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ABSTRACT 

 
This paper presents a method for building surrogate models for geotechnical reliability analysis based on sparse 

estimation. Sparse estimation, which is called least absolute shrinkage statistical operator (lasso) in statistics, has the 

property that some of the parameters in surrogate models are driven to zero and leads to simpler models. Building 

surrogate models can be divided into two processes, model selection and parameter estimation, and the sparse 

estimation enables to achieve these two processes at the same time. A surrogate model was designed to estimate 

consolidation settlement value of a specific time based on sparse estimation, and its applicability has been 

investigated by comparing the results by the surrogate model with those by finite element analysis.  
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1 INTRODUCTION 

Surrogate models, also called “response surface” or 

“meta models”, are regression equations approximate 

relationships between input and output data in 

numerical simulations and have been commonly used 

for parameter identifications and reliability analysis in 

many research fields. Applications of surrogate models 

to civil engineering include Bucher and Bourgund 

(1990), Tandjiria et al. (2000), Youssef and Soubra 

(2008), Schoefs et al. (2013), and Zhang et al. (2015) 

Building surrogate models can be divided into two 

problems, model selection and parameter estimation. 

Model selection problems include choice of basis 

functions and the determination of the model 

complexity, whereas parameter estimations include 

determining coefficients of the basis functions. All 

possible combinations of basis functions and their 

coefficients should be analyzed to build the “best” 

surrogate model. This problem, however, is difficult to 

solve because the time to find a solution grows 

exponentially with problem size and is known as 

“NP-hard” problem. The methodology to efficiently 

achieve model selection and coefficient estimation is 

necessary for building more accurate surrogate models. 

This study proposes an efficient method for building 

surrogate models based on sparse estimation. The 

proposed method enables to efficiently solve model 

selections and parameter estimations at the same time. 

The applicability of the surrogate models based on the 

proposed method was investigated through numerical 

examples of geotechnical reliability analysis, and the 
results are compared with those by existing method.  

2 SURROGATE MODELS BASED ON SPARSE 

ESTIMATION 

We use Mth order polynomial functions as surrogate 

models for simplicity. When the input parameter is x, 

the polynomial function f is defined by: 
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where, w0,…, wM are polynomial coefficients.  

  The values of the coefficients will be determined by 

fitting the polynomial function to the training data yn. 

This fitting is usually done by minimizing the least 

squares objective function: 
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where N is the number of training data. When the 

squared error between the model predictions and 

training data follows Gaussian distribution and the 

model function is linear, the analytical solution can be 

obtained using the least square method. 

 

2.2 Regularization 

  There remains the problem of choosing the order M 

of the polynomial, and this is an example of “model 

selection”. Lower order polynomials, M = 0 and 1, give 

pore fits to the data, and higher order polynomials 

generally give good fits to the data. When we define M 

= N, the polynomial passes exactly through each data 

point and the objective function equals 0. 



 

 

  There is a technique that is often used to control 

over-fitting phenomenon in such cases is that of 

regularization, which involves adding a penalty term to 

the objective functions to discourage the coefficients 

from reaching large values. The general expression of 

the modified objective functions including 

regularization term takes the form 
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where  is the regularization parameter which governs 

the relative importance of the regularization term 

compared with the sum-of-squares effort term, q is the 

parameter controls the regularization term, and q = 2 

corresponds to the quadratic regularizer, so-called 

Ridge regression, which is defined by 
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where ||w||2 = wTw = w0
2+w1

2+…+ wM
2. 

The case of q = 1 is called least absolute shrinkage 

statistical operator (lasso, Tibshirani 1996), and it takes 

the form. 
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where |w| = |w0|+|w1|+…+ |wM|. It has the property that 

if λ is sufficiently large, some of the coefficients wj are 

driven to zero because of the geometry of its 

regularization term. Figure 1 illustrates the estimation 

graph of ridge regression and the lasso, and x1 becomes 

zero because of the diamond-shaped regularization term. 

The lasso tends to lead to a sparse model in which the 

corresponding basis functions play no role. Estimating 

for surrogate models via the lasso is called “sparse 

estimation” in this paper. 

2.3 Algorithm for Sparse Estimation 

The lasso problem is a convex minimization 

problem, a quadratic program with a convex constraint. 

For simplicity, the following problem is used to explain 

the computational procedure for the lasso solution. 
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The standard approach to this one-dimensional 

minimization problem is to take the gradient with 

respect to w and to set it to zero. However, one of the 

central difficulties in solving Equation (6) is the 

presence of a non-smooth L1 norm, |w|. In other words, 

the absolute value function |w| does not have a 

derivative at w = 0. Nevertheless, this problem can be 

solved by applying a soft-thresholding operator to w, 

which is defined as 

( ) 0

w

S w

w






 
 

  
( )

( )

( )

w

w

w

 

   

 

          (7) 

where S is a soft-thresholding function (Fig. 2). This 

operator translates w toward zero by an amount  and 

sets it to zero if |w| < . When  = 0, the solution of 

Equation (5) becomes the solution for the ordinary least 

squares problem. The general approach for solving the 

lasso problem can be summarized as follows: 

Step 1: Minimize first term in the objective function 

Step 2: Apply the soft-thresholding operator to w 

Step 3: Repeat Steps 1 and 2 

To minimize the lasso-type objective function, we used 

Alternative Direction Method of Multipliers (ADMM, 

Boyd et al., 2010). 

