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ABSTRACT 

 

A method of determining deformation anisotropy by a single triaxial test was proposed and a new triaxial testing 

apparatus including a new cap with a slider mechanism and low friction sheets was developed by the authors. In this 

study, anisotropic deformation properties of a tuff sampled in Utsunomiya, Japan, were investigated by this method. 

Strain responses of four specimens sampled to different orientation during triaxial compression were observed in 

detail. The values of anisotropic deformability parameters of the specimens evaluated on each specimen and 

demonstrated that the Young’s moduli in the bedding orientation are 1.5- 3.9 times larger than that in perpendicular 

orientation. 
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1 INTRODUCTION 

Sedimentary rocks usually exhibit anisotropic 

deformation characteristics due to their sedimentary 

structure. It is important to accurately evaluate such 

deformation anisotropy for rational designs of rock 

structures, e.g., foundation and tunnel. Deformation 

anisotropy has conventionally been determined by 

numerous tests using many specimens sampled from 

several orientations (e.g. Oka et al., 2002). However, 

this is both costly and time consuming. In addition, the 

orientations of anisotropy cannot be determined by such 

tests because the dominant orientation of anisotropy 

may not include in the sampling orientations. 

Therefore, a method of determining anisotropy by 

smaller number of tests is strongly needed. 

The deformation of anisotropic rock specimen 

during triaxial test become non-axisymmetrical to the 

loading axes, as shown in Fig. 1, due to non-coaxial 

relationships between stresses and strains of the rock. 

On the basis of the fact, we developed a method of 

determining the anisotropy by a single triaxial test via 

isotropic consolidation and axial compression of rock 

specimen (Togashi et al., 2017a). This method is 

implemented via measuring the non-axisymmetrical 

deformation. Then, to achieve uniform deformation of 

the specimen as shown in Fig.1 (a), a new testing 

apparatus including a new low friction cap with sliding 

mechanism was developed. The proposed method were 

verified by the tests using rhyolitic welded tuff 

(Togashi et al. (2017b)). Furthermore, a determination 

method of anisotropy utilizing the non-uniform 
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Fig.1 Non-axisymmetric deformation of anisotropic cylindrical 

specimen. 

 

responses was also developed as shown in Fig.1(b) 

(Togashi et al., 2018a). 

In this study, the results of four consolidated drained 

triaxial compression tests of the tuff specimen by the 

proposed method were shown and discussed. In 

addition to the results of previous study (Togashi et al. 

(2017b), Togashi et al. (2018b)), non-coaxial stress- 

strain relationships of the tuff due to bedding 

orientation are discussed by small strain tensor 

measurements. Then, anisotropic parameters of the 

sample are determined by the proposed method. 

2 TEST METHOD 

To obtain correct elementary responses of 
anisotropic rock sample, a cap with a sliding 

mechanism including Teflon sheets with lubricant was 



 

 

developed as shown in Fig. 2 (Togashi et al. 2017b). 

The non-axisymmetric deformation of the specimen is 

consequently allowed as shown in Fig. 2 (b). Triaxial 

compression tests are conducted by using this cap. 

Tage tuff, which is rhyolitic welded tuff of Neogene 

period, is sampled from a depth of 100 m in 

Utsunomiya, Japan. Four cylindrical specimens 

(diameter d = 50 mm and height h = 100 mm) were 

cored from a 30 cm cubic block, as shown in the test 

cases (Table 1). As the block has apparent bedding 

planes as shown in Fig. 3. The specimens were fully 

saturated before loading in accordance with the 

Japanese Geotechnical Standard (JGS, 2009). The 

variation in the wet densities of the specimens was very 

small at t = 1.72– 1.79 g / cm3. Both ends of the 

specimens were shaped with parallelisms of less than 

0.05 mm (JIS B 0621). 

Consolidated-drained triaxial compression tests 

were conducted on four samples for which the bedding 

plane was inclined at 15°, 30°, 45° and – 45°, 

respectively. First, the specimens were isotropically 

consolidated with a mean effective stress ’c = 1.0 MPa 

(cell pressure c = 1.2 MPa, back pressure ub = 0.2 

MPa), for the steady state of the strain was achieved. 

