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ABSTRACT 

 
The seismic performance of a piled raft foundation with grid-form deep mixing walls (DMWs) in soft ground under 

strong earthquake loads is numerically evaluated in this study. A base-isolated 12-story building located in Tokyo is 

modeled in a detailed 3D finite element SSI model. For the constitutive model of stabilized soil, the elasto-plastic 

model that is able to evaluate shear failure, tension failure and post-peak tension-softening is used. Based on the 

analysis, it is found that even though the induced stress in the DMWs reaches the tensile strength and the softening 

occurs, the grid-form DMWs are quite effective at reducing the bending moment of the piles to an acceptable level. 
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1 INTRODUCTION 

In recent years, piled raft foundations have been 

used even for liquefiable sand with grid-form cement 

deep mixing walls (DMWs) (Yamashita et al. 2016). 

The grid-form DMWs work as a countermeasure for 

liquefaction, and they also work as a part of foundation. 

However seismic behavior of this foundation is not well 

known because of its complexity. Seismic behavior of 

this foundation has been studied using the seismic 

observation records and the numerical simulation of the 

building in Tokyo (Yamashita et al. 2012, Shigeno et al. 

2017). And the soundness of the piles was confirmed 

even though the grid-form DMWs were partially failed 

by tension under strong earthquake (Yamashita et al. 

2018). However, softening of the DMWs after the 

failure was not considered in the analysis and then the 

results might be somewhat optimistic.  

In this study, the after-peak softening of the 

stabilized soil is considered using the elasto-plastic 

model that has the shear and tensile criteria, and also is 

able to model the softening. The influence of the 

softening of the DMWs caused by the strong motion on 

the sectional force of the piles is mainly discussed. 

2 OVERVIEW OF THE BUILDING AND 

GROUND 

Figure 1 shows a schematic view of the building and 

foundation. The building is the 12-story apartment in 

Tokyo. The height is 38.7m, and the cross section is 

33.25 m by 30.05 m. The building is a reinforced 

concrete structure with a seismic base-isolation system. 

The soil down to GL -44 m is alluvial stratum. The 

upper 7m is fill, soft silt and loose silty sand. The rest is 

very soft to medium silty clay. The stratum deeper than 

44 m is diluvial sand and a gravel layer with SPT 

N-value of 60 or higher. The ground water table is GL 

-1.8 m. The building is supported by a piled raft with 

grid-form DMWs. The spacing between the DMWs is 

about 6 to 9 m, and the area replacement ratio is 25%. 
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Fig. 1. Cross section of building and foundation with soil profile. 

 

3 ANALYSIS MODEL 

3.1 Analysis condition 
Figure 2 shows the FE mesh, which has 213,622 

elements. The superstructure and the piles were 

modeled by elastic bars and shells. The material 

properties of the piles are reported in Shigeno et al. 

(2017). The raft was modeled by elastic solid elements. 

Rayleigh damping was applied to these components at a 



 

 

damping ratio of 2%. Figure 3 shows a top view of the 

FE mesh beneath the raft. The base isolation system 

was modeled by a tri-linear spring. The lateral 

boundaries were periodic boundaries. The bottom was a 

viscous boundary. The software is the in-house 

program called MuDIAN (Shiomi et al. 1998).  
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Fig. 2. FE mesh of the soil-structure interaction model. 
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Fig. 3. Magnified top view of FE mesh under the raft. 
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Fig. 4. Input acceleration wave(2E) of Hachinohe phase. 

 

An artificial wave was used for a strong earthquake 

called ‘Level 2 earthquake’ that is officially notified in 

Japanese building design code. The wave is defined by 

the acceleration response spectrum of which peak is 

800 cm/s2 from 0.16 s to 0.64 s. The Hachinohe phase 

data at the Tokachi Oki Earthquake (1968) was used to 

generate the input wave. The NS directional input 

motion was applied. Figure 4 shows the input motion, 

and the maximum acceleration is 337 gal. 

3.2 Constitutive models 

The Yoshida model for multi-dimension (Tsujino et. 

al., 1994) was used as the constitutive model of the soil. 

The soil properties are reported in Shigeno et al. (2017). 

In the previous study, the importance of considering 

the tensile criterion for stabilized soil was shown 

(Yamashita et. al., 2018). However, softening after 

failure was not considered. In this study, the 

elasto-plastic model proposed by Namikawa et al. 

(2007) that has tensile and shear criteria and also be 

able to evaluate post-peak softening was applied. 

For post-peak tension softening, Namikawa assumes 

the distributed cracks model and the damage function 

with the fracture energy as a parameter. The damage 

parameter   specifying the reduction rate of the tensile 

strength is expressed as the function of the maximum 

plastic principal strain 1
p (note that tension is positive) 

using 1/4 bilinear model as follows. 
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Where, Gf is fracture energy,  
p
peak is the peak plastic 

principal strain and lm is the mesh size dependent 

parameter. 

The Mohr–Coulomb criterion is used for shear. The 

damage parameter  for shear failure was obtained 

from the plane strain compression test and modeled as 

follows by Namikawa (2006). 
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Where, lc is the characteristic length that specifies the 

size of the failure region, and er is the parameter. The 

damage parameter  is the common for both the tensile 

and the shear criterion, and the both criterion reduce 

after stress reaches the strength. 

