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ABSTRACT 

 
A rotational hardening model applicable to finite strain analysis based on the multiplicative decomposition of plastic 

deformation gradient tensor is presented, based on the framework proposed by Lion (2000). In the formulation, a 

new description of back stress is proposed to incorporate the Armstrong–Frederick kinematic hardening law into the 

rotational hardening law for soils. The validity of the proposed model is confirmed by stress-controlled cyclic simple 

shearing simulations. 
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1 INTRODUCTION 

Soil behavior is strongly affected by induced ani-

sotropy that evolves owing to past stress histories such 

as the cyclic loading or rotation of principal stress axes, 

and it needs to be properly described by a constitutive 

model for soils. In addition, the deformation and failure 

of soil such as those caused by an earthquake tend to be 

large, and it should be simulated based on a theory that 

incorporates geometric nonlinearity such as the finite 

strain theory. Hence, Lion (2000) developed a finite 

strain framework that incorporates stress-induced ani-

sotropy by employing an additional multiplicative split 

of the plastic part of the deformation gradient into the 

elastic and inelastic parts based on the kinematic hard-

ening law of Armstrong and Frederick (1966). This 

framework has several advantages over the existing 

“Chaboche-type” models requiring the derivation of an 

evolution equation for the back stress (see, e.g., Dett-

mer and Stefanie, 2004). 

However, the existing studies (e.g., Chida et al., 

2013) to verify whether this framework is applicable 

for modeling anisotropic behavior of soils are scarce. 

We thus derive an infinitesimal model (not finite strain 

model to avoid complexities in the formulation) that 

can easily be extended to the finite strain framework 

proposed by Lion (2000) as follows: (1) the plastic part 

of the infinitesimal strain is split additively into elastic 

and inelastic parts; (2) the free energy function is di-

vided into the hyperelastic part and hardening part in-

cluding isotropic and rotational hardening laws; (3) the 

hardening part is formulated based on the kinematic 

hardening law of Armstrong and Frederick (1966); (4) 

 
 

Fig. 1. Rheological model of Armstrong and Frederick (1966) 

kinematic hardening. 

 

the flow rules are defined to satisfy the thermodynam-

ics restrictions. 

2 DESCRIPTION OF BACK STRESS 

A new description of the back stress that can de-

scribe both the isotropic and rotational hardening laws 

is presented herein. 

The finite strain framework for an anisotropic mate-

rial (Lion, 2000) is based on the one-dimensional Arm-

strong–Frederick rheology model as shown in Fig. 1; it 

shows that the plastic part of the infinitesimal strain is 

further split additively into the elastic and inelastic 

parts: 

𝜺 = 𝜺e + 𝜺p = 𝜺e + 𝜺pe + 𝜺pi (1) 
where 𝜺pe and 𝜺pi are the elastic and inelastic parts of 

the plastic strain 𝜺p, respectively. 

In the Armstrong–Frederick kinematic hardening 

law, anisotropy is expressed by a back stress 𝝌 that is 

a work-conjugate stress to the inelastic part of the plastic 

strain 𝜺pi. However, this is inconsistent with the rota-

tional hardening law as it applies a nondimensional 

rotation of axis of the yield surface as an internal varia-



 

 

ble. Meanwhile, in this study, we utilize the center of 

the yield surface as the back stress 𝝌 and vary the 

back stress while maintaining the origin of the yield 

surface, as shown in Fig. 2. Here, the stress-like varia-

ble related with isotropic hardening (preconsolidation 

pressure 𝑝c) and the variable related with rotational 

hardening (rotational axis 𝜼̅) are given as follows: 
𝑝𝑐 = 2𝑝̅ = 2tr(𝝌)/3, 𝜼̅  = dev(𝝌)/𝑝̅ (2) 

3 HYPERELASTO-PLASTIC CONSTITUTIVE 

MODEL 

We formulate a hyperelasto-plastic model that satis-

fies the dissipation inequality. 

