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ABSTRACT 

 

Accurate modeling of many geotechnical problems needs the consideration of large deformation soil behavior. 

The Material Point Method (MPM) has gained increasing popularity over many other conventional numerical 

methods such as Finite Element Method (FEM) in continuum modeling of large deformation problems. In this study, 

we present a novel coupling scheme combining MPM and DEM (Discrete Element Method) for multiscale modeling 

of large deformation geomechanics problems. A computational multiscale scheme based on hierarchical coupling of 

MPM and DEM is proposed, based on the similar concept of FEM-DEM coupling proposed previously by the 

authors (Guo and Zhao, 2014, 2016a, 2016b). In this scheme, the MPM is employed to treat a typical boundary value 

problem in geotechnical problem that may experience large deformations, and the DEM is used to derive the 

nonlinear material response required by MPM for each of its material points. The proposed coupling framework 

helps avoid phenomenological constitutive assumptions in typical MPM, while inherits its advantageous features in 

tackling large deformation problems over the use of FEM (e.g., no need for re-meshing to avoid highly distorted 

mesh in FEM). It offers the capability of direct micro-macro linking for us to understand complicated behavioral 

changes of granular media over all deformation levels, from the initial elastic stage en route to the large deformation 

regime before failure. Demonstrative examples, including the cyclic loading of granular media and the footing 

foundation problem, are shown to highlight the advantages of the new MPM-DEM framework. 
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1 INTRODUCTION 

It is challenging to model a wide range of 

geotechnical problems involving large deformations, 

including foundation settlement, pile installation, slope 

instability and landslides. Modeling the large 

deformation by the standard Finite element method 

(FEM) may suffer well-known issues of severe mesh 

distortion and computational stability (Zhang et al., 

2013). Popular remedies for FEM-based approaches 

include the adaptive mesh and re-meshing, but may 

create further issues such as fluctuations appearing in 

load-deformation relation (Hu and Randolph, 1998). 

The Material Point Method (MPM) (Sulsky et al., 1994, 

1995; Bardenhagen and Kober, 2004; Nairn, 2003; 

Soga et al., 2016) has gained increasing popularity 

recently over many other conventional numerical 

methods such as FEM in treating large deformation 

problems. MPM is indeed a combination of 

Lagrangian-Eulerian method. It discretizes a continuum 

domain by a collection of Lagrangian material points 

(particles) that carry essential state variables, and solves 

their movement based on a background Eulerian mesh 

using Eulerian approaches (Bardenhagen et al., 2000). 

Such combination significantly extends its capabilities 

in modeling the large deformation of history-dependent 

materials such as soil. Being a continuum-based 

approach, however, MPM still needs the assumption of  

constitutive models to describe the mechanical behavior 

of modeled material, and its predictions depend 

crucially on the adopted constitutive models. Since the 

responses of granular materials (e.g., sand) are highly 

non-linear, the constitutive model for accurate 

description of soil behavior may become 

extraordinarily complex and frequently 

phenomenological.  

In this study, we present an innovative, 

physically-based multiscale framework to model 

geotechnical problems involving large deformation. 

The proposed computational framework is based on a 

hierarchical coupling of MPM and DEM, following the 

same concept of FEM/DEM coupling proposed 

previously by the authors (Guo and Zhao, 2014, 2016a, 

2016b). Within the multiscale framework, the MPM is 

employed to tackle typical geotechnical problems that 

may experience large deformations, while the DEM is 

used to derive the nonlinear material response required 

by MPM for each of its material points. The proposed 

coupling framework circumvents phenomenological 

constitutive assumptions in the conventional MPM, 

while inherits its advantage on tackling large 
deformation problems over the use of FEM (e.g., no 

need for re-meshing to avoid highly distorted mesh in 



 

 

FEM). It offers the capability of direct micro-macro 

linking for us to understand complicated behavioral 

changes of granular media over all deformation levels, 

from the initial elastic stage en route to the large 

deformation regime before failure. Demonstrative 

examples, including a cyclic simple shear and a footing 

foundation problem, are shown to highlight the 

advantages of the newly proposed MPM-DEM 

framework. 

2 COUPLING SCHEME 

Focus here is placed on explanation of the 

hierarchical coupling scheme between MPM and DEM, 

while the respective detailed formula of MPM and 

DEM can be referred to Sulsky et al. (1994); 

Bardenhagen et al. (2000), and Cundall and Strack 

(1979); Oda (1982); Iwashita and Oda (1998), and will 

not be repeated here for concision. Detail of the 

MPM-DEM coupling scheme can also be found in 

Liang and Zhao (2018) and Zhao and Liang (2018). 

 

 
Fig.1. Illustration of the coupling scheme between MPM and 

DEM.  

 

Fig. 1 shows a flowchart of proposed multiscale 

framework. The macroscopic continuum domain is 

initially discretized in MPM by a set of material points. 

Assemblies of granular particles are generated and 

assigned to material points in MPM as Representative 

Volume Elements (RVEs). Depending on the specific 

problem, assigned RVEs can be either identical or 

variable, representing a homogeneous or 

inhomogeneous soil domain. At each loading step, a 

typical coupling cycle comprises the following 

procedures: (a) MPM is firstly employed to derive the 

deformation for each material point in the macroscopic 

scale, (b) the deformation information (e.g., strain, 

rotation) at each material point is transferred to its 

corresponding RVE and serves as prescribed boundary 

conditions, (c) DEM is invoked to solve the granular 

assembly of each RVE at the corresponding boundary 

conditions, (d) an updated Cauchy stress is 

homogenized over the whole deformed RVE 

configuration and is transferred back to its attached 
material point in MPM, (e) MPM uses this updated 

stress to solve the momentum equation in background 

mesh and update the motion of each material point.  

