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ABSTRACT

For practicing engineers, analyses of rock slope stability can be quite challenging because appropriate software for
such problems are often not user-friendly. Analyzing rock slopes using simple theoretical solutions, such as Limit
equilibrium method (LEM), is a difficult task, due to the complex features of a rocks mass including joints, faults,
discontinuities and anisotropies. Therefore, this paper aims to develop convenient tools using a hybrid approach
known as genetic algorithm-support vector regression (GASVR) that can provide a quick assessment of rock slope
stability. GA-SVR searches for the optimal SVR parameters using genetic algorithms (GA), and then adopts those
optimal parameters to construct the SVR model. The training data was acquired using the solutions from the finite
element upper and lower bound limit analysis methods. In addition, the solutions from the artificial neural network
(ANN) trained by extreme learning machine (ELM) will be adopted for comparisons purposes. ELM is a new ANN
algorithm that uses the single-hidden layer feedforward (SLFNs) to randomly choose the hidden nodes and
analytically determines the output weights of SLFNs. The results showed that using GA-SVR and ELM for
prediction could provide prompt and highly accurate results. It would be helpful for practical designs.
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1. INTRODUCTION
o

Stability evaluation of rock slopes is a difficult N =—0 )
problem often face by geotechnical engineers. Most roAHF
rock masses generally contain joints, faults, isotropic 2
and discontinuities pr_oblems. For practicing engineers, . The numerical limit analysis methods are adopted to
most of the commercial software are based on the limit oo 6o rock slope stability analyses, and thus stability
equilibrium  method and Mohr-Coulomb failure  nympers are obtained. GASVR and ELM were used to
criterion. However, it is too simple and unsuitable ©  complete training at the second stage. The results can
deal with rock slope problems associated with many  assess rock slope stability by providing the factor of safety.

uncertainties. This study adopts artificial intelligence The latest Hoek-Brown failure criteria, Hoek et al.
techniques, genetic algorithm-support vector regression (2002), is shown as below:
(GASVR) and extreme learning machine (ELM), to

Evaluation process

predict the stability numbers N, proposed by Li et al , a
(2008). - ' o,
The results are based on the finite element limit O 7% % My *S @)
analysis methods (A.V. Lyamin et al. 2002a; 2002b and o
Krabbenhoft et al. 2005). It should be noted that N is
based on the Hoek-Brown failure criterion, and thus the Where
results obtained would be very different from those GSI —100
based on the Mohr-Coulomb failure criterion. In this m =m exp(m) @)
study, limit analysis methods (LA) are used to study
various types of the rock masses firstly. Then, GASVR GSI —100
and ELM are employed to predict the stability numbers, s= exp(—j 4
N, as shown in Equation (1). 9-3D
a:%+%(eGSI/15_e20/3) )
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my, S and « rely on the geological strength index
(GSI), which represents the rock quality and the value
is between 5 and 95. oz and m; represent the intact
uniaxial compressive strength and material constant,
respectively. The disturbance factor D, which ranges
between O and 1, represents the degree of disturbance
for rock mass.

As mentioned previously, a range of parameters are
taken into account. By doing parametric studies, a large
quantity of stability numbers can be provided. In this
study, five parameters are chosen as the training inputs,
slope angle (), GSI, m;, D, horizontal seismic
coefficient (kn). The target is to predict the stability
numbers N;, and thus the factor of safety can be
obtained. Using the proposed GASVR and ELM
techniques, the predicted models are automatically
created.

3. METHODOLOGY

3.1 GASVR

Support vector regression (SVR) is a regression
version of support vector machine (SVM) which has
emerged as an alternative and powerful technique to
solve regression problems by introducing an alternative
loss function. The SVR formulation follows the
principle of structural risk minimization, seeking to
minimize an upper bound of the generalization error
rather than minimize the prediction error on the training
set. SVR generalization performance and efficiency
depends on the regularization parameter (C), bandwidth
of the kernel function (o) and the tube size of
e-insensitive loss function (¢) being set correctly.
However, no general guidelines are available to select
these parameters (Gunn 1998; Cristianini and
Shawe-Taylor 2000; Vapnik 1999). In general, when
selecting SVR parameters, most researchers follow the
trial and error procedure, first by building a few SVR
models based on different parameter sets, then testing
them on a validation set to obtain optimal parameters.
However, this procedure can be very tedious and
requires some luck. Different parameter settings can
cause significant differences in performance.

In contrast to optimizing SVR parameters as
mentioned above, this study uses GASVR, which
optimizes all SVR parameters simultaneously. This
model adopts GA to seek the optimal values of SVR
parameters thereby improving the prediction accuracy.
Fig. 1 illustrates the algorithm process of the GA-SVR
model. Table 1 gives an overview of GA parameter
settings used in this study.

Initial populations comprising of chromosomes
were randomly generated from GA to search for the
optimal values of SVR parameters. The values of the
three parameters, l.e., regularization parameter (C),
bandwidth of the kernel function (o), and the tube size
of insensitive loss function (¢), were directly coded in
the chromosomes with real value data.

