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Application of material point method to bearing capacity problems of shallow foundations
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ABSTRACT

Strain localization takes place during the deformation of geomaterials. Simulations of geomaterial behavior must use
numerical methods that can handle and simulate this specific geomaterial characteristic. In particular, when
simulating geomaterials under large deformations, mesh tangling often occurs with mesh-based numerical methods
such as the finite element method (FEM). The authors focus on this difficulty and employ a particle-based method,
specifically the material point method (MPM), instead of FEM to avoid meshing and achieve simulations that are
numerically robust. Various interpolation functions for MPM are proposed and their characteristics are discussed and
compared through numerical examples focusing on bearing capacity problems of shallow foundations.
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1 INTRODUCTION

Experimental and numerical investigations relating
to shallow foundations, such as raft foundations, can be
found in the literature. In order to verify the
effectiveness of MPM when applied to bearing capacity
problems related to shallow foundations, numerical
examples are performed under small deformations and
the results are compared with the theoretical Prandtl
solution and simulations by a mesh-based method (the
finite difference method, FDM). These comparisons
verify the numerical accuracy of MPM. Analyses
involving large deformations are then performed and
discussed in terms of load-settlement relationships.

2 NUMERICAL METHOD

It has been reported that numerical oscillations
occur in the original formulation of MPM when
particles cross numerical grids (Bardenhagen and
Kober 2004). Bardenhagen and Kober proposed a new
method in which an interpolation function takes into
account the controlling domain of each particle. This
derivative interpolation function overcomes the
numerical oscillation problem and is called the

generalized interpolation material point (GIMP) method.

There are two variants of the GIMP method. One is the
contiguous particle GIMP (cpGIMP) method, in which
particles domains are updated following their
deformation in the axial direction. The other is
unchanged/uniform GIMP (uGIMP) method, in which
particles retain their initial controlling domains. More
recently, Sadeghirad et al. enhanced the GIMP method,
proposing the convected particles domain interpolation
(CPDI) method in which particle domains deform as a
parallelogram in 2D (Sadeghirad et al. 2011). The

CPDI method was revised further by Sadeghirad et al.
to become the CPDI2 method, in which particle
domains deform as quadrilaterals in 2D (Sadeghirad et
al. 2013). The differences among the various MPM
interpolation functions are illustrated in Fig.1.

MPM was formulated originally as a dynamic
explicit method. In order to apply MPM to static
equilibrium  problems such as load-settlement
relationships, the dynamic relaxation method is
employed. With this method, the damping force is as
given by equation (1). The convergence criteria are
shown as equation (2).

flemek = —q - abs(f"*) - sign(v) oy
fgdrwek flntk +fextk
_ drivek drwe LTll (2)
force ratio = abs fq /
<g
in WhiCh, fdampk fgdrive,k , fint,k , fext,k are

damping force driving force (equal to the force
imbalance between internal and external force), internal
force, and external force at time step k, respectively. «
is the damping factor and sign is the function that
returns the sign of the arguments. k and ini are
superscripts representing time step k and the initial state,
respectively. The damping force acts in the opposite
direction to the grid point velocity at the same
magnitude (of a times the driving force). As the
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Fig.1. Differences among various MPM interpolations
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simulation steps through the numerical process, the
driving force decreases. Convergence is reached when
the criteria in equation (2) are satisfied.

In the analyses that follow, the settlement reached
after the convergence procedure above is called the
equilibrium solution.

3 ANALYTICAL MODEL AND CONDITIONS

Analytical studies on bearing capacity problems of
shallow foundations have been reported literally by
Chen and Mizuno 1990 and Bui et al. 2008. Chen and
Mizuno employed FEM to model small deformations,
while Bui et al. adopted smooth particle hydrodynamics
using the same analytical model as Chen and Mizuno
but with large deformations. In this work, the analytical
model and conditions described in Fig.2 and Table 2
are used in reference to these earlier studies. Pressure is
applied to the surface grid points under the foundation
in the small deformation cases. The loading block is
employed to enforce tractions in the large deformation
cases because the surface boundary changes during the
simulation, making it difficult to apply a constant
pressure. The density of the loading block is changed
once the equilibrium condition has been satisfied at
each loading stage in order to simulate incremental
loading. The contact pressure under the loading block is
not uniformly distributed. The average contact pressure
is used to calculate the load-settlement relationships,
where vertical displacement at the left (symmetrical
center) is taken to be the settlement.

4 ANALYTICAL RESULTS

Load-settlement relationships for both small and
large deformation cases and the time-history of
unbalanced force ratio (equation (2)) are shown in Fig.3
and Fig.4, respectively. Fig.5 shows maximum shear
strain distribution at each of the focused time steps
shown in Fig.3 under small deformation. Fig.6 shows
the same plots under large deformation for the various
MPM interpolation methods.

2m(10 cells) 10m(50 cells)
2m
(10 cells)
:::::::::::::::::::::::::::::::::V;e,;ic'a;,);f;e'ef:
amo | LIl horizortally fix o
@cells)| [~ ---- - -BaseGround oo
[ TVertically fréel | L o Lo oLl verticallyfix Lol
I - horizontally-fix- - . J)- - - - - - - horizontally- fix- - - - - -

0.1m
0.1m[ E Controll Domain

® Material Point
o Grid Point
4 Material Points per Cell

Fig.2. Analysis model.

In Fig.3 numerical results obtained by the finite
difference  method and  Prandtl’s  solution
(g=c(n+2)=257(kPa)) are also plotted in order to verify
the numerical result calculated by MPM. Points [1]-[5]
and [i]-[iv] in Fig.3 correspond to the maximum strain
distribution inside the base ground shown in Fig.5 and
Fig.6, respectively. Particles are illustrated and colored
on their controlling domains described in Fig.1.

