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Dynamic centrifuge model test of liquefiable soils reinforced by soil-cement grid
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In the 1964 Niigata earthquake in Japan, it was
found that the damage of a building using single
diaphragm wall as enclosure foundation was slight,
while the nearby building without enclosure was
seriously damaged by soil liquefaction. Compared to
single diaphragm wall, soil-cement grid has better
effects for liquefaction mitigation. It has been well
developed and gradually applied in engineering
practices as a new liquefaction foundation (Sakai and
Tazaki 2003). In addition, soil-cement grid is also a
new remedial measure for earthquake-damaged
foundations of high-rise buildings (JGS 1998).
However, the mechanism of soil-cement grid against
liquefaction and its performance during strong
earthquake are still unclear. This paper describes a
dynamic centrifuge model test to study the seismic
response of liquefiable soils reinforced by soil-cement
grid and evaluates the residual performance of the
soil-cement grid after the previous strong earthquake.
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Fig.2. The input motion (Motion 1)

The centrifuge model ground was prepared in a
rigid container with internal dimensions of 77cm X
40 cm x 50 cm, under a centrifugal acceleration of
50 g, which means the model scale is 1/50. The model
soil-cement grid, surrounded by coarse sand, is made
of a mixture of water, cement, Fujian sand and kaolin
clay. And the clayey sand (i.e., Fujian sand with 10%
of Kaolin clay) was dryly pluviated into the soil-
cement grid to attain a relative density of 50%. The
model configuration is shown in Fig. 1.
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Fig.3. Acceleration time histories: (a) Motion 1; (b) Motion 2.
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Fig.4. Time histories of excess pore pressure ratio: (a) Motion
1; (b) Motion 2.
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In this case, the model was subjected to two
subsequent sine sweep type of ground motions with
the peak acceleration of 20g and 10g respectively.
And the motion consists of the first 5 cycles with
increasing amplitude, the middle 50 cycles with a
constant amplitude at peak acceleration and the last 5
cycles with decreasing amplitude. The frequency of
the earthquake motion is 60 Hz in model scale. Fig. 2
gives the first input motion as an example.

The main findings in this study are as follows:

(1) As shown in Fig. 3, during the first motion,
liquefaction caused the de-amplification of soil
acceleration inside the grid, while the acceleration
increased to some extent after it comes to the nadir. It
implies that the stiffness of the enclosed soil
recovered during the long shaking and the concurrent
pore water dissipation. During the second motion, the
soil acceleration was considerably amplified except
the top layer which is liquefied, which implies that the
amplification response is input motion dependent and
lower amplitude motion leads to higher amplification.

(2) Fig. 4 compares the excess pore pressure ratios
of soils at different elevations inside the soil-cement
grid, which indicates the fastened dissipation of the
excess pore pressure and the reduced peak excess
pore pressure ratio during the second motion
especially at deeper depth.

(3) Large settlement of the soil inside the grid was
observed after the first earthquake motion, which was
also observed by other researchers (e.g., Olarte et al.
(2018)). It implies that for improved ground by using
soil-cement grid, the separation of the superstructure
from the underlying soil may occur during and after
strong earthquake, which will lead to the overloading-
induced damage of soil-cement grid and even uneven
settlement of the overlying foundation.
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