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ABSTRACT 

 
The governing equations are solved by the combination of Fourier transform and residue theory. The influence of the 

beam parameters on the dynamic response is discussed. It is shown that two cut-off frequencies and two critical 

velocities exist in this double-beam system. The rail has consistently higher displacement response than the slab. 

Load frequencies have great influence on the both beams. The Doppler Effect is significantly obvious as the load 

velocity exceeds critical velocities.  
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1 INTRODUCTION  

A beam is a common model to characterize many 

moving-load problems, including tracks (Koh et al., 

2003), vehicles travelling on a bridge (Lou, 2005; Lou 

and Zeng, 2005), high-speed aircrafts, fluids flowing in 

a pipe (Stein, 1970; Chen, 1972) and 

nano-electromechanical systems (NEMS) (Darijani et 

al., 2014). To model infinite beams, Euler-Bernoulli 

beams and Timoshenko beams are the main two 

physical models at present. The Euler-Bernoulli beam 

theory has been extensively used due to its relatively 

simpler mathematical formulation. The steady-state 

solution is necessary for a beam model subjected to a 

moving load. However, there are certain existing 

inherent difficulties involved in the mathematical 

formulation to solve relevant problems. Considering the 

effects of axial load and linear damping, Sheehan 

(Sheehan and Debnath, 1972) gave an analytical 

steady-state solution of an Euler-Bernoulli beam on an 

elastic foundation. 

In track engineering, critical velocities are typical 

characteristics of a beam subjected to a moving load. 

Nechitailo and Lewis (2006) calculated critical 

velocities by utilizing analytical and finite element 

models. A closed-form analytical solution for critical 

velocities was obtained, which was based on the 

Euler-Bernoulli model of a beam resting on an elastic 

foundation regardless of damping. In some special 

cases, analytical solutions can be derived. Sun (2001) 

constructed the form of the convolution of the Green 

function and obtained the steady-state response of a 

beam on a viscoelastic foundation subjected to a 

harmonic line load. 
This paper presents an infinite Euler-Bernoulli 

double-beam system resting on a viscoelastic 

foundation and subjected to a harmonic moving point 

load, including two spring-damping systems. The 

governing equations are solved by means of Fourier 

transform and residue theory. This method allows the 

parameters of the two beams to be completely arbitrary.  

2 TRACK MODEL 

The track model, referred as to a double-beam 

model, consists four parts: rail, rail bearing, slab and 

slab bearing, as shown in Fig. 1. The rail bearing 

connects the rail and the slab, and the slab bearing 

connects the slab and ground. The rail bearing and the 

slab bearing can be simplified as continuous 

spring-damping systems, and the rail and the slab can 

be simplified as infinite beams with different bending 

stiffness, respectively. 
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Fig. 1. Track model. 

The velocity, angular frequency and amplitude of 

the load denote as  ,   and 0F , respectively, and 

then the load can be expressed as 
i

0 ( )tF F e x vt                       (1) 

where  x is the Dirac delta function. 

The governing equations of this track model are 

(Hussein and Hunt, 2006): 
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As the load is moving on the rail with a constant 

velocity, a moving coordinate system is more 

convenient to solve Eq. (2): 

1 1 2 2,s x vt w y w y   ，               (3) 

Applying the chain rule of derivation, the 

differentiation of Eq. (3) can be derived as 
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where 1, 2i  . 

The governing equations in this moving coordinate 

system are achieved by Eq. (3) and Eq. (4) 
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The solution of Eq. (5) subjected to a harmonic point 

load can be assumed as 
i i

1 2( , ) ( ) ( , ) ( )t tw s t s e w s t s e  ，      (6) 

where ( )s  and ( )s  are shape functions. 

According to Eq. (5) and Eq. (6), the governing 

equations are transformed from time-domain to 

frequency-domain 
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Eq. (7) are ordinary differential equations and can be 

solved by Fourier transform 
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then Eq. (7) yields 
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where   is wavenumber. 

The matrix form of Eq (9) is 
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  The inverse Fourier transform can be carried out to 

transform Eq. (11) from  -domain to s -domain 
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As the direct integration of Eq. (12) is complicated, 

residue theorem is used to solve it. The inverses of 

( )W   and ( )V   have the same form, thus only 

( )W   is considered in this paper 
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The solution of Eq. (13) is obtained by applying 

residue theorem, giving 

  

i i

1

i

1

i0 22

1

1 1
( ) 2 i Res( ( ) ; )

2 2

i Res( ( ) ; )

i Res( ; )

N
s s

j

j

N
s

j

j

N
s

j

j

W e d W e

W e

F a
e

A

 





    
 

 












  

 


 







 (14) 

where N  is the number of singular points of 

0 22 i sF a
e

A


; 

j  is the thj  singular point. 

