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ABSTRACT 

 
This study presents an improvement in coupled particle-fluid numerical simulation model for the internal erosion of 

granular soils with a broad particle size distribution in order to investigate the mechanisms of the motion of fine soil 

particles inside the matrix of coarse soil particles from a microscopic point of view. In the model, the discrete element 

method (DEM) and the lattice Boltzmann method (LBM) are employed for the soil particles and for the seepage flow, 

respectively. On the basis of the coupled DEM-LBM model, two types of coupling schemes are newly combined. The 

coarse soil particles are simulated by the microscale-coupled method where the fluid flow is modeled at smaller scales 

than the soil particle diameter, while the fine soil particles are simulated by the macroscale-coupled method where the 

fluid flow is modeled at larger scales than the soil particle diameter. 3-D simulations of suffusion are performed, and 

the applicability of the proposed model to the internal erosion of granular soils is validated.  
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1 INTRODUCTION 

The internal erosion of soils is described as the 

process in which the soil particles are transported by the 

hydrodynamic force of the seepage flow. It is well 

known that internal erosion often contributes to serious 

geohazards, such as the breaching of levees, the collapse 

of dam bodies, and sinkholes in roads (Foster et al. 2000). 

Bonelli (2013) reported that internal erosion is classified 

into four types according to the physical process: 

backward piping erosion, concentrated leak erosion, 

suffusion, and contact erosion. Among these types of 

erosion, suffusion and contact erosion occur when both 

coarse soil particles and fine soil particles exist in the 

same ground. In other words, these types of internal 

erosion are associated with a broad particle size 

distribution of the soils.  

In this study, the focus is placed on the internal 

erosion of granular soils with a broad particle size 

distribution, and a coupled particle-fluid numerical 

simulation model dedicated to such a phenomenon is 

proposed. It is important to develop a numerical scheme 

because it is difficult to experimentally observe the 

motion of fine soil particles inside a matrix of coarse soil 

particles. In the proposed model, the discrete element 

method (DEM) and the lattice Boltzmann method (LBM) 

are employed for the soil particles and for the seepage 

flow, respectively. On the basis of the coupled DEM-

LBM model, which has been investigated in our previous 
research (Fukumoto et al. 2017), two types of coupling 

schemes are newly combined. The coarse soil particles 

are simulated by the microscale-coupled method where 

the fluid flow is modeled at smaller scales than the soil 

particle diameter, while the fine soil particles are 

simulated by the macroscale-coupled method where the 

fluid flow is modeled at larger scales than the soil 

particle diameter. 3-D simulations of suffusion are 

performed, and the applicability of the proposed model 

to the internal erosion of granular soils is validated. 

2 OUTLINE OF SIMULATION MODEL 

2.1 LBM for Seepage flow 
The seepage flow is simulated by employing the 

LBM. The LBM is one of the computational fluid 

dynamics (CFD) methods and an alternative to the 

Navier-Stokes (N-S) equations. The LBM does not solve 

the N-S equations directly, but solves the kinetic gas 

theory, which can simulate the fluid flows by tracking 

the evolution of the density distribution of the virtual 

fluid particles. Since the relevant literature is affluent 

(e.g., Qian et al. 1995), only the essential points of the 

method are outlined below. 

The solution of the LBM is governed by the 

following kinetic equation: 
 

                   𝑓


(𝐱 + 𝐜𝑡
, 𝑡 + 𝑡) − 𝑓


(𝐱, 𝑡)

=  (𝐱, 𝑡),             (1) 
 

where f is the -th component of the density distribution 

function and c is the -th component of the discrete 



 

 

velocity. The value for x is the position of the LB node 

which is being calculated, t is the time, and t is the 

discrete time. f defines the proportion of virtual fluid 

particles which move with velocity c in the -th 

direction of the LB node located at position x at time t. 