The specimens were then axially compressed. The axial 

strain rate during compression was set to 0.03% / min, 

as adopted by Oka et al. (2002).  

To evaluate non-axisymmetric deformation of the 

specimen, nine normal small strains were measured 

using three rosette gauges attached on the lateral 

surface, as shown in Fig. 4. The six components of the 

small strain tensor  in (X, Y, Z) coordinate are 

calculated using the least square method, based on the 

normal strains x measured by nine strain gauges as: 

xEΕEε
T1T )(               (1) 

where E is a 9 × 6 matrix, as given by the unitary 

directional vectors of the nine strain gauges. The 

specific components of E is shown in the previous 

study (Togashi et al., 2017b). 

3 RESULTS AND DISCUSSION 

Table 2 lists measured strain tensors in the steady 

state after isotropic consolidation. The specimens 

exhibit clear anisotropy, because the XX, YY, and ZZ 

components of the strain tensors exhibit significantly 

different values and the shear strains (XY, ZY, and ZX 

components) were not zero. The values for the 

maximum, intermediate, and minimum principal strains 

listed in Table 3 all differ from each other. 

Figure 5 shows the relationships between the axial 

stress increment and strain tensor increment during 

axial compression. The normal strain of axial 

orientation, ZZ, is dominant during axial compression. 

Table 4 listed the tangential Young’s moduli Et, 50 and 

the peak deviator stress (a -  'c)max = a,max. The tests 

were confirmed as being reproducible because almost 
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expected deformation are shown in (a) and (b) respectively. 
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Fig. 4 A method of strain tensor measurement. (a) shows 

settings of rosette gauges and (b) is the condition of (ii) 

gauge. 
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XX YY ZZ XY ZY ZX

15 61 1.00 0.056 0.022 0.044 -0.004 0.005 0.002

30 61 1.00 0.040 0.066 0.041 -0.014 0.060 -0.028

45 132 1.00 -0.005 0.044 0.028 0.017 0.012 -0.004

-45 54 1.01 0.032 0.044 0.029 0.010 -0.016 0.005

 'c (MPa)
 ij (%)  (i , j  = X , Y , Z )

  (
o
) t  (min)

Table 2 Strain tensor during isotropic consolidation. 

Table 3 Principal strains during isotropic consolidation. 

1 2 3

15 61 1.00 0.051 0.046 0.006

30 61 1.00 0.125 0.034 -0.012

45 132 1.00 0.056 0.027 -0.019

-45 54 1.01 0.066 0.041 0.014

  (
o
)  'c (MPa)

 i (%)  (i  = 1, 2, 3)
t  (min)

Top platen 



 

 

the same values of Et, 50 and a, max are obtained in the 

symmetrical cases of  = 45° and - 45°. Figure 6 shows 

the relationships between the axial stress increment and 

the principal values of strain tensor increment. 

Figure 7 shows the principal strain orientations in a 

steady state during isotropic compression by Ulf net of 

lower hemisphere projection (e.g. Shiono, 2008). The 

figure shows that the maximum principal strain 1 gets 

quite similar orientation to the bedding orientation in 

each case. It attributes the anisotropy of Tage tuff to the 

bedding plane. 

The anisotropic stiffness and its dominant 

orientations of transversely isotropic elasticity (e.g. 

Pickering, 1970) were obtained in each triaxial test at 

half the peak stresses, a/a, max = 0.5. In this study, 

the dominant orientations of anisotropy are determined 

by the orientation of the maximum principal strain 

during isotropic consolidation as listed in Table 5, 

because the orientations of the principal strains are 

theoretically agreed with the dominant orientations of 

anisotropy by Togashi et al. (2017a). The angle of 

rotation around maximum principal strain orientation is 

thus considered to be the dip angle of plane of isotropy, 

*. Table 6 lists the anisotropic stiffness using Eq. (2) 

by Togashi et al. (2017a). 

