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A rotational hardening model applicable to finite strain analysis
based on multiplicative decomposition of plastic deformation gradient tensor
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ABSTRACT

A rotational hardening model applicable to finite strain analysis based on the multiplicative decomposition of plastic
deformation gradient tensor is presented, based on the framework proposed by Lion (2000). In the formulation, a
new description of back stress is proposed to incorporate the Armstrong—Frederick kinematic hardening law into the
rotational hardening law for soils. The validity of the proposed model is confirmed by stress-controlled cyclic simple

shearing simulations.
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1 INTRODUCTION

Soil behavior is strongly affected by induced ani-
sotropy that evolves owing to past stress histories such
as the cyclic loading or rotation of principal stress axes,
and it needs to be properly described by a constitutive
model for soils. In addition, the deformation and failure
of soil such as those caused by an earthquake tend to be
large, and it should be simulated based on a theory that
incorporates geometric nonlinearity such as the finite
strain theory. Hence, Lion (2000) developed a finite
strain framework that incorporates stress-induced ani-
sotropy by employing an additional multiplicative split
of the plastic part of the deformation gradient into the
elastic and inelastic parts based on the kinematic hard-
ening law of Armstrong and Frederick (1966). This
framework has several advantages over the existing
“Chaboche-type” models requiring the derivation of an
evolution equation for the back stress (see, e.g., Dett-
mer and Stefanie, 2004).

However, the existing studies (e.g., Chida et al.,
2013) to verify whether this framework is applicable
for modeling anisotropic behavior of soils are scarce.
We thus derive an infinitesimal model (not finite strain
model to avoid complexities in the formulation) that
can easily be extended to the finite strain framework
proposed by Lion (2000) as follows: (1) the plastic part
of the infinitesimal strain is split additively into elastic
and inelastic parts; (2) the free energy function is di-
vided into the hyperelastic part and hardening part in-
cluding isotropic and rotational hardening laws; (3) the
hardening part is formulated based on the kinematic
hardening law of Armstrong and Frederick (1966); (4)

Fig. 1. Rheological model of Armstrong and Frederick (1966)
kinematic hardening.

the flow rules are defined to satisfy the thermodynam-
ics restrictions.

2 DESCRIPTION OF BACK STRESS

A new description of the back stress that can de-
scribe both the isotropic and rotational hardening laws
is presented herein.

The finite strain framework for an anisotropic mate-
rial (Lion, 2000) is based on the one-dimensional Arm-
strong—Frederick rheology model as shown in Fig. 1; it
shows that the plastic part of the infinitesimal strain is
further split additively into the elastic and inelastic
parts:

e=¢€°4 €P = £° + gPe + £Pi (D
where gPe and &P are the elastic and inelastic parts of
the plastic strain &P, respectively.

In the Armstrong—Frederick kinematic hardening
law, anisotropy is expressed by a back stress y thatis
a work-conjugate stress to the inelastic part of the plastic
strain &£Pi. However, this is inconsistent with the rota-
tional hardening law as it applies a nondimensional
rotation of axis of the yield surface as an internal varia-
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ble. Meanwhile, in this study, we utilize the center of
the vyield surface as the back stress y and vary the
back stress while maintaining the origin of the yield
surface, as shown in Fig. 2. Here, the stress-like varia-
ble related with isotropic hardening (preconsolidation
pressure p.) and the variable related with rotational
hardening (rotational axis 1) are given as follows:
pe=2p=2tr(x)/3, N =dev()/p  (2)

3 HYPERELASTO-PLASTIC CONSTITUTIVE
MODEL

We formulate a hyperelasto-plastic model that satis-
fies the dissipation inequality.

3.1 Helmholtz free energy
The Helmholtz free energy function is defined as

Y(e°, &Pe) = W (&%) + H (&™) 3)

where W and H are the functions for the hyperelas-

tic model and isotropic-rotational hardening law, re-

spectively. From Eg. (3), the dissipation inequality is

given as

D=0:£—1

_( 6W)_,+(6W ay{>_, oH “)
—\¢ dee ‘€ dee  OgPe ‘€ J&Pe
=(c—yx):&+ x>0
where the hyperelastic constitutive model is given as
w
o= = VW (&%) (5)

de¢
and the back stress y for the isotropic-rotational
hardening law is defined as

= peere ©®)
X = 6£pe = & .