The right-hand term for  indicates the -th component 

of the collision operator.  is the number of discrete 

velocities and depends on the choice of the model for the 

velocity moment. Considering precision and numerical 

efficiency, the D3Q19 model for three dimensions are 

usually used. 

In the D3Q19 model, on the other hand, the discrete 

velocities are defined as c = (0, 0, 0), (±c, 0, 0), (0, ±c, 

0), (0, 0, ±c), (±c, ±c, 0), (±c, 0, ±c), and (0, ±c, ±c) 

for  = 0-18. For the single relaxation time (SRT) model 

(Qian et al. 1995),  is given as 
 

                    (𝐱, 𝑡)

= −−1 ( 𝑓


(𝐱, 𝑡)

− 𝑓

𝑒𝑞(𝐱, 𝑡)) ,                 (2) 

 

where  is a relaxation time coefficient and feq is the -

th component of the equilibrium distribution function. 

Functions feq are calculated by 
 

 
      𝑓



𝑒𝑞
=  {1 +

3(𝐜 ∙ 𝐮)

𝑐2
+

9(𝐜 ∙ 𝐮)2

2𝑐4
 −

3(𝐮 ∙ 𝐮)

2𝑐2
} ,

(3)  
 

where  = 4/9 for  = 0,  = 1/9 for   [1, 4], and  

= 1/36 for   [5, 8] in the D2Q9 model, and  = 1/3 

for  = 0,  = 1/18 for   [1, 6], and  = 1/36 for  

 [7, 18] in the D3Q19 model. The fluid velocity at the 

LB node is given by vector u, which is determined by u 

= ∑ 𝑓 𝑐 and where density  is given by  = ∑ 𝑓 . 

Pressure p is easily computed as a function of density 

using the speed of sound, cs: p = cs
2, where cs is defined 

as cs
2 = c2/3. In the LBM, the velocity and the pressure 

are available in local forms according to the above 

equations. Then, relaxation parameter  is directly 

related to dynamic viscosity , as follows:  = c2t 

(− 0.5). The value for  also affects the numerical 

stability, and it is often chosen in the range of 0.5 to 1.0. 

2.2 Coupling method for coarse soil particles 

 In order to perform the coupled particle-fluid 

simulations within the framework of the LBM, the 

partially saturated lattice Boltzmann model (Noble and 

Torczynski 1998) is used. The model allows for the 

momentum transfer inside the solid phase. Fig. 1 (a) 

presents a conceptual description of the coupled DEM-

LBM for coarse soil particles, where the space of the grid 

for fluid is smaller than the diameter of the soil particles 

(Fukumoto et al. 2017; Okada et al. 2017). In this 

approach, the collision operator in the SRT model, as 

described in Eq. (2), is reformulated to account for 

additional parameter B and additional term . 
 

(𝐱, 𝑡)

= −−1(1 −  𝐵(𝐱, 𝑡)) ( 𝑓


(𝐱, 𝑡) − 𝑓

𝑒𝑞(𝐱, 𝑡))

+ 𝐵(𝐱, 𝑡) ,                                               (4) 
 

where B is given by 
 

                      𝐵(𝐱, 𝑡)

=
(𝐱, 𝑡)( − 0.5)

(1 − (𝐱, 𝑡)) + ( − 0.5)
  .                    (5) 

 

Parameter (x, t) is the volume fraction of the solid 

phase at each LB node. The value for  varies between 0 

for a completely fluid phase and 1 for a completely solid 

phase. Then, the value for  is calculated as follows:  
 

        = 𝑓
−

(𝐱, 𝑡) − 𝑓
−
𝑒𝑞 (, 𝐮) + 𝑓


𝑒𝑞(, 𝐮𝑝)

− 𝑓


(𝐱, 𝑡)        (6) 

 

where up is the velocity of the soil particles including 

both the translation and the rotation motion of the 

corresponding soil particles. Notation −  is the 

opposite direction of . According to the above 

equations, when |up| = 0 and = 1, the bounce-back rule, 

i.e., the non-slip condition at the solid-fluid boundary, is 

obtained. 