Table 1. GA parameter settings
Number of generations 100

Population size 10

Selection type Roulette wheel
Crossover type Simulated binary
Mutation type Inverse nutation

Crossover probability 0.85
Mutation probability 0.04
—  GA Optimization
Coding C.0%¢ in
Initial Value of C.o2.e » parameters population
S
Randomize initial
parameters population
L
Train SVR Model
ati (5-fold cross validation ¢
Set on training data set)
4 L
Calculate fitness value

v

Genetic Algorithms

Satisfy Stopping criteria?

optimize value of

C'.o’ve

l Selection J

l Train SVR Mode | I J:L
'B | Crossover |

l GA-SVR Forecast _[:L
| Mutation J

New
parameters population

Fig. 1. GA-SVR model

3.2ELM

ELM is a single hidden layer feed-forward neural
networks (SLFNs) proposed in Huang et al. (Huang,
Zhu, and Siew 2004) which randomly selected the
input weights and analytically determines the output
weights of SLFNs. Obviously, the computational
burden of ELM learning is significantly less than that of
the classical feedforward neural network (FFN) training
(Demuth et al. 2014). In theory, this algorithm tends to
provide the best generalization performance at an
extremely fast learning speed. The ELM algorithm can
be easily implemented, tends to reach the smallest
training error, obtains the smallest norm of weights and
the good generalization performance, as well as running
extremely fast (Huang et al. 2006).

ELM has several interesting and significant features
different from traditional popular gradient-based
learning algorithms for feed forward neural networks:
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These include

e The learning speed of ELM is extremely fast.
The learning phase of ELM can be computed in
seconds or less for many applications.

e For feed-forward neural networks the ELM
algorithm looks much simpler compared to most
other learning algorithms.

e ELM has a better generalization performance
than other gradient-based learning such as back
propagation in most cases.

4. CASE STUDY

A few case studies were conducted to ascertain the
validity of the proposed techniques for stability
evaluation of rock slope stability. In this study,
comparisons are made between the stability numbers
obtained from limit analysis and those obtained from
GASVR and ELM. Table 2 shows comparisons of
factors of safety obtained from ELM and GASVR to
those obtained from LA with k,=0 and D=0.7. Whereas
Table 3 shows comparisons of factors of safety
obtained from ELM and GASVR to those obtained
from LA with kn=0 and D=1. It should be noted that LA
results are obtained by observing the original stability
charts, and thus the errors would be significant.

Table 2. Comparison of factors of safety: LA, ELM and GASVR
with kn=0 and D=0.7

safety for ky=0.1 is smaller than that for kn=0. This
trend is reasonable.

Table 3. Comparison of factors of safety: LA, ELM and GASVR

with kn=0 and D=1

Slope parameters LA ELM GASVR
Hm) B() GSI  mi
41 50 46 25 1.30 1.27 1.23
41 55 49 25 1.05 1.13 1.08
46 55 50 25 1.02 1.08 1.00
57 49 48 25 1.14 1.09 1.18
58 50 55 25 3.13 2.80 3.20
60 48 54 25 3.00 2.80 2.70
60 52 56 25 2.71 2.57 2.65
38 39 57 7 251 2.34 2.40
200 65 76 19 3562 3068 36.62
157 48 65 7 3.74 3.26 354
60 53 65 7 6.45 6.81 7.00
110 48 40 7 0.80 0.78 0.86

Table 4. Comparison of factors of safety: LA, ELM and GASVR
with kn=0.1 and D=1

Slope parameters LA ELM GASVR
Hm) A GSI  mi
41 50 46 25 2.36 2.19 2.29
41 55 49 25 1.99 1.84 221
46 55 50 25 191 1.74 1.81
57 49 48 25 212 1.86 1.79
58 50 55 25 491 4.40 4.70
60 48 54 25 533 451 4.40
60 52 5 25 435 3.95 4.02
38 39 57 7 5.24 3.63 3.94
200 65 76 19 4961 38.38 36.54
157 48 65 7 5.43 4.54 5.04
60 53 65 7 1029 9.35 8.90
110 48 40 7 1.75 1.44 1.68

Slope parameters LA ELM GASVR
Hm) A° GSI m
41 50 46 25 0.92 0.89 0.84
41 55 49 25 0.81 0.78 0.73
46 55 50 25 0.78 0.74 0.80
57 49 48 25 0.80 0.76 0.72

Finally, Table 4 shows comparisons of stability
numbers obtained from ELM and GASVR to those
obtained from LA with ky=0.1 and D=1. In fact, the
results of ELM and GASVR are fairly similar which is
the same as previous findings. In addition, the factor of

5. CONCLUSIONS

For most of cases, the stability numbers are

bracketed within +10% based on the numerical upper

bound and lower bound limit analysis methods. The
results can be presented as chart solutions. However,
there are too many stability charts, which would be too
complicated for engineers to apply when evaluating
rock slope stability.

To improve or reduce manual reading errors during
the use of stability charts, two methods GASVR and
ELM are used to train rock slope stability prediction
models. R? (the coefficient of determination) is used
to estimate the performance of both GASVR and ELM.
Results from both studies show that the R? values are
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close to 95%, which means the models have great
generalization performances and provide highly
accurate results. The time for creating both the GASVR
and ELM models is less than 3 minutes; this is a more
time-efficient approach when compared to conventional
slope stability assessments, particularly when dealing
with lots of slopes stability estimations simultaneously.
Results of this study suggest that GASVR and ELM are
typically reliable prediction tools for the evaluation of
rock slope stability. However, it should be indicated
that the presented technique is only suitable for
preliminary evaluations. Detailed investigations are still
required when the slope is critical.
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