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ABSTRACT 

 
This study developed a multivariate distribution model for the compressibility and piezocone penetration test (CPTU) 

indices of Jiangsu inorganic soft clays based on a compiled database. Analytical expressions for the marginal 

probability density distributions of soil variables and correlation coefficients were presented. Based on the 

constructed model, bivariate and multivariate correlations for predicting the primary and secondary compression 

indices were proposed. Performance of the developed correlations was evaluated in detailed. The results indicated 

that the constructed multivariate distribution model provided a favorable way to capture the multivariate 

dependencies among the compressibility and CPTU indices of Jiangsu clays. Nevertheless, caution shall be exercised 

when the model and corresponding correlations are used in other soils such as silts and sands. 
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1 INTRODUCTION 

Soil compressibility has been a major concern for 

settlement-related issues in geotechnical engineering. In 

regular site characterization projects, plenty of soil 

samples have to be collected and thus design costs are 

significantly increased. To achieve a more efficient and 

economic evaluation of soil compression behavior, the 

piezocone penetration testing (CPTU) technique has 

been gradually used in recent studies (e.g., Bersan et al. 

2013; Reid 2015; Tonni et al. 2016). Past research 

indicated that the three CPTU measurements including 

cone tip resistance (qt), sleeve frictional resistance (fs), 

and pore water pressure (u2) are all a function of soil 

stiffness, fines contents and soil fabrics. These factors 

also impact the behavior of soil compression, and 

therefore it is not unreasonable to establish correlations 

between soil compressibility and CPTU indices. 

Despite recent active studies, it seems that most 

research only focused on bivariate correlations among 

these soil parameters, such as predicting the slope of 

the critical state line in e-lgp′ space (λ10) using the 

normalized frictional resistance (Fr) or soil behavior 

type index (Ic) (e.g., Reid 2015), or predicting the 

secondary compressibility index (Cα) using the 

normalized cone tip resistance (Qt) (e.g., Bersan et al. 

2013; Tonni et al. 2016). 

This study applied the multivariate distribution 

model approach to capture the correlations among two 

compressibility parameters, i.e., primary and secondary 

compressibility indices (Cc and Cα), and three CPTU 

indices, including Qt, Fr and Ic, for Jiangsu inorganic 

soft clays based on a compiled database. Furthermore, 

bivariate and multivariate correlations for predicting Cc 

and Cα using different CPTU indices are derived using 

the constructed multivariate distribution model, and 

their performances are examined in detail. Implications 

and cautions in applying the developed correlations are 

also discussed. It shall be mentioned that the Ic used in 

this study follows the definition given by Been and 

Jefferies (1992) as below, because the involved excess 

pore water pressure item (Bq) shall be useful to predict 

Cc and Cα (e.g., Tonni et al. 2016) 
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2 DATABASE 

The compiled database only involves data points for 

Jiangsu inorganic soft clays. Data points corresponding 

to organic soils were discarded as they show quite 

different behavior compared to other soils, e.g., the 

compressibility of peat is generally more significant 

than clays. All Cc and Cα data were obtained from one 

dimensional oedometer tests. In some experimental 

tests, the e-lgp′ curves did not approximate a straight 

line, and thus it is difficult to determine Cc and Cα. A 

more accurate way is to use the (1+e)-lgp′ curves as an 

alternative (Hong et al. 2012). Then Cc = CcL(1+ec), 

where ec is void ratio at the end of primary 

consolidation at current effective stress, and CcL is the 

slope of (1+e)-lgp′ curves. 

Using the above methods, 72 sets of {Qt, Fr, Ic, Cc, 

Cα} were obtained for the Jiangsu inorganic soft clays. 

The Cc and Cα in the database vary within the ranges of 



 

 

0.203 – 0.779 and 0.0078 – 0.0287, respectively. These 

two ranges correspond to medium to very high 

compressibility according to Mesri (1973). The whole 

database will be used in the following sections to 

establish a multivariate distribution model. 

3 MARGINAL DISTRIBUTIONS 

The first step to develop a multivariate distribution 

model is to quantify the marginal probability density 

functions (PDFs) of involved soil parameters. For the 

convenience of presentation, the five soil parameters 

are denoted as Y1 = Qt, Y2 = Fr, Y3 = Ic, Y4 = Cc, and Y5 

= Cα. Liu et al. (2016) applied the Box-Cox method to 

convert a non-Gaussian soil variable (Y) to a standard 

normal variable (X) as follows: 
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where λ is a transformation power, a and b are scaling 

and shifting parameters. 