In doing so, no constitutive models as essential to 

the conventional continuum modeling are needed, and 

the history of each material point (microstructures) can 

be fully stored in its corresponding RVE, which is 

crucial for faithfully reproducing the highly nonlinear, 

loading-path dependent responses of granular media. 
 

3 DEMOSTRATURED EXAMPLES 

3.1 Cyclic simple shear  
The first demonstrative example is the undrained 

(constant volume) cyclic simple shear that is controlled 

by a maximum shear strain 𝛾𝑦𝑥
𝑚𝑎𝑥 = 1%. The model 

setup is depicted in Fig. 2, including 200 elements with 

4 PPC (particle per cell). The RVEs attached to the 

material points are prepared using following 

parameters: particle number (in each RVE) 𝑁 = 400, 

particle radius 𝑟 = 3~7 mm , density 𝜌 = 2650kg/
𝑚3 ,Young’s modulus 𝐸 = 600MPa , dimensionless 

stiffness ratio 𝜈 = 0.8, interparticle friction coefficient 

𝜑 = 28.6° and damping 𝛼 = 0.1. The initial void ratio 

(2D) of the RVE 𝑒0 = 0.229.  

 

 
Fig.2. Model setup for cyclic simple shear. A material point 

marked as Pt. A is selected for meso-scale analyses.  

 

 
Fig.3. Shear strain versus shear stress in cyclic simple shear. 

 

The strain-stress response obtained by our 

multiscale simulation is shown in Fig.3, where a 

hysteresis loop is clearly observed. As the number of 

cycle increases, the shear modulus decreases gradually, 

and the shear strength of the soil drops to an extremely 

low value after around eight cycles, entering a state 

which can be viewed as liquefaction. This observation 



 

 

is further confirmed by the force chain network of the 

select point as shown in Fig. 4. The contacts inside the 

RVE at the liquefaction state are so weak (~1N) and 

scattered to hardly form any effective force chain to 

sustain the external load, which is in great contrast to its 

original state wherein the force chain is strong (~100N) 

and dense (Fig.4a). 
 

 
Fig.4. Force chain of selected RVE (a) before loading, (b) after 

loading. The position of selected RVE is shown in Fig.2. 

 

 3.2 Rigid footing 

The second example treated by the proposed 

multiscale modeling approach is a rigid footing 

problem, as shown in Fig.5. The whole soil domain is 

discretized into 7776 elements with 1 PPC (particle per 

cell). A dense RVE packing is generated using the 

following microscopic parameters: the particle number 

𝑁 = 400, particle radius 𝑟 = 3~7 mm, density 𝜌 =
2650kg/𝑚3 , Young’s modulus 𝐸 = 800MPa , 

dimensionless stiffness ratio 𝜈 = 0.5 , interparticle 

friction coefficient 𝜑 = 23° , rolling resistance 

coefficient 𝛽 = 1 and damping 𝛼 = 0.1. Note that the 

rolling resistance is also considered in the DEM 

modeling to account the influence of particle shape on 

soil responses. The macroscopic friction angle for the 

RVE is estimated though a series of biaxial 

compression test, and the estimated value is 𝜑′ =
28.1°. The initial void ratio 𝑒0 = 0.187. 

 
Fig.5 Model setup for rigid footing problem. 

 

 

In the simulation, a rough footing is penetrated into 

the soil with a large displacement (e.g., d/B=1.5 where 

d denotes the penetration depth). Fig. 6 shows the 

relation of normalized settlement with the normalized 

ultimate loads, in comparison with the analytical 

solution deriving from following formula (Vesić, 

1973): 

 

𝑁𝑞 = 𝑡𝑎𝑛2 (
𝜋

4
+

𝜑′

2
) 𝑒𝜋𝑡𝑎𝑛𝜑′ (1) 

 

where 𝜑′ is the effective friction angle of the soil. 

Evidently, the peak load predicted by the multiscale 

approach agrees well with the analytical prediction. 

 

 
Fig.6 Comparison of the bearing capacity from current study and 

the analytical solution. 
 

 
Fig. 7 Contour of (a) deviatoric strain and (b) displacement at 

final state d/B=1.5. 

Fig. 7 further shows the deformation patterns in the 

soil after the footing penetration, in terms of contour of 

deviatoric strain 𝜀𝑞 and displacement 𝑢. From the Fig. 



 

 

7(a), a clear general shear failure pattern can be 

observed, wherein a dominated slip surface originates 

from the tip of a triangular wedge immediately beneath 

the foundation and extends to the ground surface, 

intercepting several orthogonal shear bands that starting 

at the corner of the foundation. While the soil inside the 

triangular wedge is pushed downward as a rigid body, 

the soil mass above the major slip surface is mobilized 

sideward and upward, forming an appreciable heave at 

the ground surface, as shown in Fig. 7(b).     

 

CONCLUSION 

    A novel MPM/DEM multiscale framework has 

been proposed for modeling geotechnical problems 

involving large deformation. The framework features a 

rigorous coupling of MPM and DEM, where the MPM 

is employed to tackle the large deformation at 

macro-scale of a practical boundary value problem, 

while the mechanical response needed by the MPM is 

obtained by DEM through a meso-scale assembly 

attached to each material point. Two typical 

geotechnical problems, cyclic simple shear and rigid 

footing were chosen to demonstrate the predictive 

capability of proposed multiscale framework in 

capturing complex soil behavior, such as strain 

localization and liquefaction, and its advantages in 

modeling large deformation. 
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