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ABSTRACT  

 
For practicing engineers, analyses of rock slope stability can be quite challenging because appropriate software for 

such problems are often not user-friendly. Analyzing rock slopes using simple theoretical solutions, such as Limit 

equilibrium method (LEM), is a difficult task, due to the complex features of a rocks mass including joints, faults, 

discontinuities and anisotropies. Therefore, this paper aims to develop convenient tools using a hybrid approach 

known as genetic algorithm-support vector regression (GASVR) that can provide a quick assessment of rock slope 

stability. GA-SVR searches for the optimal SVR parameters using genetic algorithms (GA), and then adopts those 

optimal parameters to construct the SVR model. The training data was acquired using the solutions from the finite 

element upper and lower bound limit analysis methods. In addition, the solutions from the artificial neural network 

(ANN) trained by extreme learning machine (ELM) will be adopted for comparisons purposes. ELM is a new ANN 

algorithm that uses the single-hidden layer feedforward (SLFNs) to randomly choose the hidden nodes and 

analytically determines the output weights of SLFNs. The results showed that using GA-SVR and ELM for 

prediction could provide prompt and highly accurate results. It would be helpful for practical designs. 
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1. INTRODUCTION  

Stability evaluation of rock slopes is a difficult 

problem often face by geotechnical engineers. Most 

rock masses generally contain joints, faults, isotropic 

and discontinuities problems. For practicing engineers, 

most of the commercial software are based on the limit 

equilibrium method and Mohr-Coulomb failure 

criterion. However, it is too simple and unsuitable to 

deal with rock slope problems associated with many 

uncertainties. This study adopts artificial intelligence 

techniques, genetic algorithm-support vector regression 

(GASVR) and extreme learning machine (ELM), to 

predict the stability numbers Nr, proposed by Li et al 

(2008).  

The results are based on the finite element limit 

analysis methods (A.V. Lyamin et al. 2002a; 2002b and 

Krabbenhoft et al. 2005). It should be noted that Nr is 

based on the Hoek-Brown failure criterion, and thus the 

results obtained would be very different from those 

based on the Mohr-Coulomb failure criterion. In this 

study, limit analysis methods (LA) are used to study 

various types of the rock masses firstly. Then, GASVR 

and ELM are employed to predict the stability numbers, 

Nr, as shown in Equation (1).  
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2.  Evaluation process  
The numerical limit analysis methods are adopted to 

perform rock slope stability analyses, and thus stability 

numbers are obtained. GASVR and ELM were used to 

complete training at the second stage. The results can 

assess rock slope stability by providing the factor of safety. 

The latest Hoek-Brown failure criteria, Hoek et al. 

(2002), is shown as below: 
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mb, s and  rely on the geological strength index 

(GSI), which represents the rock quality and the value 

is between 5 and 95. ci and mi represent the intact 

uniaxial compressive strength and material constant, 

respectively. The disturbance factor D, which ranges 

between 0 and 1, represents the degree of disturbance 

for rock mass.  

As mentioned previously, a range of parameters are 

taken into account. By doing parametric studies, a large 

quantity of stability numbers can be provided. In this 

study, five parameters are chosen as the training inputs, 

slope angle (), GSI, mi, D, horizontal seismic 

coefficient (kh). The target is to predict the stability 

numbers Nr, and thus the factor of safety can be 

obtained. Using the proposed GASVR and ELM 

techniques, the predicted models are automatically 

created. 

3.  METHODOLOGY 

3.1 GASVR 

Support vector regression (SVR) is a regression 

version of support vector machine (SVM) which has 

emerged as an alternative and powerful technique to 

solve regression problems by introducing an alternative 

loss function. The SVR formulation follows the 

principle of structural risk minimization, seeking to 

minimize an upper bound of the generalization error 

rather than minimize the prediction error on the training 

set. SVR generalization performance and efficiency 

depends on the regularization parameter (C), bandwidth 

of the kernel function (2) and the tube size of 

ɛ-insensitive loss function (ɛ) being set correctly. 

However, no general guidelines are available to select 

these parameters (Gunn 1998; Cristianini and 

Shawe-Taylor 2000; Vapnik 1999). In general, when 

selecting SVR parameters, most researchers follow the 

trial and error procedure, first by building a few SVR 

models based on different parameter sets, then testing 

them on a validation set to obtain optimal parameters. 

However, this procedure can be very tedious and 

requires some luck. Different parameter settings can 

cause significant differences in performance.  

In contrast to optimizing SVR parameters as 

mentioned above, this study uses GASVR, which 

optimizes all SVR parameters simultaneously. This 

model adopts GA to seek the optimal values of SVR 

parameters thereby improving the prediction accuracy. 

Fig. 1 illustrates the algorithm process of the GA-SVR 

model. Table 1 gives an overview of GA parameter 

settings used in this study. 

Initial populations comprising of chromosomes 

were randomly generated from GA to search for the 

optimal values of SVR parameters. The values of the 

three parameters, I.e., regularization parameter (C), 

bandwidth of the kernel function (2), and the tube size 
of insensitive loss function (ɛ), were directly coded in 

the chromosomes with real value data.  

