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ABSTRACT

This paper presents a method for building surrogate models for geotechnical reliability analysis based on sparse
estimation. Sparse estimation, which is called least absolute shrinkage statistical operator (lasso) in statistics, has the
property that some of the parameters in surrogate models are driven to zero and leads to simpler models. Building
surrogate models can be divided into two processes, model selection and parameter estimation, and the sparse
estimation enables to achieve these two processes at the same time. A surrogate model was designed to estimate
consolidation settlement value of a specific time based on sparse estimation, and its applicability has been

investigated by comparing the results by the surrogate model with those by finite element analysis.
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1 INTRODUCTION

Surrogate models, also called “response surface” or
“meta models”, are regression equations approximate
relationships between input and output data in
numerical simulations and have been commonly used
for parameter identifications and reliability analysis in
many research fields. Applications of surrogate models
to civil engineering include Bucher and Bourgund
(1990), Tandjiria et al. (2000), Youssef and Soubra
(2008), Schoefs et al. (2013), and Zhang et al. (2015)

Building surrogate models can be divided into two
problems, model selection and parameter estimation.
Model selection problems include choice of basis
functions and the determination of the model
complexity, whereas parameter estimations include
determining coefficients of the basis functions. All
possible combinations of basis functions and their
coefficients should be analyzed to build the “best”
surrogate model. This problem, however, is difficult to
solve because the time to find a solution grows
exponentially with problem size and is known as
“NP-hard” problem. The methodology to efficiently
achieve model selection and coefficient estimation is
necessary for building more accurate surrogate models.

This study proposes an efficient method for building
surrogate models based on sparse estimation. The
proposed method enables to efficiently solve model
selections and parameter estimations at the same time.
The applicability of the surrogate models based on the
proposed method was investigated through numerical
examples of geotechnical reliability analysis, and the
results are compared with those by existing method.

2 SURROGATE MODELS BASED ON SPARSE
ESTIMATION

We use M order polynomial functions as surrogate
models for simplicity. When the input parameter is X,
the polynomial function f is defined by:
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where, Wo,..., Wy are polynomial coefficients.

The values of the coefficients will be determined by
fitting the polynomial function to the training data yn.
This fitting is usually done by minimizing the least
squares objective function:
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where N is the number of training data. When the
squared error between the model predictions and
training data follows Gaussian distribution and the
model function is linear, the analytical solution can be
obtained using the least square method.

2.2 Regularization

There remains the problem of choosing the order M
of the polynomial, and this is an example of “model
selection”. Lower order polynomials, M = 0 and 1, give
pore fits to the data, and higher order polynomials
generally give good fits to the data. When we define M
= N, the polynomial passes exactly through each data
point and the objective function equals 0.
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There is a technique that is often used to control
over-fitting phenomenon in such cases is that of
regularization, which involves adding a penalty term to
the objective functions to discourage the coefficients
from reaching large values. The general expression of
the  modified objective  functions including
regularization term takes the form
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where A is the regularization parameter which governs
the relative importance of the regularization term
compared with the sum-of-squares effort term, q is the
parameter controls the regularization term, and q = 2
corresponds to the quadratic regularizer, so-called
Ridge regression, which is defined by
3 19 2 A 2 4
Je(w) =2 2 LT (o w) =y F + I wl| @)
n=1
where [[W|> = wTw = wo?+wi2+. . .+ W,
The case of g = 1 is called least absolute shrinkage
statistical operator (lasso, Tibshirani 1996), and it takes
the form.
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where |w| = [wo|+|w1[+...+ |ww|. It has the property that
if A is sufficiently large, some of the coefficients w; are
driven to zero because of the geometry of its
regularization term. Figure 1 illustrates the estimation
graph of ridge regression and the lasso, and x1 becomes

zero because of the diamond-shaped regularization term.

The lasso tends to lead to a sparse model in which the
corresponding basis functions play no role. Estimating
for surrogate models via the lasso is called “sparse
estimation” in this paper.

2.3 Algorithm for Sparse Estimation

The lasso problem is a convex minimization
problem, a quadratic program with a convex constraint.
For simplicity, the following problem is used to explain
the computational procedure for the lasso solution.
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The standard approach to this one-dimensional
minimization problem is to take the gradient with
respect to w and to set it to zero. However, one of the
central difficulties in solving Equation (6) is the
presence of a non-smooth L1 norm, |w|. In other words,
the absolute value function |w| does not have a
derivative at w = 0. Nevertheless, this problem can be
solved by applying a soft-thresholding operator to w,
which is defined as
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Fig. 1. Estimation picture for ridge (left) and lasso (right)
regression (modified from Hastie et al. 2015).
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Fig. 2. Soft-thresholding function.
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where S; is a soft-thresholding function (Fig. 2). This

operator translates w toward zero by an amount A and
sets it to zero if |w| < A. When A = 0, the solution of
Equation (5) becomes the solution for the ordinary least
squares problem. The general approach for solving the
lasso problem can be summarized as follows:
Step 1: Minimize first term in the objective function
Step 2: Apply the soft-thresholding operator to w
Step 3: Repeat Steps 1 and 2
To minimize the lasso-type objective function, we used

Alternative Direction Method of Multipliers (ADMM,

Boyd et al., 2010).

