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ABSTRACT 

 
Strain localization takes place during the deformation of geomaterials. Simulations of geomaterial behavior must use 

numerical methods that can handle and simulate this specific geomaterial characteristic. In particular, when 

simulating geomaterials under large deformations, mesh tangling often occurs with mesh-based numerical methods 

such as the finite element method (FEM). The authors focus on this difficulty and employ a particle-based method, 

specifically the material point method (MPM), instead of FEM to avoid meshing and achieve simulations that are 

numerically robust. Various interpolation functions for MPM are proposed and their characteristics are discussed and 

compared through numerical examples focusing on bearing capacity problems of shallow foundations. 
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1 INTRODUCTION 

Experimental and numerical investigations relating 

to shallow foundations, such as raft foundations, can be 

found in the literature. In order to verify the 

effectiveness of MPM when applied to bearing capacity 

problems related to shallow foundations, numerical 

examples are performed under small deformations and 

the results are compared with the theoretical Prandtl 

solution and simulations by a mesh-based method (the 

finite difference method, FDM). These comparisons 

verify the numerical accuracy of MPM. Analyses 

involving large deformations are then performed and 

discussed in terms of load-settlement relationships. 

2 NUMERICAL METHOD 

It has been reported that numerical oscillations 

occur in the original formulation of MPM when 

particles cross numerical grids (Bardenhagen and 

Kober 2004). Bardenhagen and Kober proposed a new 

method in which an interpolation function takes into 

account the controlling domain of each particle. This 

derivative interpolation function overcomes the 

numerical oscillation problem and is called the 

generalized interpolation material point (GIMP) method. 

There are two variants of the GIMP method. One is the 

contiguous particle GIMP (cpGIMP) method, in which 

particles domains are updated following their 

deformation in the axial direction. The other is 

unchanged/uniform GIMP (uGIMP) method, in which 

particles retain their initial controlling domains. More 

recently, Sadeghirad et al. enhanced the GIMP method, 
proposing the convected particles domain interpolation 

(CPDI) method in which particle domains deform as a 

parallelogram in 2D (Sadeghirad et al. 2011). The 

CPDI method was revised further by Sadeghirad et al. 

to become the CPDI2 method, in which particle 

domains deform as quadrilaterals in 2D (Sadeghirad et 

al. 2013). The differences among the various MPM 

interpolation functions are illustrated in Fig.1. 

MPM was formulated originally as a dynamic 

explicit method. In order to apply MPM to static 

equilibrium problems such as load-settlement 

relationships, the dynamic relaxation method is 

employed. With this method, the damping force is as 

given by equation (1). The convergence criteria are 

shown as equation (2). 
 

𝑓𝑔
𝑑𝑎𝑚𝑝,𝑘

= −𝛼 ∙ 𝑎𝑏𝑠(𝑓𝑔
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(2) 

 

in which, 𝑓𝑔
𝑑𝑎𝑚𝑝,𝑘 , 𝑓𝑔

𝑑𝑟𝑖𝑣𝑒,𝑘 , 𝑓𝑔
𝑖𝑛𝑡,𝑘 , 𝑓𝑔

𝑒𝑥𝑡,𝑘
 are 

damping force, driving force (equal to the force 

imbalance between internal and external force), internal 

force, and external force at time step k, respectively. 𝛼 

is the damping factor and sign is the function that 

returns the sign of the arguments. k and ini are 

superscripts representing time step k and the initial state, 

respectively. The damping force acts in the opposite 

direction to the grid point velocity at the same 

magnitude (of 𝛼  times the driving force). As the 

(a) Original MPM (b) uGIMP (c) cpGIMP (d) CPDI1 (e) CPDI2

Point Square Rectangular Parallelogram Quadrilateral

Fig.1. Differences among various MPM interpolations 



 

   

simulation steps through the numerical process, the 

driving force decreases. Convergence is reached when 

the criteria in equation (2) are satisfied. 
In the analyses that follow, the settlement reached 

after the convergence procedure above is called the 

equilibrium solution. 