The above formula is suitable for λ≠0. For λ=0, a 

natural logarithmic transformation is advised. The 

estimation of optimal λ value can be readily achieved 

using Matlab library function boxcox. Liu et al. (2016) 

did not present the PDF of Y. In this study, the 

following approximation method is proposed to address 

this issue (Cramer 1999), 
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where g(Y) and f(X) are PDFs of Y and X, respectively. 

The above approximation holds on the basis of the 

simple idea that the integral of g(Y) over dY always 

equals to that of f(X) over dX. Using this method, the 

marginal PDFs of Y variables are estimated and they are 

compared with sample histograms in Fig. 1. The three 

transformation parameters (λ, a, b) and P-values of the 

Kolmogorov-Smirnov test (KS-P) for the transformed X 

variables are also presented in Fig. 1. 

 
Fig. 1. Marginal PDFs of soil variables 

Fig. 1 indicates that the estimated PDFs agree well 

with the sample histograms. The KS-P values are larger 

than 0.05, indicating that there is no strong evidence to 

reject the hypothesis that the X variables individually 

follow a standard normal distribution. Thus the above 

transformation is effective and the estimated PDFs of Y 

variables are rational for the investigated database. 

4 CORRELATION MATRIX 

The next step is to calculate the correlation matrix 

of X variables, which is formed by the Pearson’s 

correlation coefficients (δij) between all pairwise Xi-Xj 

data. It is considered useful to quantify the uncertainties 

within δij values, especially when sample size is limited. 

Zou et al. (2017) applied the Fisher’s Z transformation 

to indirectly address this issue as follows, 
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where zij is the transformed correlation coefficient, σij is 

the standard deviation of zij, and Nij is the sample size 

of Xi-Xj data. 

It is argued that zij approximately follows a normal 

distribution and therefore its PDF is traceable (Cramer 

1999). Based on the PDF transformation technique in 

Equation (3), it is also possible to provide the analytical 

expression for the PDF of δij, as follows, 
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Using Equation (5), the PDFs of δij are estimated, 

and they are compared with the histograms obtained 

from the bootstrapping techniques suggested by Ching 

et al. (2014) in Fig. 2. It is indicated that the estimated 

PDFs match the histograms favorably. Therefore, 

Equation (5) provides a rational way to report the PDFs 

of δij values. 

 

Fig. 2. Estimated PDFs of δij for pairwise variables 
The estimated median values of δij are also tabulated 

in Fig. 2. A strong correlation between Cc and Cα is 

observed as δ45 reaches 0.96. This is reasonable because 

the ratio of Cα/Cc generally remains constant for 



 

 

common soils according to Mesri (1973). It is also 

found that Ic is the most effective CPTU index to 

predict Cc, followed by Qt and Fr. This observation is 

consistent with the previous study conducted by Reid 

(2015). Therefore, the correlation matrix presented in 

Fig. 2 shall be reasonable in the context of existing 

geotechnical knowledge. 

5 DERIVED CORRELATIONS 

The multivariate distribution model constructed in 

the previous two sections provides a prior joint PDF for 

the involved soil parameters (Ching et al. 2014; Liu et 

al. 2016). It is possible to establish correlations among 

Cc, Cα and CPTU parameters for the Jiangsu inorganic 

clays based on the constructed model. This is achieved 

using a Bayesian updating and a back transformation 

process. The detailed derivation procedure is available 

in the literature (e.g., Liu et al. 2016; Zou et al. 2017) 

and thus it is not presented here. The following four 

bivariate correlations for Jiangsu inorganic soft clays 

are derived and compared with data and trends from 

literature: 

 Cα-Cc correlation as shown in Fig. 3(a). The Cα/Cc 

concept proposed by Mesri (1973) is also 

illustrated in Fig. 3(a); 

 Cα-Qt correlation as shown in Fig. 3(b). The 

empirical trend recommended by Bersan et al. 

(2013) and Tonni et al. (2016) for the Venice 

Lagoon sands and silts is also given in Fig. 3(b); 

 Cc-Fr correlation as shown in Fig. 3(c). The data 

points of λ10 from 31 worldwide sites reported by 

Reid (2015) are also illustrated in Fig. 3(c). Albeit 

λ10 is different from Cc, i.e., λ10 is obtained from 

isotropic consolidation test whereas Cc is from 

one-dimensional oedometer test, λ10 data are still 

used here to achieve a qualitative comparison 

because they share same definition and evaluate 

similar soil behavior; 

 Cc-Fr correlation as shown in Fig. 3(d). Again, the 

data reported by Reid (2015) are introduced in Fig. 

3(d) for a qualitative comparison. 

The following conclusions are obtained from Fig. 3: 

 The proposed Cα-Cc correlation agrees well with 

the Cα/Cc concept and the Cα/Cc of Jiangsu 

inorganic soft clays varying within a narrow range 

of 0.033 to 0.046. 

