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ABSTRACT 

The mechanical performance of buried pipeline is closely related to the properties of the surrounding soil, especially 

the elastic modulus of soil. It is well recognized that the mechanical parameters of soils exhibit spatial variability, 

and vary more significantly in the vertical direction than in the horizontal direction. In order to exhibit the impact 

brought by the spatial variability of soils to the displacement of pipeline, the random field is simulated with locally 

averaging method. The random field of elastic modulus is combined with the finite difference method (RFDM) for 

the precise analysis of the pipeline. The maximum principal stress and displacement of buried pipeline was studied 

in variable random fields of soil elastic modulus, with piling soil on the ground. Results show the relationship 

between the displacement and the maximum principal stress of the buried pipeline and the random field of soil 

elastic modulus under cases of different horizontal correlation distance.  
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1 INTRODUCTION  

In recent years, with the rapid development of 

urbanization, land has become a scarce source in many 

cities in China. Thus, the utilization of underground 

space has become an increasingly important hotspot 

and underground pipeline is widely used for 

transportation of oil and gas. According to Wang et al. 

(2018), there will be over 104,000 km of pipeline for 

natural gas transmission in China. Therefore, the safety 

of buried pipeline has been highly valued. 

Underground pipeline, as shallow underground 

structure, is sensitive to the displacement of nearby soil, 

ground load, moving vehicle load, piling soil on the 

ground and so forth. In addition, the mechanical 

performance between buried pipeline and soil has been 

studied widely. Sun (2014) studied the mechanical 

interaction of pipeline under ground piling load. Li 

(2017) investigated soil stress distribution around the 

pipeline. Martin Magura (2016) studied the interaction 

between buried pipeline and soil in different loading 

cases. However, in traditional analyses and calculation 

methods, soil is considered homogeneous or is simply 

layered to model the differences of soil property. The 

variability of soil property is often neglected. In this 

paper, the variability of soil property is taken into 

account for analysis of mechanical performance of 

pipeline under certain loading cases via random field 

method. 

The random field model was first established by 

Vanmarcke (1983) in the reliability analysis of 

geotechnical systems. Further, Griffiths (2004, 2009) 

combined RFEM and Monte-Carlo method to analyze 

the safety of slope engineering. Nonetheless, in the 

above-mentioned research, soil parameter is considered 

an isotropic random field model, which is quite 

different from the actual situation. Due to stress history, 

geological movement, sedimentation and so on, the 

variability of soil property in the vertical direction 

outweighs that in the horizontal direction (Xue et al. 

2013). Hence, the anisotropy of soil parameters is 

supposed to be taken into account in a random field 

model. 

In this paper, random field theory with locally 

averaging method is combined with Monte-Carlo 

method. A program is then developed based on 

MATLAB and Flac3D to analyze the mechanical 

performance of buried pipeline considering the 

anisotropy of soil. 

2 RANDOM FIELD THEORY 

2.1 Three-Dimensional Random Field Theory  

1 2 3( , , )X t t t  is assumed as a three-dimensional 

continuous smooth random field with mean 
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variance 
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Thus, the mean 
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Var X  of the three-dimensional random field using 

locally averaging method can be obtained as follows: 
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where, 
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( , , )T T T  represents the reduction function 

of variance. 



 

 

As much, the covariance between two individual 

elements V  and 
'

V  can be obtained from the 

following equation: 
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where, 
1 j

T ,
2k

T ,
3l

T ( , , 0 ~ 3j k l = )  are calculated as 

shown in Fig. 1. 

 

 
Fig. 1. The relative position parameters of V and V’. 

 

The relationship between reduction function of 

variance 
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( , , )T T T  and the correlation function 
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( , ,    ） can listed as follows 
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where, 
1
 , 

2
  and 

3
  are the coordinate difference 

in the direction t1，t2 and t3, respectively. 

Generally speaking, due to the high similarity of the 

geo-morphogenesis and stress history of soil in the 

identical horizontal level, the spatial variability of soil 

in the horizontal direction is considered identical. 

