hereafter called the conventional RFEM, 

mixes the two components of the discretization error 

together. As stated earlier, the total discretization error 

in the RFEM has at least two components. One pertains 

to FE and the other to RF. To decompose the 

discretization error into these two components, the 

present paper defines two separate meshes: FE mesh 

and RF mesh. The FE mesh consists of square elements 

with a side length of lFE, while the RF mesh consists of 

square elements with a side length of lRF. Both meshes 

are generated at different resolutions. As shown in 

Figure 2a, 39 different combinations of FE and RF 

mesh resolutions are considered. Note that the dashed 

line in Figure 2a represents the conventional RFEM in 

which lFE = lRF = l. As an illustration, the case with 

lFE/H = 1/5 and lRF/H = 1/1.25 is shown in Figure 2b. In 

finite element analysis, it is common to refine the mesh 

only in regions with a steep stress gradient. This saves 

the computation time without sacrificing accuracy. 

However, in the present study, the mesh is uniformly 

refined over the entire domain for sake of simplicity.  
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Fig. 2. (a) Different combinations of FE and RF mesh resolutions 

(b) The case with lFE/H = 1/5 and lRF/H = 1/1.25 (filled circle) 

 

3 RESULTS FOR A FIXED SOF 

In this section, the discretization error is studied for 

a fixed value of SOF. The results for various SOFs will 

be presented in the next section. A fixed SOF (δ = 1m) 

is considered. Two thousand Monte Carlo simulations 

are performed for each of the 39 combinations of FE 

and RF mesh resolution. In each random field 

realization, su values are assigned to the RF mesh using 

the SA method, and Pa value is simulated. Figure 3 

shows the mean of Pa, E(Pa), normalized by the mean of 



 

 

Pa,s, E(Pa,s). The subscript s denotes the case where su is 

treated as a single random variable (homogeneous su). 

 

 
 

Fig. 3. The normalized mean Pa for δ = 1 m. 

 

3.1 FE discretization error for a fixed RF mesh 

In Figure 3, the effects of FE and RF discretization 

errors are mixed. To focus on the FE discretization 

error, the results for a fixed RF mesh but a variable FE 

mesh are shown in Figure 4 (lRF/H is fixed at 1/2.5). 

Although not shown, similar trends as in Figure 4 are 

observed for other fixed values of lRF. It is evident that 

a coarser FE mesh tends to make the model soil mass 

“stronger” than that produced by the finest FE mesh. 

This is manifested by a decrease in E(Pa) with a coarser 

FE mesh. This observation is consistent with the 

general understanding in FE community that a coarse 

mesh tends to behave overly strong. 

 

 
Fig. 4. The effect of the FE discretization error (lRF/H = 1/2.5). 

 

3.2 RF discretization error for a fixed FE mesh 
To focus on the RF discretization error, the results 

for a fixed FE mesh (finest FE mesh) but a variable RF 

mesh are shown in Figure 5. It is evident that a coarser 

RF mesh tends to make the model soil mass stronger 

than that produced by the finest RF mesh. This is 

because weak spots are suppressed by SA. This 

behavior is manifested by a decrease in E(Pa) with a 

coarser RF mesh. 
 

 
Fig. 5. The effect of the RF discretization error (lFE is the finest). 

 

3.3 Discretization error for the conventional RFEM 
Recall that the conventional RFEM adopts equal FE 

and RF meshes (lFE = lRF = l), so a coarser FE mesh 

implies that the RF mesh is coarser as well. The total 

discretization error for the conventional RFEM can be 

decomposed into FE and RF discretization errors, as 

described below. Consider the solid line (finest FE 

mesh) and dashed line (conventional RFEM) in Figure 

3. These lines are reproduced in Figure 6 for ease of 

illustration. Three points are marked in Figure 6: Points 

A (conventional RFEM), B (finest FE mesh), and C 

(finest FE and RF mesh). It is clear that the vertical 

difference between A and C is the total discretization 

error for the conventional RFEM. Note that A and B are 

with the same lRF, but B is with lFE = the finest lFE. It is 

then clear that the vertical difference between A and B 

is the FE discretization error for the conventional 

RFEM. Note that B and C are with the same lFE, but C 

is with lRF = the finest lRF. It is then clear that the 

vertical difference between B and C is the RF 

discretization error for the conventional RFEM. As a 

result, the FE and RF discretization errors can be 

separated. 