3 APPLICATION EXAMPLES 

3.1 Setup 

We built a surrogate model to estimate a value of 

ground surface settlement due to embankment loading. 

This section presents the setup of the numerical 

example. 

Figs. 3 (a) and (b) show the model ground discretized 

with finite element mesh and the construction process 

of the embankment. The model ground is assumed to 

consist of three layers (sand layer, clay layer, and sandy 

clay), and the layers were modeled as an linear elastic 

model and Cam-clay models. An embankment is 

assumed to be constructed on the model ground 

following the construction process shown in Fig. 3(b), 

and time-settlement behavior of the ground is observed 
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Fig. 1. Estimation picture for ridge (left) and lasso (right) 

regression (modified from Hastie et al. 2015). 
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Fig. 2. Soft-thresholding function. 



 

 

at five points #1 ~ #5. 

The surrogate model was designed to estimate the 

settlement value at #1 after 2,500 days after 

construction began, and this settlement value is the 

output (or the objective variable) in the surrogate 

models. We assumed that ten parameters, elastic 

modulus E and the Poisson’s ratio  of the sand layer, 

and the compression index c, the swelling index , the 

critical state parameter M, and the coefficient of 

permeability k (m/d) of the clay and sandy clay layers, 

as the input parameters. The total number of input 

parameters is ten. 

  The performance of the surrogate models depends on 

the value of regularization parameter , and we 

determined the parameter using leave-one-out 

cross-validation which is commonly and widely used in 

many research fields. In this study, we built two 

surrogate models 1) N = 1,000 and 2) N = 50 to 

investigate the effect of the number of training data on 

building surrogate models. The performance of the 

surrogate model was evaluated by comparing the 

estimated probability density function of the target 

settlement value by the surrogate model with the true 

value, i.e., the PDF by finite element analysis. 

3.2 Case 1: N = 1,000 

N = 1,000 was used to build the surrogate model, 

and the target settlement values were estimated by the 

lasso-based model and ridge-based model. Fig. 4 

compares the estimated PDF with the true PDF, and 

Table 1 summarizes the number of active set and 

Kullback–Leibler (KL) divergence. The active set 

means the number of non-zero components in the 

solutions, and that number is lower, the simpler 

surrogate models are built. The KL-divergence is a 

measure of how one probability distribution is different 

from a reference probability distribution, and we can 

quantitatively evaluate the performance of the surrogate 

models with this measure. The PDF estimated by two 

methods, lasso and ridge, are very similar and agree 

well with the true PDF. The KL-divergence of lasso is a 

bit smaller than that of ridge, and lasso-based model is 

more accurate than ridge-based model.  

3.3 Case 2: N = 50 

Only 50 data were used to build the surrogate model 

in Case 2, and this problem is a typical 

“underdetermined problem” because the number of 

unknowns is greater than that of observation data. Fig. 

5 compares the estimated PDF with the true PDF for 

ridge and lasso, and Table 2 summarizes the results. 

The KL-divergence shows that the estimation accuracy 

of ridge-based model is lower than that of lasso-based 

model, and the shape of the PDF by ridge is a bit 

different from the true PDF. The number of active sets 

in lasso-based model is 34, and most of the coefficients, 

32 input parameters, led to “zero”. Fig. 6(a)(b) shows 

the solution path of ridge-based and lasso-based 

 

 
(a) Ridge regression. 
 

 
(b) Lasso. 

Fig. 4. Comparison of PDF (N = 1,000) 

 
Table 1.Summary of Case 1. 

 Ridge Lasso 

The number of active sets 96 80 

KL-divergence 0.02672 0.02174 
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Fig. 3. Setup of numerical simulation. 



 

 

models. The vertical lines indicate the best 

regularization parameter  determined by the LOOCV. 

In ridge regression, regularization parameter is less 

sensitive to the shrinkage of the coefficients. In lasso, 

however, the larger  is used, the simpler model is 

estimated. These results demonstrate that the proposed 

lasso-based method for building surrogate models 

estimate simpler/less complex models and provide 

more accurate estimations compared to the existing 

method. 

4 CONCLUSIONS 

A method for building surrogate models based on 

lasso was newly proposed. The surrogate model was 

designed to estimate a value of surface settlement of the 

ground using the data of the finite element simulations, 

and the model accuracy was evaluated by comparing 

the estimated PDF of the settlement value by the 

surrogate model with the true value, and the result 

shows that the estimated PDF and the true PDF are in 

good agreement. The proposed method leads to simpler 

models compared to the existing method, ridge 

regression, and the lasso-based model can accurately 

estimate the PDF with small training data. 

 

 
(a) Ridge regression. 

 
(b) lasso 

Fig. 5. Setup of numerical simulation. 

 
Table 2. Sizes of margins. 

 Ridge Lasso 

The number of active sets 96 34 

KL-divergence 0.06578 0.03010 

 

 
(c) Ridge regression. 

 
(d) Sparse estimation (lasso). 

Fig. 6. Solution path 
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