Fig.4 shows the time-history of driving force,
indicating how the difference between external and
internal forces reaches convergence. Convergence is
reached within relatively fewer cycles when the ground
behavior is elastic (Fig.4(b)). The source of the force
imbalance (driving force) is mainly the rise in external
force. As the external force increases further, the base
ground begins to exhibit plastic behavior. In the plastic
regime, more cycles are required to come to
convergence because the driving force is increased by
the generation of a force imbalance in the plastic state
particles. In the ultimate state, yet more cycles are
needed to reach convergence.

Looking at the analytical results for the small
deformation cases, Fig.3(a) shows that the
load-settlement relationship is in good agreement with
that obtained by FDM and the ultimate bearing capacity
is the same as given by Prandtl’s solution. Fig.3(a) and
point [1] in Fig.5 show the base ground behaving as
elastic body and shear strain localizations are not
observed. Point [2] in Fig.5 is where the base ground
begins to show plasticity. Strain localization occurs
under the foundation and a Kurdjumoff area (punching
wedge) is formed. Point [3] in Fig.5 shows a non-linear
response coming into play and strain localization
extends beyond the base. The state shown in [4] is the
theoretical ultimate state. In Fig.5, two shear band
candidates are visible (s1 and s2 in Fig.5[4]). One is
shallower and the other deeper. The shallow shear band
‘s1” grows and ultimately becomes the strain
localization at the final state [5]. This final strain
localization is in the same position as assumed in
Prandtl’s solution.

Table 1 Material properties.

. E v P c ¢ 74
Domain
(kPa) (g/cm®) (kPa) (deg) (deg)
Base 20000 045 17 50 00 00
Ground
Loading
Dok 200000 03  |10to300by10

Table 2 Analysis conditions.

Items Values
Particles per cell 4
Dimensions(H xW) 6mx12m
Width of cell 02m
Time increment 0.00025
Damping factor 0.8

Convergence criteria 0.0001
Interpolation uGIMP,cpGIMP,CPDI2
Number of Material Points
Base Ground 4,800
Loading Block 400




Next, considering the analytical results for the large
deformation cases, in Fig.6 the results for point [i] show
that the base ground is acting as an elastic body, as seen
in the small deformation cases, and strain localization
does not occur. At point [ii] in Fig.6 there is visually
recognizable deformation, while a clear increase in
settlement appears in the load-settlement relationship in
Fig.3(b). This is regarded as the ultimate bearing
capacity in the large deformation cases. Strain
localization is seen to occur at point [ii], where it
spreads along the bottom of ground model and
corresponds to ‘s2’ seen in Fig.5[4]. At point [iii] a
shear band begins to form from the bottom of the
loading block to the ground surface; the load-settlement
relationship at this point is a straight line with
settlement resulting from the load increase as the base
ground continues to fail. At point [iv], the loading block
has reached almost the bottom of the modeled ground.
The external force is in equilibrium with the bottom
reaction and no more shear failure occurs.

Finally, the characteristics of the various
interpolation functions are discussed based on the
results given in Fig.6. In the case of uGIMP, because
the controlling domains of particles are not updated,
particles move in space within their initial controlling
domains. As for cpGIMP, the controlling domains are
updated in the axial direction (e.g. in the x-y direction
in two dimensions). Particles can deform down to
almost zero on the compression side while they expand
up to the width of the numerical grid on the extension
side. With CPDI2, particles are capable of deforming in
any direction while maintaining continuity with
neighboring particle domains. Although there are
differences among these interpolation functions, the
transfer of external forces to each particle takes place
via a numerical grid. The equation of motion is satisfied
as an agglomeration of particles. The load-settlement
relationships in Fig.3 show that CPDI2 results in a
larger bearing capacity than uGIMP and cpGIMP. This
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Fig.3. Load-settlement relationships: (a) Settlement range from
0(m) to 0.1(m); (b) Settlement range from 0(k) to 2.5(m).
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Fig.4. Example of driving force history under large deformation:
(a) Complete history; (b) Same history up to first two cycles
after reaching the ultimate state.
is because of the continuity of domains, which is
realized only by the CPDI2 method. With uGIMP and
cpGIMP, discontinuities in bearing capacity are clear in
Fig.6 in the area neighboring the loading block. As such
discontinuities occur more often between particles, the
number of particles resisting the external force
decreases. The number of particles in CPDI2
calculation is more than those of the other two methods.

Thus, differences in bearing capacity arising from
the use of different interpolation functions arise from
the way that forces transfer with the different particle
domains. Geomaterials naturally have little resistance to
tension and shear deformation is readily localized. In
attempts to numerically forecast deformation, an
interpolation function should be chosen depending on
material behavior. For example, uGIMP and cpGIMP

Fig.5. Distribution of maximum shear strain inside the ground
under small deformation. The numbers correspond to the points
marked in Fig.3.
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should be employed for phenomena that include
discrete behaviors while CPDI2 should be employed for
phenomena without discrete behaviors.

3 CONCLUSION

In this paper characteristics of these functions are
discussed and compared. The applicability and
effectiveness of each interpolation function are also
discussed, focused on bearing capacity problems of
shallow foundation.
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Fig.6. Distribution of maximum shear strain inside the ground under large deformation. The numbers correspond to the points
marked in Fig-3. (a) uGIMP ground deformed with uniform square particles, showing many void domains among particles; (b)
cpGIMP ground deformed with rectangular particles, still showing many voids among particles; each particle deforms according to
the axial strain; (c) CPDI2 ground deformed with quadrilateral particles, showing no voids inside the ground.