Then, the hydrodynamic force and the hydrodynamic 

torque resulting from the seepage flow are needed for the 

motion of the soil particles. The values for 

hydrodynamic force Fhyd and hydrodynamic torque Thyd 

are given by summing up the changes in momentum 

inside the solid phase. 
 

                           𝐅ℎ𝑦𝑑

=
𝑥

3

𝑡
∑ 𝐵𝑛 (∑



𝐜)

𝑛

 ,                     (7) 

            𝐓ℎ𝑦𝑑

=
𝑥

3

𝑡
∑ {(𝐱𝑛 − 𝐱𝑝)

𝑛

× 𝐵𝑛 (∑



𝐜)} ,          (8) 

 

where n is the number of LB nodes belonging to the 

solid phase covered by a soil particle.  

Fig. 1. Conceptual description of numerical model: (a) Coupling 

scheme for coarse particles and (b) Coupling scheme for fine 

particles. 

 



 

 

2.3 Coupling method for fine soil particles 
When the above-mentioned microscale-coupled 

method is adopted for fine soil particles in the same 

manner as for coarse soil particles, the computational 

efficiency decreases because a large number of fluid 

grids is needed in cases where the grid space is smaller 

than the diameter of the soil particles. For this reason, 

different coupling schemes are employed in the 

proposed method according to the size of the soil 

particles. The fine soil particles are simulated by the 

macroscale-coupled method where the fluid flow is 

modeled at larger scales than the soil particle diameter 

(Wang et al. 2013), as shown in Fig. 1 (b). The 

hydrodynamic force for the fine soil particles is obtained 

as follows: 
 

                               𝐅ℎ𝑦𝑑

=
𝑥

3

𝑡
𝐵𝑝 (∑



𝐜) ,                       (9) 

 

where Bp is given by 
 

                     𝐵𝑝(𝐱, 𝑡)

=


𝑝
(𝐱, 𝑡)( − 0.5)

(1 − 𝑝
(𝐱, 𝑡)) + ( − 0.5)

  .               (10) 

 

Parameter p(x, t) is the volume fraction of the soil 

particle at each LB node. The value for Bp can be 

obtained in the same manner as Eq. (5). In this case, the 

hydrodynamic torque is assumed to be zero because the 

shear component of the hydrodynamic force acting on 

the soil particles cannot be considered. 

2.4 DEM for motion of soil particles 

The handling of the collision law and the motion of 

the coarse soil particles and the fine soil particles are 

presented in this subsection. The collision law for a 

contact force Fcon and a contact torque Tcon is governed 

by the DE method, where the contact logic is followed 

by the Voigt model (Cundall and Strack 1979). The 

normal repulsive force is assumed to be proportional to 

the overlap distance, and a dissipative component is set 

to be proportional to the relative normal velocity 

between particles. For the calculation of the tangential 

force, the Coulomb law of friction is considered in the 

same way as the normal force.  

The equations of motion accounting for the 

interaction with the fluid flow are described by the 

following equations: 
    

                             𝑚p

𝑑2𝐱p

𝑑𝑡2

= ∑ 𝐅𝑐𝑜𝑛 + 𝐅ℎ𝑦𝑑,                        (11)

𝑛𝑐

 

                            𝐼p

𝑑2
p

𝑑𝑡2

= ∑ 𝐓𝑐𝑜𝑛 + 𝐓ℎ𝑦𝑑,                          (12)

𝑛𝑐

 

 

where mp is the particle mass, Ip is the particle moment 

of inertia, and p is the rotational displacement vector. 

The value for nc is the number of contacts between soil 

particles. 

Eqs. (11) and (12) are solved by using the leap-frog 

algorithm as an explicit time integration method. The 

time difference for the time integration of the DEM, t', 

is usually smaller than the value for t, which is the time 

step for the LBM. Until the fluid flow is newly updated, 

the hydrodynamic force and the hydrodynamic torque 

acting on the soil particles are assumed to be the same 

values. 