3.2 Yield function and flow rules
The flow rules for P and &Pi are defined to satis-
fy D=0 as
U]

pi =V — =1
cr 2] e=view o
where m is a positive material parameter. f is the
yield function that can describe the isotropic and rota-
tional hardening, as shown in Fig. 2. In this study, we
employ a form proposed by Dafalias (1986):

2 2p
fx) = Iln 7|l p

s+1-—— (8)
— 7l P

where n = dev(o)/p and m is the critical stress ra-

tio.

3.3 Hyperelastic model
As a potential function, we propose the following
equation:

W (&%) := Kprerexp Q + pirer€®: €° 9
where
&«
Q:=—+—-e€%e" (10)
K K

K is the swelling index in the Inp-lnv space (v, the
specific volume; p, the mean stress), p..r is the refer-
ence pressure at € = 0, .. is the shear modulus,

Do =2p p

Fig. 2. Description of the isotropic and rotational hardening
based on the back stress.
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Fig. 3. Consolidation lines of the linear bi-logarithmic relation.

and «a is a volumetric—deviatoric coupling parameter.
If «a>0 and p.r =0, then the potential function (9)
reduces to the hyperelastic model presented by Houlsby
et al. (2005).

3.4 Coupled isotropic-hardening law

To follow the structure of the rheological model of
Armstrong—Frederic (Fig. 1), the energy function
J (&P¢) in the “hardening” spring is assumed to have
the same functional form as the energy function W (&¢).
The hardening law is thus defined as the following
equation:

A—K
}[(Spe) = 2 Pref €XP QP (11)
where
Pe -
£ m
QP = —"—+ F —ePe: ePe, (12)
A—Fk A—-FK

Here, B is a material parameter for controlling the
speed of rotation of the yield surface, and m is the
stress ratio of the rotational limit surface (Hashiguchi,
1998).

From Eq. (7), the volumetric strain of the inelastic
part of the plastic strain &' is always zero. Therefore,
for a purely isotropic loading (¢}* = 0), the preconsol-
idation pressure p. can be written in the form

Sp
bc = 25 = Dref €Xp <Z . ~) (13)
— K

This implies that the isotropic consolidation behavior of
the proposed model (11) corresponds to that of the
Cam-clay-type model in the Inp-Inv space, as shown
in Fig. 3.
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From Egs. (6), (11), and (12), the rotational axis 7
is given by the strain &Pe as

_dev(y)

= 2B mePe (14)

At the critical state, the rate of the rotational axis 7 can
be written from Eqgs. (8) and (14) as

=
i = 2pm(er — &) = 26y (Mg ——7)  (15)

The direction of the rotational axis is the same as the
rotational hardening law proposed by Hashiguchi and
Chen (1998).

3.5 Subloading surface model

To express the behavior of the overconsolidated
soils, we apply the subloading concept (Hashiguchi,
1977) to Eq. (8) as follows:

_ Al =7l 2Rp
f(O',X,R) -—w‘l‘l—T (16)

where 1/R represents the overconsolidation ratio. The
evolution law of R (Hashiguchi, 2009) is given in this
study as

. TR TR
R =ucot (7) [|€P|| = u cot (7) y. a7

4 RETURN MAPPING

In this section, we present a return mapping algo-
rithm to achieve a highly accurate integration of the
proposed hyperelasto-plastic constitutive equations.

4.1 Elastic predictor

Assuming only elastic deformation for a given strain
increment Ag (freezing plastic flow), we obtain

=g gptr=gh R =PR, (18)

where o and x" are given, respectively, as
o = VW (e — &P%), and y" = VH (eP¥ — gPit")(19)
The loading/unloading condition can be determined by
the trial yield function f% = f(a", ¥",R"). When
f <0, as only elastic deformation is assumed, varia-
bles except R are adopted as the updated values at
tn+1, and R is calculated such that f = 0 is satisfied.
Meanwhile, when £ > 0, because plastic deformation
has occurred, it is necessary to follow the plastic cor-
rector step as described in the next section.