3 APPLICATION EXAMPLES

3.1 Setup

We built a surrogate model to estimate a value of
ground surface settlement due to embankment loading.
This section presents the setup of the numerical
example.

Figs. 3 (a) and (b) show the model ground discretized

with finite element mesh and the construction process

of the embankment. The model ground is assumed to
consist of three layers (sand layer, clay layer, and sandy
clay), and the layers were modeled as an linear elastic
model and Cam-clay models. An embankment is
assumed to be constructed on the model ground

following the construction process shown in Fig. 3(b),

and time-settlement behavior of the ground is observed



6 R@

Asian Regional Conference on
Soll Mechanics and
Geotechnical Engineering

Procds. of the 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering,

at five points #1 ~ #5.

The surrogate model was designed to estimate the
settlement value at #1 after 2,500 days after
construction began, and this settlement value is the
output (or the objective variable) in the surrogate
models. We assumed that ten parameters, elastic
modulus E and the Poisson’s ratio v of the sand layer,
and the compression index A, the swelling index «, the
critical state parameter M, and the coefficient of
permeability k (m/d) of the clay and sandy clay layers,
as the input parameters. The total number of input
parameters is ten.

The performance of the surrogate models depends on
the value of regularization parameter A, and we
determined the parameter using leave-one-out
cross-validation which is commonly and widely used in
many research fields. In this study, we built two
surrogate models 1) N = 1,000 and 2) N = 50 to
investigate the effect of the number of training data on
building surrogate models. The performance of the
surrogate model was evaluated by comparing the
estimated probability density function of the target
settlement value by the surrogate model with the true
value, i.e., the PDF by finite element analysis.

3.2 Case 1: N =1,000

N = 1,000 was used to build the surrogate model,
and the target settlement values were estimated by the
lasso-based model and ridge-based model. Fig. 4
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Fig. 3. Setup of numerical simulation.

compares the estimated PDF with the true PDF, and
Table 1 summarizes the number of active set and
Kullback—Leibler (KL) divergence. The active set

means the number of non-zero components in the
solutions, and that number is lower, the simpler
surrogate models are built. The KL-divergence is a
measure of how one probability distribution is different
from a reference probability distribution, and we can
guantitatively evaluate the performance of the surrogate
models with this measure. The PDF estimated by two
methods, lasso and ridge, are very similar and agree
well with the true PDF. The KL-divergence of lasso is a
bit smaller than that of ridge, and lasso-based model is
more accurate than ridge-based model.

3.3Case2: N=50

Only 50 data were used to build the surrogate model
in Case 2, and this problem is a typical
“underdetermined problem” because the number of
unknowns is greater than that of observation data. Fig.
5 compares the estimated PDF with the true PDF for
ridge and lasso, and Table 2 summarizes the results.
The KL-divergence shows that the estimation accuracy
of ridge-based model is lower than that of lasso-based
model, and the shape of the PDF by ridge is a bit
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Fig. 4. Comparison of PDF (N = 1,000)

Table 1.Summary of Case 1.

Ridge Lasso
The number of active sets 96 80
KL-divergence 0.02672 0.02174

different from the true PDF. The number of active sets
in lasso-based model is 34, and most of the coefficients,
32 input parameters, led to “zero”. Fig. 6(a)(b) shows
the solution path of ridge-based and lasso-based
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models. The vertical lines indicate the best 04
regularization parameter A determined by the LOOCV.
In ridge regression, regularization parameter is less
sensitive to the shrinkage of the coefficients. In lasso,
however, the larger A is used, the simpler model is
estimated. These results demonstrate that the proposed
lasso-based method for building surrogate models
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estimate simpler/less complex models and provide 0.4 ———— e a— a
more accurate estimations compared to the existing oAl il A
method. (c) Ridge regression.

4 CONCLUSIONS 04

A method for building surrogate models based on
lasso was newly proposed. The surrogate model was
designed to estimate a value of surface settlement of the
ground using the data of the finite element simulations,
and the model accuracy was evaluated by comparing
the estimated PDF of the settlement value by the I . .
surrogate model with the true value, and the result O s 02 100 100 10 107 10°
shows that the estimated PDF and the true PDF are in A
good agreement. The proposed method leads to simpler (d) Sparse estimation (lasso).
models compared to the existing method, ridge Fig. 6. Solution path
regression, and the lasso-based model can accurately
estimate the PDF with small training data.
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