3 ANALYTICAL MODEL AND CONDITIONS 

Analytical studies on bearing capacity problems of 

shallow foundations have been reported literally by 

Chen and Mizuno 1990 and Bui et al. 2008. Chen and 

Mizuno employed FEM to model small deformations, 

while Bui et al. adopted smooth particle hydrodynamics 

using the same analytical model as Chen and Mizuno 

but with large deformations. In this work, the analytical 

model and conditions described in Fig.2 and Table 2 

are used in reference to these earlier studies. Pressure is 

applied to the surface grid points under the foundation 

in the small deformation cases. The loading block is 

employed to enforce tractions in the large deformation 

cases because the surface boundary changes during the 

simulation, making it difficult to apply a constant 

pressure. The density of the loading block is changed 

once the equilibrium condition has been satisfied at 

each loading stage in order to simulate incremental 

loading. The contact pressure under the loading block is 

not uniformly distributed. The average contact pressure 

is used to calculate the load-settlement relationships, 

where vertical displacement at the left (symmetrical 

center) is taken to be the settlement. 

4 ANALYTICAL RESULTS 

Load-settlement relationships for both small and 

large deformation cases and the time-history of 

unbalanced force ratio (equation (2)) are shown in Fig.3 

and Fig.4, respectively. Fig.5 shows maximum shear 

strain distribution at each of the focused time steps 

shown in Fig.3 under small deformation. Fig.6 shows 

the same plots under large deformation for the various 

MPM interpolation methods. 

In Fig.3 numerical results obtained by the finite 

difference method and Prandtl’s solution 

(q=c(+2)=257(kPa)) are also plotted in order to verify 

the numerical result calculated by MPM. Points [1]-[5] 

and [i]-[iv] in Fig.3 correspond to the maximum strain 
distribution inside the base ground shown in Fig.5 and 

Fig.6, respectively. Particles are illustrated and colored 

on their controlling domains described in Fig.1. 

Fig.4 shows the time-history of driving force, 

indicating how the difference between external and 

internal forces reaches convergence. Convergence is 

reached within relatively fewer cycles when the ground 

behavior is elastic (Fig.4(b)). The source of the force 

imbalance (driving force) is mainly the rise in external 

force. As the external force increases further, the base 

ground begins to exhibit plastic behavior. In the plastic 

regime, more cycles are required to come to 

convergence because the driving force is increased by 

the generation of a force imbalance in the plastic state 

particles. In the ultimate state, yet more cycles are 

needed to reach convergence. 

Looking at the analytical results for the small 

deformation cases, Fig.3(a) shows that the 

load-settlement relationship is in good agreement with 

that obtained by FDM and the ultimate bearing capacity 

is the same as given by Prandtl’s solution. Fig.3(a) and 

point [1] in Fig.5 show the base ground behaving as 

elastic body and shear strain localizations are not 

observed. Point [2] in Fig.5 is where the base ground 

begins to show plasticity. Strain localization occurs 

under the foundation and a Kurdjumoff area (punching 

wedge) is formed. Point [3] in Fig.5 shows a non-linear 

response coming into play and strain localization 

extends beyond the base. The state shown in [4] is the 

theoretical ultimate state. In Fig.5, two shear band 

candidates are visible (s1 and s2 in Fig.5[4]). One is 

shallower and the other deeper. The shallow shear band 

‘s1’ grows and ultimately becomes the strain 

localization at the final state [5]. This final strain 

localization is in the same position as assumed in 

Prandtl’s solution. 
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Fig.2. Analysis model. 

E n r c f y

(kPa) (g/cm
3
) (kPa) (deg) (deg)

Base

Ground
20000 0.45 1.7 50 0.0 0.0

Loading

Block
200000 0.3 10to300by10 - - -

Domain

Table 1 Material properties. 