3.1 Helmholtz free energy 

The Helmholtz free energy function is defined as 
𝜓(𝜺e, 𝜺p

e) ≔ 𝑊(𝜺e) +ℋ(𝜺p
e) (3) 

where 𝑊 and ℋ are the functions for the hyperelas-

tic model and isotropic-rotational hardening law, re-

spectively. From Eq. (3), the dissipation inequality is 

given as 

𝒟 = 𝝈: 𝜺̇ − 𝜓̇

= (𝝈 −
𝜕𝑊

𝜕𝜺e
) : 𝜺̇ + (

𝜕𝑊

𝜕𝜺e
−
𝜕ℋ

𝜕𝜺pe
) : 𝜺̇p +

𝜕ℋ

𝜕𝜺pe
: 𝜺̇pi

= (𝝈 − 𝝌): 𝜺̇p + 𝝌: 𝜺̇pi ≥ 0

(4) 

where the hyperelastic constitutive model is given as 

𝝈 =
𝜕𝑊

𝜕𝜺e
= ∇𝑊(𝜺e) (5) 

and the back stress 𝝌  for the isotropic-rotational 

hardening law is defined as 

𝝌 ≔
𝜕ℋ

𝜕𝜺pe
= ∇ℋ(𝜀pe  ). (6) 

3.2 Yield function and flow rules 

The flow rules for 𝜀p and 𝜀pi are defined to satis-

fy 𝒟 ≥ 0 as 

𝜺p = 𝛾̇
𝜕𝑓

𝜕𝝈
/ ‖
𝜕𝑓

𝜕𝝈
‖ , 𝜺pi = 𝛾̇

𝜼̅

𝑚̅
= 𝛾̇𝑵̅ (7) 

where 𝑚̅ is a positive material parameter. 𝑓 is the 

yield function that can describe the isotropic and rota-

tional hardening, as shown in Fig. 2. In this study, we 

employ a form proposed by Dafalias (1986): 

𝑓(𝝈, 𝝌) ≔
‖𝜼 − 𝜼̅‖2

𝑚2 − ‖𝜼̅‖2
+ 1 −

2𝑝̅

𝑝
(8) 

where 𝜼 = dev(𝝈)/𝑝 and 𝑚 is the critical stress ra-

tio. 

3.3 Hyperelastic model 

As a potential function, we propose the following 

equation: 
𝑊(𝜺e) ≔ 𝜅̃𝑝ref expΩ + 𝜇ref𝒆

e: 𝒆e (9) 
where 

Ω ≔
𝜀v
e

𝜅̃
+
𝛼

𝜅̃
𝒆e: 𝒆e (10) 

𝜅̃ is the swelling index in the ln 𝑝–ln 𝑣 space (𝑣, the 

specific volume; 𝑝, the mean stress), 𝑝ref is the refer-

ence pressure at 𝜀v
e = 0, 𝜇ref is the shear modulus, 

 
Fig. 2. Description of the isotropic and rotational hardening 

based on the back stress. 

 

 
Fig. 3. Consolidation lines of the linear bi-logarithmic relation. 

 

and 𝛼 is a volumetric–deviatoric coupling parameter. 

If 𝛼 > 0 and 𝜇ref = 0, then the potential function (9) 

reduces to the hyperelastic model presented by Houlsby 

et al. (2005). 

3.4 Coupled isotropic-hardening law 
To follow the structure of the rheological model of 

Armstrong–Frederic (Fig. 1), the energy function 

ℋ(𝜺pe) in the “hardening” spring is assumed to have 

the same functional form as the energy function 𝑊(𝜺e). 
The hardening law is thus defined as the following 

equation: 

ℋ(𝜺pe) ≔
𝜆̃ − 𝜅̃

2
𝑝ref expΩ

p (11) 

where 

Ωp ≔
𝜀v
pe

𝜆̃ − 𝜅̃
+
𝛽𝑚̅

𝜆̃ − 𝜅̃
𝒆pe: 𝒆pe . (12) 

Here, 𝛽  is a material parameter for controlling the 

speed of rotation of the yield surface, and 𝑚̅ is the 

stress ratio of the rotational limit surface (Hashiguchi, 

1998). 

From Eq. (7), the volumetric strain of the inelastic 

part of the plastic strain 𝜀v
pi is always zero. Therefore, 

for a purely isotropic loading (𝜀s
pe = 0), the preconsol-

idation pressure 𝑝c can be written in the form 

𝑝c = 2𝑝̅ = 𝑝ref exp(
𝜀v
p

𝜆̃ − 𝜅̃
) (13) 

This implies that the isotropic consolidation behavior of 
the proposed model (11) corresponds to that of the 

Cam-clay-type model in the ln 𝑝–ln 𝑣 space, as shown 

in Fig. 3. 