All of these calculations are performed on the graphic 

processing unit. The parallelized algorithm for the DEM 

(Nishiura and Sakaguchi 2011) and that for the LBM 

(Wang and Aoki 2011) are incorporated into our in-

house code. 

3 3D APPLICATION OF DEM-LBM MODEL 

The three-dimensional simulation of suffusion is 

performed. The configuration of the analytical model is 

presented in Fig. 2, where the translucent grey particles 

indicate the coarse particles and the yellow particles 

indicate the fine particles. In the packing process of the 

coarse particles, only the calculation of the DEM was 

performed in the gravity field. The number of coarse 

particles is 63 and their diameter is 6 mm. On the other 

hand, the number of fine particles is 98,000 and their 

diameter is 250 m. 

The density of the soil particles, s, is 2500 kg/m2 and 

the sliding friction between the immersed soil particles 

is 0.3. The contact springs are assumed to be linear and 

kn/kt = 4 (kn = 5.0105 N/m and kt = 1.25105 N/m), 

where kn is the normal spring constant and kt is the shear 

spring constant, respectively. The values for the normal 

and the tangential viscous damping, for inhibiting the 

numerical oscillation, are determined. 

To generate the upward seepage flow resulting from 
the difference in pressure, the Zhou and He pressure 

boundary condition (Zhou and He 1997) is used in the 

boundaries of the yz plane. Four other boundaries in the 

Fig. 2. Initial configuration of 3-D simulation model. 

 



 

 

same direction as the seepage flow are subjected to the 

non-slip boundary condition by using the bounce-back 

scheme (Ziegler 1993). Lattice space x is 5.010-4 m 

and the system size is 402525 mm. Fluid density f is 

1,000 kg/m2, where the density ratio of the solid to the 

fluid is 2.5. The time step of the LBM for the fluid phase, 

t, is 1.010-4 s and the time step of the DEM for the 

solid phase, t’, is 1.010-7 s. Relaxation time coefficient 

 is 0.560, and the kinetic viscosity of the fluid, , is 

5.010-5 m2/s.  

Fig. 3 presents snapshots of the results of the 3-D 

simulation at t = 1.0, 2.5, and 9.0 s. From the figure, the 

proposed model can reproduce the motion of the fine 

particles which are driven by the seepage flow. It is not 

necessary to make the artificial packing of the coarse soil 

particles in the 3-D case because the pores connect three-

dimensionally with each other, unlike the 2-D case.  

In addition to Fig. 3, the force chains between the 

fine soil particles at t = 1.0, 2.5 s are illustrated in Fig. 4 

in order to see the details of the clogging. The blue 

cylinders indicate the force chains, and the diameter of 

the cylinder corresponds to the magnitude of the normal 

contact force. Such an observation, with respect to the 

contact networks, can be obtained when the soft sphere 

model such as the DEM is employed as a collision law, 

which allows the contacts between the soil particles to 

be retained. Otherwise, a hard sphere model cannot 

reproduce the evolution of the force chains. 

It should be noted here that the number of total 

calculation steps is 90,000 for the LBM and 90,000,000 

for the DEM. The computational time is about 100 hours 

for the physical time of 9 s.  

4 CONCLUSION 

In the present study, a coupled particle-fluid 

numerical simulation model for the internal erosion of 

granular soils with a broad particle size distribution has 

been proposed. The numerical model is based on the 

DEM-LBM and takes on different coupling schemes 

depending on the size of the soil particles for 

computational efficiency. The microscale-coupled 

method was employed for the coarse soil particles and 

the macro-coupled method was employed for the fine 

soil particles. As a result of the 3-D simulations of 

suffusion, it was demonstrated that there are future 

prospects in the application of the proposed model to 

various problems of internal erosion. In future studies, it 

will be necessary to compare the results of laboratory 

experiments with the numerical model.  
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