Items Values

Particles per cell 4

Dimensions(H x W) 6 m x 12 m

Width of cell 0.2 m

Time increment 0.00025

Damping factor 0.8

Convergence criteria 0.0001

Interpolation uGIMP,cpGIMP,CPDI2

Base Ground 4,800

Loading Block 400

Number of Material Points

Table 2 Analysis conditions. 



 

   

Next, considering the analytical results for the large 

deformation cases, in Fig.6 the results for point [i] show 

that the base ground is acting as an elastic body, as seen 

in the small deformation cases, and strain localization 

does not occur. At point [ii] in Fig.6 there is visually 

recognizable deformation, while a clear increase in 

settlement appears in the load-settlement relationship in 

Fig.3(b). This is regarded as the ultimate bearing 

capacity in the large deformation cases. Strain 

localization is seen to occur at point [ii], where it 

spreads along the bottom of ground model and 

corresponds to ‘s2’ seen in Fig.5[4]. At point [iii] a 

shear band begins to form from the bottom of the 

loading block to the ground surface; the load-settlement 

relationship at this point is a straight line with 

settlement resulting from the load increase as the base 

ground continues to fail. At point [iv], the loading block 

has reached almost the bottom of the modeled ground. 

The external force is in equilibrium with the bottom 

reaction and no more shear failure occurs. 

Finally, the characteristics of the various 

interpolation functions are discussed based on the 

results given in Fig.6. In the case of uGIMP, because 

the controlling domains of particles are not updated, 

particles move in space within their initial controlling 

domains. As for cpGIMP, the controlling domains are 

updated in the axial direction (e.g. in the x-y direction 

in two dimensions). Particles can deform down to 

almost zero on the compression side while they expand 

up to the width of the numerical grid on the extension 

side. With CPDI2, particles are capable of deforming in 

any direction while maintaining continuity with 

neighboring particle domains. Although there are 

differences among these interpolation functions, the 

transfer of external forces to each particle takes place 

via a numerical grid. The equation of motion is satisfied 

as an agglomeration of particles. The load-settlement 

relationships in Fig.3 show that CPDI2 results in a 

larger bearing capacity than uGIMP and cpGIMP. This 

is because of the continuity of domains, which is 

realized only by the CPDI2 method. With uGIMP and 

cpGIMP, discontinuities in bearing capacity are clear in 

Fig.6 in the area neighboring the loading block. As such 

discontinuities occur more often between particles, the 

number of particles resisting the external force 

decreases. The number of particles in CPDI2 

calculation is more than those of the other two methods. 

Thus, differences in bearing capacity arising from 

the use of different interpolation functions arise from 

the way that forces transfer with the different particle 

domains. Geomaterials naturally have little resistance to 

tension and shear deformation is readily localized. In 

attempts to numerically forecast deformation, an 

interpolation function should be chosen depending on 

material behavior. For example, uGIMP and cpGIMP 
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Fig.3. Load-settlement relationships: (a) Settlement range from 

0(m) to 0.1(m); (b) Settlement range from 0(k) to 2.5(m). 

Fig.5. Distribution of maximum shear strain inside the ground 

under small deformation. The numbers correspond to the points 

marked in Fig.3. 
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should be employed for phenomena that include 

discrete behaviors while CPDI2 should be employed for 

phenomena without discrete behaviors. 

3 CONCLUSION 

In this paper characteristics of these functions are 

discussed and compared. The applicability and 

effectiveness of each interpolation function are also 

discussed, focused on bearing capacity problems of 

shallow foundation.  
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Fig.6. Distribution of maximum shear strain inside the ground under large deformation. The numbers correspond to the points 

marked in Fig-3. (a) uGIMP ground deformed with uniform square particles, showing many void domains among particles; (b) 

cpGIMP ground deformed with rectangular particles, still showing many voids among particles; each particle deforms according to 

the axial strain; (c) CPDI2 ground deformed with quadrilateral particles, showing no voids inside the ground. 

(a) uGIMP (b) cpGIMP (c) CPDI2 