Normal consolidation line

Swelling line



 

 

From Eqs. (6), (11), and (12), the rotational axis 𝜼̅ 

is given by the strain 𝜺pe as 

𝜼̅ =
dev(𝝌)

𝑝̅
= 2𝛽𝑚̅𝒆pe (14) 

At the critical state, the rate of the rotational axis 𝜼̇̅ can 

be written from Eqs. (8) and (14) as 

𝜼̇̅ = 2𝛽𝑚̅(𝒆̇p − 𝒆̇pi) = 2𝛽𝛾̇ (𝑚̅
𝜼 − 𝜼̅

‖𝜼 − 𝜼̅‖
− 𝜼̅) (15) 

The direction of the rotational axis is the same as the 

rotational hardening law proposed by Hashiguchi and 

Chen (1998). 

3.5 Subloading surface model 

To express the behavior of the overconsolidated 

soils, we apply the subloading concept (Hashiguchi, 

1977) to Eq. (8) as follows: 

𝑓(𝝈, 𝝌, 𝑅) ≔
‖𝜼 − 𝜼̅‖2

𝑚2 − ‖𝜼̅‖2
+ 1 −

2𝑅𝑝̅

𝑝
(16) 

where 1/𝑅 represents the overconsolidation ratio. The 

evolution law of 𝑅 (Hashiguchi, 2009) is given in this 

study as 

𝑅̇ = 𝑢 cot (
𝜋𝑅

2
)‖𝜀̇p‖ = 𝑢 cot (

𝜋𝑅

2
) 𝛾̇. (17) 

4 RETURN MAPPING 

In this section, we present a return mapping algo-

rithm to achieve a highly accurate integration of the 

proposed hyperelasto-plastic constitutive equations. 

4.1 Elastic predictor 

Assuming only elastic deformation for a given strain 

increment Δ𝜺 (freezing plastic flow), we obtain 
𝜺p,tr = 𝜺𝑛

p
, 𝜺pi,tr = 𝜺𝑛

pi , 𝑅tr = 𝑅𝑛 (18) 

where 𝝈tr and 𝝌tr are given, respectively, as 
𝝈tr = ∇𝑊(𝜺 − 𝜺p,tr), and 𝝌tr = ∇ℋ(𝜺p,tr − 𝜺pi,tr)(19) 

The loading/unloading condition can be determined by 

the trial yield function 𝑓tr = 𝑓(𝝈tr, 𝝌tr, 𝑅tr) . When 

𝑓tr ≤ 0, as only elastic deformation is assumed, varia-

bles except 𝑅 are adopted as the updated values at 

𝑡𝑛+1, and 𝑅 is calculated such that 𝑓 = 0 is satisfied. 

Meanwhile, when 𝑓tr > 0, because plastic deformation 

has occurred, it is necessary to follow the plastic cor-

rector step as described in the next section. 

4.2 Plastic corrector 

Applying the backward Euler method to the flow 

rules (7), we define the unknown variable vector 𝒙 and 

the residual vector 𝒓(𝒙), respectively, as 

𝒙 ≔ {

𝝈
𝝌
Δ𝛾
} , 𝒓(𝒙) ≔ {

𝜺p − 𝜺𝑛
p
− Δ𝛾𝑵

𝜺pi − 𝜺𝑛
pi − Δ𝛾𝑵̅

𝑓(𝝈, 𝝌, 𝑅)

} (20) 

To solve the nonlinear equation 𝒓(𝒙) = 𝟎, the New-

ton–Raphson method is employed using the following: 

𝛿𝒙𝑘 = −𝑨
−1 ⋅ 𝒓(𝒙𝑘), 𝑨 =

𝜕𝒓(𝒙𝑘)

𝜕𝒙
(21) 

where 𝛿𝒙𝑘  is the corrector vector. This iteration is 

conducted to update 𝒙𝑘+1 until ‖𝒓‖ < TOL. 