 
Table 1. GA parameter settings  

Number of generations 100 

Population size 10 

Selection type Roulette wheel 

Crossover type Simulated binary 

Mutation type Inverse nutation 

Crossover probability  0.85 

Mutation probability 0.04 

 

 

 Fig. 1. GA-SVR model 

 

3.2 ELM 

ELM is a single hidden layer feed-forward neural 

networks (SLFNs) proposed in Huang et al. (Huang, 

Zhu, and Siew 2004)  which randomly selected the 

input weights and analytically determines the output 

weights of SLFNs.  Obviously, the computational 

burden of ELM learning is significantly less than that of 

the classical feedforward neural network (FFN) training 

(Demuth et al. 2014). In theory, this algorithm tends to 

provide the best generalization performance at an 

extremely fast learning speed. The ELM algorithm can 

be easily implemented, tends to reach the smallest 

training error, obtains the smallest norm of weights and 

the good generalization performance, as well as running 

extremely fast (Huang et al. 2006). 

ELM has several interesting and significant features 

different from traditional popular gradient-based 

learning algorithms for feed forward neural networks: 



 

 

These include  

 The learning speed of ELM is extremely fast. 

The learning phase of ELM can be computed in 

seconds or less for many applications. 

 For feed-forward neural networks the ELM 

algorithm looks much simpler compared to most 

other learning algorithms. 

 ELM has a better generalization performance 

than other gradient-based learning such as back 

propagation in most cases.  

4. CASE STUDY 

A few case studies were conducted to ascertain the 

validity of the proposed techniques for stability 

evaluation of rock slope stability. In this study, 

comparisons are made between the stability numbers 

obtained from limit analysis and those obtained from 

GASVR and ELM. Table 2 shows comparisons of 

factors of safety obtained from ELM and GASVR to 

those obtained from LA with kh=0 and D=0.7. Whereas 

Table 3 shows comparisons of factors of safety 

obtained from ELM and GASVR to those obtained 

from LA with kh=0 and D=1. It should be noted that LA 

results are obtained by observing the original stability 

charts, and thus the errors would be significant. 

 
Table 2. Comparison of factors of safety: LA, ELM and GASVR 

with kh=0 and D=0.7 

Slope parameters   LA  ELM GASVR 

H(m) (o) GSI mi     

41 50 46 25 2.36  2.19 2.29 

41 55 49 25 1.99  1.84 2.21 

46 55 50 25 1.91  1.74 1.81 

57 49 48 25 2.12  1.86 1.79 

58 50 55 25 4.91  4.40 4.70 

60 48 54 25 5.33  4.51 4.40 

60 52 56 25 4.35  3.95 4.02 

38 39 57 7 5.24  3.63 3.94 

200 65 76 19 49.61  38.38 36.54 

157 48 65 7 5.43  4.54 5.04 

60 53 65 7 10.29  9.35 8.90 

110 48 40 7 1.75  1.44 1.68 

 

Finally, Table 4 shows comparisons of stability 

numbers obtained from ELM and GASVR to those 

obtained from LA with kh=0.1 and D=1. In fact, the 
results of ELM and GASVR are fairly similar which is 

the same as previous findings. In addition, the factor of 

safety for kh=0.1 is smaller than that for kh=0. This 

trend is reasonable. 

 
Table 3. Comparison of factors of safety: LA, ELM and GASVR 

with kh=0 and D=1 

Slope parameters   LA ELM GASVR 

H(m) Β(o) GSI mi    

41 50 46 25 1.30 1.27 1.23 

41 55 49 25 1.05 1.13 1.08 

46 55 50 25 1.02 1.08 1.00 

57 49 48 25 1.14 1.09 1.18 

58 50 55 25 3.13 2.80 3.20 

60 48 54 25 3.00 2.80 2.70 

60 52 56 25 2.71 2.57 2.65 

38 39 57 7 2.51 2.34 2.40 

200 65 76 19 35.62 30.68 36.62 

157 48 65 7 3.74 3.26 3.54 

60 53 65 7 6.45 6.81 7.00 

110 48 40 7 0.80 0.78 0.86 

 
Table 4. Comparison of factors of safety: LA, ELM and GASVR 

with kh=0.1 and D=1    

Slope parameters   LA ELM GASVR 

H(m) (o) GSI mi    

41 50 46 25 0.92 0.89 0.84 

41 55 49 25 0.81 0.78 0.73 

46 55 50 25 0.78 0.74 0.80 

57 49 48 25 0.80 0.76 0.72 

 

5. CONCLUSIONS 

For most of cases, the stability numbers are 

bracketed within ±10% based on the numerical upper 

bound and lower bound limit analysis methods. The 

results can be presented as chart solutions. However, 

there are too many stability charts, which would be too 

complicated for engineers to apply when evaluating 

rock slope stability. 

To improve or reduce manual reading errors during 

the use of stability charts, two methods GASVR and 

ELM are used to train rock slope stability prediction 
models.  R2 (the coefficient of determination) is used 

to estimate the performance of both GASVR and ELM. 

Results from both studies show that the R2 values are 



 

 

close to 95%, which means the models have great 

generalization performances and provide highly 

accurate results. The time for creating both the GASVR 

and ELM models is less than 3 minutes; this is a more 

time-efficient approach when compared to conventional 

slope stability assessments, particularly when dealing 

with lots of slopes stability estimations simultaneously. 

Results of this study suggest that GASVR and ELM are 

typically reliable prediction tools for the evaluation of 

rock slope stability. However, it should be indicated 

that the presented technique is only suitable for 

preliminary evaluations. Detailed investigations are still 

required when the slope is critical. 
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