  kAAAC
T1T 

                (2) 

where C, A and k are stiffness vector, matrix of the 

anisotropy direction and the vector of stresses and 

strains respectively. The strains are rotated around Z 

axis by the strike of plane of isotropy, *, and 

substituted in k. In every case, the Young’s moduli in 

the bedding orientation are 1.5-3.9 times greater than in 

the perpendicular orientation. For the Poisson’s ratio, 

although similar values are obtained for z in the cases  
Table 4 Young’s moduli and the peak deviator stress 

 

Case   (
o
) E t, 50 (MPa) ( a -   'c)max =  a, max

1 15 2599 17.0

2 30 3183 17.1

3 45 3563 16.9

4 -45 3553 17.9  
 

of  = 15°, 30° and 45°, and for x in that of  = 15°, 

30°. However, its value tended to vary to a greater 

degree than that of the stiffness, and x in  = - 45° gets 

negative Poisson’s ratio. A negative Poisson’s ratio for 

transversely isotropic was theoretically confirmed by 

laminated materials (Herakovich, 1984), and it was 

actually observed for London clay (e.g., Gasparre et al., 

2007). However, there are the possibility of a result of 

measurement errors and/or the heterogeneous nature of 

the sample. The series of the test using Tage tuff should 

be continued to clarify the phenomena. 

4 CONCLUSION 

In this study, four consolidated-drained triaxial 

compression tests were conducted on tuff specimens 

including clear bedding structure. Non-axisymmetric 

deformation behaviors of the specimen were evaluated 

and its anisotropy was determined by the new triaxial 

test which can give elementary responses to the rock 

specimen. 

The measured results in the triaxial tests 

demonstrated that the orientations of principal strains 

during isotropic consolidation were inclined in 
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Fig.5 Strain tensor increments during axial compression ((a): =15°, (b): =30°, (c): =45°, (d): =-45°) 
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Fig.6 Principal strain increments during axial compression ((a): =15°, (b): =30°, (c): =45°, (d): =-45°) 
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accordance with the dip orientation of the bedding 

plane. The anisotropic elastic parameters were  
Table 5 Directions of anisotropy. The orientation of plane of 

isotropy in transversely isotropic model was described by the 

rotation around symmetry axis * and the inclination from the 

axis * 

 
Orientations of

bedding plane

  ( 
o
 )

 * ( 
o 

)  * ( 
o 

)

15 38.3 19.0

30 24.5 51.3

45 -16.3 68.6

-45 -11.3 -58.4  
 
Table 6 Anisotropic elastic parameters of tuff 

 
Orientations of

bedding plane

  ( 
o
 )

E z (MPa)  z G z (MPa) E x (MPa)  x

15 2048 0.046 896.1 3281 0.047

30 588.7 0.121 897.9 2277 0.022

45 1804 0.090 1130 3490 0.260

-45 959.8 0.207 1172 2597 -0.243  
 

determined using both the proposed method and the 

ordinary method as the Young’s moduli in the bedding 

orientation are 1.5–3.9 times larger than those in the 

perpendicular orientation. 
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Fig.7 Relationships between the orientation of bedding plane and that of principal strain during isotropic consolidation by Ulf net. 

((a): =15°, (b): =30°, (c): =45°, (d): =-45°) 

a b 
 

c 
 

d 
 

38.7
o

Normal plane of 


1
 direction

0
o

80
o

60
o

40
o

20
o

Case 1

 = 15
o


3


2


1

Normal orientation 

of bedding plane

Bedding 

plane

Z
Y

X

16.2
o

Normal plane of 


1
 direction

0
o

80
o

60
o

40
o

20
o

Case 3

 = 45
o


3


2


1

Normal orientation 

of bedding plane

Bedding 

plane

Z
Y

X

11.3
o

Normal plane of 


1
 direction

0
o

80
o

60
o

40
o

20
o

Case 4

 = - 45
o


3


2


1

Normal orientation 

of bedding plane

Bedding 

plane

Z
Y

X

24.5
o

Normal plane of 


1
 direction

0
o

80
o

60
o

40
o

20
o

Case 2

 = 30
o


3


2


1

Normal orientation 

of bedding plane

Bedding 

plane

Z
Y

X


