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Dynamic response of a double-beam system subjected to a harmonic moving load
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ABSTRACT

The governing equations are solved by the combination of Fourier transform and residue theory. The influence of the
beam parameters on the dynamic response is discussed. It is shown that two cut-off frequencies and two critical
velocities exist in this double-beam system. The rail has consistently higher displacement response than the slab.
Load frequencies have great influence on the both beams. The Doppler Effect is significantly obvious as the load

velocity exceeds critical velocities.

Keywords: double-beam; harmonic moving load; dynamic response; cut-off frequency; critical velocity

1 INTRODUCTION

A beam is a common model to characterize many
moving-load problems, including tracks (Koh et al.,
2003), vehicles travelling on a bridge (Lou, 2005; Lou
and Zeng, 2005), high-speed aircrafts, fluids flowing in
a pipe (Stein, 1970; Chen, 1972) and
nano-electromechanical systems (NEMS) (Darijani et
al., 2014). To model infinite beams, Euler-Bernoulli
beams and Timoshenko beams are the main two
physical models at present. The Euler-Bernoulli beam
theory has been extensively used due to its relatively
simpler mathematical formulation. The steady-state
solution is necessary for a beam model subjected to a
moving load. However, there are certain existing
inherent difficulties involved in the mathematical
formulation to solve relevant problems. Considering the
effects of axial load and linear damping, Sheehan
(Sheehan and Debnath, 1972) gave an analytical
steady-state solution of an Euler-Bernoulli beam on an
elastic foundation.

In track engineering, critical velocities are typical
characteristics of a beam subjected to a moving load.
Nechitailo and Lewis (2006) calculated critical
velocities by utilizing analytical and finite element
models. A closed-form analytical solution for critical
velocities was obtained, which was based on the
Euler-Bernoulli model of a beam resting on an elastic
foundation regardless of damping. In some special
cases, analytical solutions can be derived. Sun (2001)
constructed the form of the convolution of the Green
function and obtained the steady-state response of a
beam on a viscoelastic foundation subjected to a
harmonic line load.

This paper presents an infinite Euler-Bernoulli
double-beam system resting on a viscoelastic

foundation and subjected to a harmonic moving point
load, including two spring-damping systems. The
governing equations are solved by means of Fourier
transform and residue theory. This method allows the
parameters of the two beams to be completely arbitrary.

2 TRACK MODEL

The track model, referred as to a double-beam
model, consists four parts: rail, rail bearing, slab and
slab bearing, as shown in Fig. 1. The rail bearing
connects the rail and the slab, and the slab bearing
connects the slab and ground. The rail bearing and the
slab bearing can be simplified as continuous
spring-damping systems, and the rail and the slab can
be simplified as infinite beams with different bending

stiffness, respectively.
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Fig. 1. Track model.

The velocity, angular frequency and amplitude of
the load denote as v, @ and F,, respectively, and
then the load can be expressed as

F=F e 5(x—wt) (1)

where 5(x) is the Dirac delta function.

The governing equations of this track model are
(Hussein and Hunt, 2006):
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As the load is moving on the rail with a constant

velocity, a moving coordinate system is more
convenient to solve Eq. (2):
S=X—VLW, =Y, W, =Y, ©))

Applying the chain rule of derivation, the
differentiation of Eq. (3) can be derived as
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where =1, 2.

The governing equations in this moving coordinate
system are achieved by Eq. (3) and Eq. (4)
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The solutlon of Eq. (5) subjected to a harmonic point
load can be assumed as
W, (s,t) = d(s)e'”*, w,(s,t) =P(s)e'” (6)

where ®(s) and W(S) are shape functions.

According to Eg. (5) and Eg. (6), the governing
equations are transformed from time-domain to
frequency-domain
ELOYW + my’®” - 2my(iw)®’ - cv(®' - ¥') +m, (iw)* P 0
+C (1) (@ W) +ky (P - ) = Fyo(9)

E, LYY + myv?" —2mV(iw) ¥’ - (C, + C, V¥’ + v’ +m, (iw)? ¥
+(¢, +C,)(io)¥Y —c,(i0)P +k, ¥ -k (P-¥)=0

Eq. (7) are ordinary differential equations and can be
solved by Fourier transform

F&)=[ feyedx, f(x)= ij“’ F(&)ede (8)
- 2 9=
then Eq. (7) yields
[E L& —my2E2 + (2myew —icv)E + (-m e’ +icw+k)]-W )
+Hicvé —(ico+k)]-V =F,
[ic,vé —(ico+k)]-W +{E,1,&* —mV2E2 + [2mve —i(c, +C,)V]E +
[-m,0’ +i(c, +¢,) @+ (k, +k,)]}-V =0
where & is wavenumber.
The matrix form of Eq (9) is
A{w (5)} {Fo} (10)
V() | [0

where
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Substituting At —
|A| a a,

yields
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V(f) |A| =8, a 0 |A| —ay