Figure 7 shows how the FE and RF discretization 

errors vary with mesh size in the conventional RFEM 

(lFE = lRF = l). It can be seen that the RF discretization 

error is larger than the FE discretization error. More 

importantly, the FE and RF discretization errors are 

both negative, so the total discretization error becomes 

even larger: the FE and RF discretization errors 

“accumulate”. 

 



 

 

 
 

Fig. 6. The decomposition of the total discretization error for the 

conventional RFEM into the FE and RF discretization errors. 

 

 
Fig. 7. The variation of the FE and RF discretization errors in the 

conventional RFEM (lFE=lRF=l) 

 

4 RESULTS FOR VARIOUS SOFS 

This section studies the discretization error for 

various SOFs. The analyses in the previous section are 

repeated for SOF/(height of wall), δ/H, = {0.02, 0.1, 0.2, 

0.5, 1, 2, 10, 50, 300}. Although not shown, the 

qualitative observations made in the previous sections 

still hold true for various SOFs. In the following, the 

allowable mesh size for the conventional RFEM 

considering various SOFs is investigated. 

4.1 Suggestions for allowable mesh size 

The allowable normalized mesh size, (l/δ)allow, is 

suggested as follows. The suggestion is based on the 

relative error with respect to the reference solution. The 

reference solution refers to the solution produced by the 

finest FE and RF meshes. The relative error is defined 

as (the mean of the conventional RFEM solution – the 

mean of the reference solution)/(the mean of the 

reference solution) or (the standard deviation of the 

conventional RFEM solution – the standard deviation 

of the reference solution)/(the standard deviation of the 

reference solution). (l/δ)allow is selected such that the 

absolute value of the relative error does not exceed a 

certain “error tolerance” for both the relative errors in 

the mean and standard deviation. Two error tolerances 

are considered: 0.01 and 0.05. The most conservative 

(l/δ)allow value over various SOFs is adopted for 

conservatism. The suggested (l/δ)allow are as follows. If 

the error tolerance is 0.01, (l/δ)allow is about 0.03. If the 

error tolerance is 0.05, (l/δ)allow is about 0.13. Note that 

these suggestions may be restricted to the current 

numerical problem. 

5 CONCLUSIONS 

In this paper, the discretization error of the random 

finite element method (RFEM) for spatially variable 

undrained shear strength is decomposed into two 

components: error due to finite element (FE) 

discretization and error due to random field (RF) 

discretization. Two separate meshes, FE and RF meshes, 

are used to study the contribution of each component. 

Spatial averaging (SA) discretization method is 

considered. Based on a series of analyses on the active 

lateral force (Pa) on a retaining wall problem, the 

following conclusions are obtained: (1) The FE 

discretization error tends to make the model soil 

“stronger” than that produced by the finest FE mesh; 

(2) The RF discretization error tends to makes the 

model soil stronger than that produced by the finest RF 

mesh; (3) In the conventional RFEM (equal-size FE 

and RF meshes), the FE and RF discretization errors 

accumulate, and the RF discretization error is larger 

than the FE discretization error; (4) The allowable 

normalized mesh size, (l/δ)allow, that keeps the relative 

error within a certain error tolerance is as follows. If the 

error tolerance is 0.01, (l/δ)allow is about 0.03. If the 

error tolerance is 0.05, (l/δ)allow is about 0.13; (5) The 

conclusions of the paper may no longer be valid if, for 

example, a different discretization method or a different 

soil type is adopted. 

REFERENCES 

Ching J, Phoon, K-K (2013). “Effect of element sizes in random 

field finite element simulations of soil shear strength”. 

Computers and Structures. 126:120-34. 

Fenton GA (1994). “Error evaluation of three random-field 

generators”. Journal of Engineering Mechanics. 120 (12), 

2478-2497. 

Fenton GA, Griffiths DV, Williams MB (2005). “Reliability of 

traditional retaining wall design”. Géotechnique. 55 (1): 

55-62. 

Huang J, Griffiths DV (2015). “Determining an appropriate finite 

element size for modelling the strength of undrained random 

soils”. Computers and Geotechnics. 69:506-13. 

Jha SK, Ching J (2013). “Simulating spatial averages of 

stationary random field using the fourier series method”. 

Journal of Engineering Mechanics. 139 (5):594-605. 

 