4.2 Plastic corrector

Applying the backward Euler method to the flow
rules (7), we define the unknown variable vector x and
the residual vector r(x), respectively, as

c e — g, — AYN
x= {x} r(x) = e — P —AyN{  (20)
Ay flo,x,R)

To solve the nonlinear equation r(x) = 0, the New-
ton—Raphson method is employed using the following:
or(x
Sxk = —A_l . r(xk)r A= a(xk) (21)
where &x, is the corrector vector. This iteration is
conducted to update x;,, until ||r|| < TOL.

5 CONSISTENT TANGENT MODULUS
The nonlinear equation r(x) = 0 can be rewritten as
r(x(e), &) = (22)

The total derivative of Eq. (22) is |venb
ar or 6r q (3 J 3/

9 6£x ax ‘9g 68 Aa

Therefore, the consistent tangent modulus da/de can
be obtainedaby solving Eq. (23):
g

=0 (23)

ox (g; or By + By,
e . - 6£ —1B21 + By (24)
& B3; + B3,
dAy

o

where B —A 1, Because we use the Jacobian A in
which the iteration is completed, the existence of A~1
is guaranteed.

6 STRESS-CONTROLLED CYCLIC SIMPLE
SHEARING SIMULATIONS

In this section, we set the following problem to per-
form stress-controlled cyclic simple shearing simula-
tions based on a study by Borja et al. (2001):

=0" -0, =a(e) +{ tr(e)l (25)
Where ( >0 is a penalty parameter that should be
sufficiently large to satisfy tr(e) » 0. We use { =
108 kPa in this study. The nonlinear equation R = 0
can be solved by the Newton—-Raphson method as

& = — [aR;SSk) "Ry (26)
where aR( ) a )
€k O(&

Framt e -J1®1 (27)

The consistent tangent modulus (24) should be used for
da/de in Eq. (27) to preserve the asymptotic rate of
the quadratic convergence of the iterations.

From the initial stress g,; = g,, = 035 = 350 kPa,
cyclic simple shearing is applied with stress increment
Aoy, = £40 kPa by 360 and 3600 steps in nine cycles
(Fig. 3). From Fig. 4(a), the soil loses its mean stress p
owing to cyclic shearing at the beginning of the simula-
tion, and finally exhibits cyclic mobility. Figure 4(b)
shows that the large deviatoric strain suddenly occurs
during the cyclic mobility. Additionally, from Fig. 4,
the calculation results are highly accurate even for large
increments.

7 CONCLUSIONS

An infinitesimal constitutive model for soils that
considered induced anisotropy was formulated based on
the finite strain framework proposed by Lion (2000). In
the formulation, we proposed the hyperelastic constitu-
tive model and the hardening law which could describe
both isotropic and rotational hardenings based on the
kinematic hardening law of Armstrong and Frederick
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Table 1. Material parameters used in the stress-controlled cyclic

simple shearing simulations.

Parameter and symbol Value
Reference mean stress pyer 98.0 kPa
Elastic shear modulus p..¢ 6000.0 kPa
Elastic volumetric—deviatoric parameter a 40.0
Swelling index & 0.01
Compression index 1 0.11
Critical state stress ratio M 11
Stress ratio of rotational limit surface M 1.0
Parameter of subloading surface u 0.96
Parameter of anisotropy S 18.0
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Fig. 4. Stress-controlled cyclic simple shearing simulation (line:
3600 steps, plot: 360 steps): (a) stress path, (b) deviatoric stress—
deviatoric strain relationship.

(1966). To apply the Armstrong—Frederick kinematic
hardening law to the constitutive model for soils, we
developed a new approach to describe the anisotropic
behavior of soils by the back stress.

From the stress-controlled cyclic simple shearing
simulations, the proposed model could predict the
stress-induced anisotropy behaviors of soils.
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