 The proposed Cα-Qt correlation agrees with that 

given by Bersan et al. (2013) only in trend. The 

empirical correlation suggested by Bersan et al. 

(2013) systematically underestimates Cα values for 

the Jiangsu inorganic soft clays. A possible 

explanation is that their correlation was developed 

based on sands and silts, which show less notable 

compressibility than the soft clays in this study. 

 

Fig. 3. Developed correlations for predicting Cc and Cα 

 

 The proposed Cc-Fr correlation overestimates the 

compressibility of soils reported by Reid (2015) 

significantly. Except for the difference between λ10 

and Cc, this overestimation is more likely to be 

attributed to the fact that their data mainly contain 

tailings, sands, and silty clays, whereas soft clay 

data are quite limited. 

 The proposed Cc-Ic correlation agrees with the data 

reported by Reid (2015) in trend; nevertheless, the 

latter are much more scattered than expected. 

The above results indicate that existing CPTU-based 

empirical correlations and data may significantly 

underestimate the compressibility of Jiangsu inorganic 

soft clays, perhaps due to the impact of biased sample 

in soil types. 

By comparing the developed bivariate correlations 

with experimental data, it is found in Fig. 3 that the 

correlations agree well with the Jiangsu database in 

both trend and range. Therefore, it seems that 

constructed multivariate distribution model can do 

justice to the Jiangsu clay. Based on the constructed 

model, the following two correlations are derived for 

predicting Cc and Cα using all three CPTU indices: 
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Comparisons between measured and predicted Cc 

and Cα values using the above multivariate correlations 

are shown in Fig. 3(e) and 3(f), respectively. 

To assess the performance of the above proposed 

correlations, the leave-one-out cross-validation method 

is used. In this method, each set of sample data is 

omitted from the database to construct a new 

multivariate distribution model, and the omitted Y 

variables are then predicted using the new model. The 



 

 

differences between all omitted and predicted Y values 

are assumed to approximate the error of the model 

developed using whole database. This method has 

demonstrated its effectiveness in Ching and Wu (2017). 

The following four performance metrics are selected 

to achieve a quantitative evaluation and comparison: 

(1) R2, to evaluate the accuracy of prediction in a 

normalized scale; 

(2) E[ε], mean value of prediction error (ε), to evaluate 

the systematic bias of prediction error, which is 

defined as ε = measurement/prediction; 

(3) COV[ε], coefficient of variation of ε, which 

indicates scatter between predicted and measured 

values. Note that E[ε] and COV[ε] essentially 

describe the PDF of ε, which approximately 

follows lognormal distribution in this study; 

(4) AICc, corrected Akaike information criterion, to 

consider the model complexity due to introducing 

more model parameters in multivariate analysis 

(Burnham and Anderson 2002): 
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where np is number of model parameters in correlations, 

ny = 72 is sample size, and L is the maximum value of 

log-likelihood function for the model. By assuming that 

ε follows lognormal distribution, ln(L) is calculated by 
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Eqs. (8) and (9) imply that an increase in prediction 

error (ε) and number of model parameters (np) will lead 

to the increase of AICc. Therefore, the correlation with 

lowest AICc value is the optimal one with highest 

accuracy and least model parameters. 

The calculated values of the four performance 

metrics are also shown in Fig. 3. The following extra 

conclusions are drawn from Fig. 3: 

 All correlations provide unbiased estimates of Cc 

and Cα because E[ε] is close to 1; 

 The uncertainties within CPTU-based correlations 

are notable because their R2 values are low and 

COV[ε] values are high; 

 Multivariate correlations are superior to bivariate 

correlations because the R2 values are higher and 

AICc values are lower for the former. That is to 

say, the increase of prediction accuracy is more 

significant than the increase of model complexity. 

Based on the above analysis, it is recommended to 

use Eqs. (6) and (7) to predict the compressibility of 

Jiangsu inorganic soft clays from CPTU data. However, 

as discussed previously, caution shall be exercised 

when these correlations are extended to other soils. 

Most probably, these correlations may overestimate Cc 
and Cα values of sands and silts significantly, according 

to some data reported in the literature. 

6 CONCLUSION 

This study developed a multivariate distribution 

model for two compressibility indices (Cc and Cα) and 

three CPTU indices (Qt, Fr, Ic) for Jiangsu inorganic 

soft clays. The following conclusions are obtained: 

(1) Among the three CPTU indices, Ic is the most 

effective parameter for predicting Cc and Cα, 

followed by Qt and Fr. 

(2) Notable uncertainty in the estimation Cc and Cα of 

using CPTU indices is observed. 

(3) Multivariate correlations are superior to bivariate 

correlations as the prediction error can be reduced. 
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