The inverse Fourier transform can be carried out to
transform Eq. (11) from & -domainto s -domain

D) |_ 1 =W s
[\P(s)}znh{wg’)} evds 12

As the direct integration of Eq. (12) is complicated,
residue theorem is used to solve it. The inverses of

W (&) and V(&) have the same form, thus only
W (&) is considered in this paper

0(s) = [ W) ed a9

The solution of Eq. (13) is obtained by applying
residue theorem, giving

—j W(§)e'§sd§—— 27i- ZRes(vv(g)e'fs &)
(14)

=i .ZRes(W(g)e"fs;éj)

N . N
=i -ZRes(L’lA"i122 e &)
j=1

where N is the number of singular points of

I:0 "8y
A

The singular points can be calculated by |A|=

e*; & isthe jth singular point.

According to Eq. (10), |A| is an eight polynomial,

thus if v=0, there are eight complex roots in the
complex field.

3 RESULTS AND ANALYSIS OF AN EXAMPLE

The parameters of the four parts are listed in Table 1.

Table 1. Parameters of a double-beam system.

Rail Slab

El, =133x10'N-m* E,l, =6x10"N-m?

m, = 60kg/m m, =1333kg/m

k, =40x10°N/m? k, =50x10°N/m?

¢, =6x10°N/m/(m/s) c, =40x10°N/m/ (m/s)

3.1 Dispersion curve and cut-off frequency
|A| is a function of wavenumber &, angular
frequency @ (w=2xf ) and load velocity v .
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Dispersion curve denotes the relationship between
frequency and wavenumber. When v=0, cut-off
frequencies of the double-beam can be obtained. When
the load frequency approaches the cut-off frequency

f, at v=0, the displacements of the two beams at

loading point (S=X—vt=0) reach the maximum
value. The dispersion curve at v =0 is shown in Fig.
2.
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-100

-200

Wavenumber & (1/m)
Fig. 2. Dispersion curve at v=0.

As shown in Fig. 2, the dispersion curve is
symmetrical with respect to £=0 and f =0. The
two cut-off frequencies correspond to the positive
frequencies at &=0, that is, f =30.12Hz and

f, =133.00Hz . Considering a single slab beam, its

slab = i ﬁ =30.82Hz Wthh
mZ

cut-off frequency is f

is close to the first cut-off frequency f,. And
similarly, the cut-off frequency of a single rail beam

can be calculated as f 1k =129.95Hz, Which
2\ m

approaches to the second cut-off frequency f,. The

results show that the lower cut-off frequency is
controlled by the slab with higher bending stiffness and
the higher cut-off frequency is determined by the rail
with lower bending stiffness.

3.2 Critical velocity

When the load frequency f =0, the dynamic
response of the double-beam experiences the maximum
at v=V,. Fig. 3 shows the relationship between
displacements and velocities at f =0. As can be seen
from Fig. 3, this double-beam system has two critical
velocities: v, =284m/s and v, =860m/s . The
displacements decrease to be almost zero when load
velocity exceeds 1000m/s. As described previously,

the rail has considerably higher displacements than the
slab at any load velocity. The displacements of the rail

at the second critical velocity are higher than those at
the first critical velocity, while the displacements of the
slab at the second critical velocity are minimal.
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Fig. 3. Variations of displacements with load velocity at f=0 and
s=0.

3.3 Variations of the load frequency
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Fig. 4. Variations of displacements with load velocity.

Fig. 4 illustrates the variations of the displacements
with respect to velocity at different load frequencies. As
shown in Fig.3 and Figs. 4(a), (b), the peak
displacements move left with the load frequency
approaching to the first cut-off frequency. And when
the load frequency ( f =30Hz) is near the first cut-off
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frequency, the maximum displacement corresponds to
v =0, which accords with the definition of cut-off
frequency in previous section. When the load frequency
is between the first cut-off frequency and the second
cut-off frequency, the velocities corresponding to peak
displacements decreases again, which is similar to the
trend when the load frequency exceeds the first cut-off
frequency. Therefore, an actual load which contains
frequencies that are near cut-off frequencies can lead to
a great displacement.

3 CONCLUSION

In this paper, an infinite Euler-Bernoulli
double-beam system resting on a viscoelastic
foundation and subjected to a harmonic moving point
load is investigated and parametric study is carried out.
The governing equations are solved by utilizing Fourier
transform and residual theory. Numerical results of an
example are presented and then cut-off frequencies and
critical velocities are calculated.

It is concluded that two cut-off frequencies and two
critical velocities exist in this double-beam system. The
rail has consistently higher displacement response than
the slab. Load frequencies and velocities have great
influence on the both beams. Displacements tend to be
stable with respect to load velocities at high load
frequency.
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