The singular points can be calculated by 0A  . 

According to Eq. (10), A  is an eight polynomial, 

thus if 0v  , there are eight complex roots in the 

complex field. 

3 RESULTS AND ANALYSIS OF AN EXAMPLE 

The parameters of the four parts are listed in Table 1. 

 
Table 1. Parameters of a double-beam system. 

Rail Slab 
7 2

1 1 1.33 10 N mE I     7 2

2 2 6 10 N mE I     

1 60kg/mm   
2 1333kg/mm   

6 2

1 40 10 N/mk    6 2

2 50 10 N/mk    

3

1 6 10 N/m / (m/s)c    3

2 40 10 N/m / (m/s)c    

 

3.1 Dispersion curve and cut-off frequency 

A  is a function of wavenumber  , angular 

frequency   ( 2 f  ) and load velocity v . 



 

 

Dispersion curve denotes the relationship between 

frequency and wavenumber. When 0v  , cut-off 

frequencies of the double-beam can be obtained. When 

the load frequency approaches the cut-off frequency 

cf  at 0v  , the displacements of the two beams at 

loading point ( 0s x vt   ) reach the maximum 

value. The dispersion curve at 0v   is shown in Fig. 

2. 
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 Fig. 2. Dispersion curve at v=0. 

As shown in Fig. 2, the dispersion curve is 

symmetrical with respect to 0   and 0f  . The 

two cut-off frequencies correspond to the positive 

frequencies at 0  , that is, 
1 30.12Hzf   and 

2 133.00Hzf  . Considering a single slab beam, its 

cut-off frequency is 2
slab

2

1
30.82Hz

2

k
f

m
  , which 

is close to the first cut-off frequency 1f . And 

similarly, the cut-off frequency of a single rail beam 

can be calculated as 1
rail

1

1
129.95Hz

2

k
f

m
  , which 

approaches to the second cut-off frequency 2f . The 

results show that the lower cut-off frequency is 

controlled by the slab with higher bending stiffness and 

the higher cut-off frequency is determined by the rail 

with lower bending stiffness. 

3.2 Critical velocity 

When the load frequency 0f  , the dynamic 

response of the double-beam experiences the maximum 

at cv v . Fig. 3 shows the relationship between 

displacements and velocities at 0f  . As can be seen 

from Fig. 3, this double-beam system has two critical 

velocities: 
c1 284m/sv   and 

c2 860m/sv  . The 

displacements decrease to be almost zero when load 

velocity exceeds 1000m/s . As described previously, 

the rail has considerably higher displacements than the 

slab at any load velocity. The displacements of the rail 

at the second critical velocity are higher than those at 

the first critical velocity, while the displacements of the 

slab at the second critical velocity are minimal. 
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Fig. 3. Variations of displacements with load velocity at f=0 and 

s=0. 

3.3 Variations of the load frequency 
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(a) f=15 Hz 
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(b) f=30 Hz 

Fig. 4. Variations of displacements with load velocity. 

 

Fig. 4 illustrates the variations of the displacements 

with respect to velocity at different load frequencies. As 

shown in Fig.3 and Figs. 4(a), (b), the peak 

displacements move left with the load frequency 
approaching to the first cut-off frequency. And when 

the load frequency ( 30Hzf  ) is near the first cut-off 



 

 

frequency, the maximum displacement corresponds to 

0v  , which accords with the definition of cut-off 

frequency in previous section. When the load frequency 

is between the first cut-off frequency and the second 

cut-off frequency, the velocities corresponding to peak 

displacements decreases again, which is similar to the 

trend when the load frequency exceeds the first cut-off 

frequency. Therefore, an actual load which contains 

frequencies that are near cut-off frequencies can lead to 

a great displacement. 

3 CONCLUSION 

In this paper, an infinite Euler-Bernoulli 

double-beam system resting on a viscoelastic 

foundation and subjected to a harmonic moving point 

load is investigated and parametric study is carried out. 

The governing equations are solved by utilizing Fourier 

transform and residual theory. Numerical results of an 

example are presented and then cut-off frequencies and 

critical velocities are calculated. 

It is concluded that two cut-off frequencies and two 

critical velocities exist in this double-beam system. The 

rail has consistently higher displacement response than 

the slab. Load frequencies and velocities have great 

influence on the both beams. Displacements tend to be 

stable with respect to load velocities at high load 

frequency.  
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