5 CONSISTENT TANGENT MODULUS 

The nonlinear equation 𝒓(𝒙) = 𝟎 can be rewritten as 
𝒓(𝒙(𝜺), 𝜺) = 𝟎. (22) 

The total derivative of Eq. (22) is given by 
𝜕𝒓

𝜕𝜺
=
𝜕𝒓

𝜕𝜺
|
𝒙
+
𝜕𝒓

𝜕𝒙
|
𝜺
⋅
𝜕𝒙

𝜕𝜺
=
𝜕𝒓

𝜕𝜺
|
𝒙
+𝑨 ⋅

𝜕𝒙

𝜕𝜺
= 𝟎 (23) 

Therefore, the consistent tangent modulus 𝜕𝝈/𝜕𝜺 can 

be obtained by solving Eq. (23): 

𝜕𝒙

𝜕𝜺
=

{
 
 

 
 
𝜕𝝈

𝜕𝜺
𝜕𝝌

𝜕𝜺
𝜕Δ𝛾

𝜕𝜺 }
 
 

 
 

= −𝑩 ⋅
𝜕𝒓

𝜕𝜺
|
𝒙
= −{

𝑩11 +𝑩12
𝑩21 +𝑩22
𝑩31 + 𝑩32

} (24) 

where 𝑩 = 𝑨−1. Because we use the Jacobian 𝑨 in 

which the iteration is completed, the existence of 𝑨−1 

is guaranteed. 

6 STRESS-CONTROLLED CYCLIC SIMPLE 

SHEARING SIMULATIONS 

In this section, we set the following problem to per-

form stress-controlled cyclic simple shearing simula-

tions based on a study by Borja et al. (2001): 
𝑹 ≔ 𝝈∗ − 𝝈̃, 𝝈̃ = 𝝈(𝜺) + 𝜁 tr(𝜺)𝟏 (25) 

where 𝜁 ≫ 0 is a penalty parameter that should be 

sufficiently large to satisfy tr(𝜺) → 0. We use 𝜁 =
108 kPa in this study. The nonlinear equation 𝑹 = 𝟎 

can be solved by the Newton–Raphson method as 

d𝜺𝑘 = −[
𝜕𝑹(𝜺𝑘)

𝜕𝜺
]

−1

⋅ 𝑹𝑘 (26) 

where 
𝜕𝑹(𝜺𝑘)

𝜕𝜺
= −

𝜕𝝈(𝜺𝑘)

𝜕𝜺
− 𝜁𝟏⊗ 𝟏 (27) 

The consistent tangent modulus (24) should be used for 

𝜕𝝈/𝜕𝜺 in Eq. (27) to preserve the asymptotic rate of 

the quadratic convergence of the iterations. 

From the initial stress 𝜎11 = 𝜎22 = 𝜎33 = 350 kPa, 
cyclic simple shearing is applied with stress increment 

Δ𝜎12 = ±40 kPa by 360 and 3600 steps in nine cycles 

(Fig. 3). From Fig. 4(a), the soil loses its mean stress 𝑝 

owing to cyclic shearing at the beginning of the simula-

tion, and finally exhibits cyclic mobility. Figure 4(b) 

shows that the large deviatoric strain suddenly occurs 

during the cyclic mobility. Additionally, from Fig. 4, 

the calculation results are highly accurate even for large 

increments. 

7 CONCLUSIONS 

An infinitesimal constitutive model for soils that 

considered induced anisotropy was formulated based on 

the finite strain framework proposed by Lion (2000). In 

the formulation, we proposed the hyperelastic constitu-

tive model and the hardening law which could describe 

both isotropic and rotational hardenings based on the 

kinematic hardening law of Armstrong and Frederick 



 

 

Table 1. Material parameters used in the stress-controlled cyclic 

simple shearing simulations. 

Parameter and symbol Value 

Reference mean stress 𝑝ref 98.0 kPa 

Elastic shear modulus 𝜇ref 6000.0 kPa 

Elastic volumetric–deviatoric parameter 𝛼 40.0 

Swelling index 𝜅̃ 0.01 

Compression index 𝜆̃ 0.11 

Critical state stress ratio 𝑀 1.1 

Stress ratio of rotational limit surface 𝑀̅ 1.0 

Parameter of subloading surface 𝑢 0.96 

Parameter of anisotropy 𝛽 18.0 

 

 

 
Fig. 4. Stress-controlled cyclic simple shearing simulation (line: 

3600 steps, plot: 360 steps): (a) stress path, (b) deviatoric stress–

deviatoric strain relationship. 

 

 (1966). To apply the Armstrong–Frederick kinematic 

hardening law to the constitutive model for soils, we 

developed a new approach to describe the anisotropic 

behavior of soils by the back stress. 

From the stress-controlled cyclic simple shearing 

simulations, the proposed model could predict the 

stress-induced anisotropy behaviors of soils. 
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