The design standard compressive strength Fc and 

other properties were determined by referring to the 

proposal of BCJ (2002). As for the initial stress in the 

DMWs, isotropic stress of 170 kPa was given by 

considering the measured vertical pressure between the 

raft and the DMWs. The initial shear modulus was 

determined by the calibration analysis for the records of 

the 2011 off Pacific Coast Tohoku Earthquake (Shigeno 

et al., 2017). The strength and the properties of the 

stabilized soils are listed in Table 1. The parameters of 

the Namikawa model were referred to Namikawa et al. 

2006 and listed in Table 2. 

 
Table 1. Parameters of stabilized soil related to strength. 
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Table 2. Parameters for Namikawa model. 
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4 RESULTS 

The case without DMWs was also analysed to 

clarify their effect. Figure 5(a) shows the profiles of the 

peak acceleration at the center of the superstructure and 

the raft together with those of the ground at point A 

(Fig. 2). The result of the soil column model is also 

shown as ‘far field’, and the PGA at the surface is 296 

gal. Comparing among the cases, the acceleration is 

slightly reduced by the raft and the DMWs. Figure 5(b) 

shows the profiles of the peak displacement that is 

relative to GL -49.9 m. The deformation beneath the 

raft is reduced by the grid-form DMWs, and this affects 

the sectional force of the piles. 
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 (a) Acceleration (b) Relative displacement 

Fig. 5. Peak response profile of superstructure at center and 

ground at point A. 

 

Figure 6 illustrates the extent of tensile failure in the 

DMWs during the earthquake in two different 

diagonally top views. Elements are colored according 

to the number of Gauss points where the induced stress 

reaches the initial tensile strength. Number of Gauss 

points is 8 in each element, and then the maximum 

value is 8. The tensile failure is seen mostly in the 

lower part of the longitudinal walls to the shaking 

direction, and this is due to shear deformation. In the 

most of the upper part of the walls, tensile failure is not 

seen because the deformation is restricted by the raft. In 

the transverse walls, some elements at the bottom of 

grid crossing corners fail clearly due to bending. 

Figure 7 shows the tensile strength of the each 

element at the final time step. As shown in the figure, 

some elements totally lose their tensile strength. 

However the majority of the elements keep the high 

tensile strength, even though the stress of the some of 

them reaches the tensile strength as shown in the Fig. 6. 
shaking direction
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Fig. 6. Contour map of tensile failure Gauss points in DMWs (2 

different diagonally top views). 
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Fig. 7. Contour map of residual tensile strength at the final step 

(2 different diagonally top views). 
 

Figure 8 shows the time histories of the maximum 

principal stress, and the tensile strength of the elements 

shown in Fig. 6. The red dot line is the initial tensile 

strength t0 = 520 kPa. In element 1, which is upper 

part of the DMWs, the stress does not reach t0. Then, 

the softening does not occur. In element 2, the stress 

reaches t0, and then the softening occurs. However the 

degradation rate is as small as 8%. This point keeps the 

high tensile strength even though tensile failure occurs. 

In element 3, the stress reaches t0 and the tensile 

strength is almost lost. These results show the colored 

regions in Fig. 6 do not mean the regions where the 

strength is totally degraded. It is important to notice 

that the elements have different residual tensile strength, 

even though they specify the same color in Fig. 6. 

Figure 9 shows the profiles of the peak bending 

moment in piles 5B and 7B showed in Fig. 3. The peak 

value near the pile head in the case with DMWs is 

remarkably smaller than those in the case without 

DMWs. In the case with DMWs, the deformation of the 

soil enclosed by the DMWs is small and results in a 

small bending moment near the pile head. However, the 

moment at the bottom of the DMWs is large, because 

the curvature of displacement becomes large due to the 



 

 

high rigidity of the DMWs. On the other hand, in the 

case without DMWs, the peak deformation near the pile 

head is large and asymmetric. This results in the large 

and asymmetric bending moment at the pile head. 

These results show the same tendency as the case 

without softening (Yamashita et al. 2018). 
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Fig. 8. Time histories of tensile stress and tensile strength of 

DMWs (element No. is in fig. 6). 
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Fig. 9. Profiles of peak bending moment of piles. 
 

Figure 10 shows the relationship between the axial 

force and the bending moment of Piles 5B and 7B, 

together with the design interaction curves of the steel 

pipe–concrete composite (SC) pile which is used in the 

top portion at 12 m. The axial force is the sum of the 

statically measured pile head load and the analytical 

dynamic increment force, and the bending moment is 

the maximum value along the SC pile. The results show 

that the bending moment in the case with DMWs is 

below the allowable criterion. In contrast, the bending 

moments in the case without DMWs are close to the 

ultimate criterion. Hence, the grid-form DMWs are 

quite effective at reducing pile bending moment to an 

acceptable level, although the induced stress in the 

stabilized soil partially reaches the tensile strength and 

softens under the strong earthquake load. This indicates 

that the grid-form DMWs can be designed more 

rationally by the performance-based design method in 

which a partial failure of the DMWs is accepted. 
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Fig. 10. Calculated maximum moment along pile and design 

N–M interaction curves of SC piles. 

5 CONCLUSION 

Seismic response analysis of a piled raft foundation 

with grid-form DMWs using the three dimensional 

nonlinear finite element model under a strong 

earthquake load is carried out considering after peak 

softening of the DMWs. As a result, the induced stress 

reaches the tensile strength and the softening occurs in 

some parts of the DMWs. However the majority parts 

of the DMWs keep the high tensile strength, and this 

results in keeping their effect on reducing sectional 

force of the piles to an acceptable level. 
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