Therefore, in the random field simulation of the soil 

parameter, the correlation between two points at the 

same cross section of soil depends on the relative 

distance, independent of the direction. Consequently, 

the correlation function can be obtained as follows: 
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where, 
1
 , 

2
 , 

3
  indicate the correlation distance. 

The correlation distance   is of great significance 

in the soil random field model. Both variability and 

correlativity of the mechanical properties can be shown 

between two soil particles in the identical soil 

cross-section within a certain distance. As the relative 

distance between soil particles increases, the 

correlativity of the soil parameters decreases. When the 

relative distance exceeds a certain critical distance, the 

correlativity between two soil particles can be neglected. 

The critical distance is called the correlation distance of 

the soil random field model. The critical distance is 

obtained from the following equation. 
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2.2 The Elastic modulus field 

The elastic modulus field of soil is assumed to 

follow a lognormal distribution due to the non-negative 

value of elastic modulus. Thus, the parameter ln(E) is a 

Gaussian random field with mean ln E
  and variance 

2

ln E
 . The parameters of the ln(E) Gaussian random 

field can be obtained from the following equations 
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where, 
ln E

  and   
2

ln E
  are the mean and variance 

of the ln(E) in Gaussian random field, respectively. 

E
  indicates the mean and 

2

E
  represents the 

variance of the elastic modulus E of soil medium, 

which can be obtained from the field measurements. 

3 MODELING 

3.1 Modeling procedure 

According to the random field theory, a program to 

simulate the space variability of elastic modulus of 

surrounding soils is developed via MATLAB language. 

The procedure of modeling is listed as follows:  

(1)  A numerical model of the buried pipeline and 

surrounding soils is established via Flac3D software. 

(2) A random theory is established using the numerical 

model. 

(3) A covariance matrix is generated according to the 

element information, correlation distance, 

correlation function and standard deviation. 

(4) A random vector of elastic modulus is generated 

considering the mean and variance matrix of the 

random theory model. 

(5) The random vector is mapped as material property 
to the numerical model elements one by one 

according to the position relationship. 



 

 

(6) The numerical calculation is proceeded with 

mapped elastic modulus to obtain displacement and 

maximum principal stress of pipeline. 

Repeat step (3) ~ (6) until Monte-Carlo simulation 

is completed. 

3.2 Project profile 

The numerical model is developed based on a buried 

pipeline in Guangdong Province, China. The burial 

depth of the pipeline is 3m and the length is 50m. The 

depth of the underlying stratum is 8m. Additionally, 

there are piling soils on the ground surface right above 

the middle of the pipeline. The height of soil pile is 1m, 

and the horizontal size is 10m×5m. A schematic view 

of the model is shown in Fig. 2. 

 

 
Fig. 2. A schematic view of the model. 

 

3.3 FEM Model 

Flac3D software is used to simulate the interaction 

between the pipeline and soil as shown in Fig. 3. Soil is 

simulated with brick and rad cylinder elements while 

the pipeline is simulated with structural shell element. 

Additionally, the frictional interaction between the 

pipeline and soil is neglected for simplicity. Soil is 

considered to follow Mohr-Coulomb constitutive model 

while an elastic behavior is assumed for pipeline. Piling 

soil is also considered to follow the constitutive relation 

of a homogeneous Mohr-Coulomb model. Furthermore, 

the in-tube pressure is set to 7MPa to simulate the gas 

or oil transmission in the pipeline. The material 

parameters of soil and pipeline are listed in Table 1. 

The displacement is constraint in the normal direction 

in four side section and in all directions in the bottom 

section. In order to balance the calculation efficiency 

and accuracy, the mesh size of ground soil near the 

pipeline is 0.33m×2.5m×0.33m and that of ground soil 

far from the pipeline and of the piling soil is 

0.33m×2.5m×1m. 

3.3 Random field model 

The random field of soil elastic modulus is 

generated based on the locally averaging method. 

Considering that the variability of soil property in the 

horizontal direction is more remarkable than that in the 

vertical direction, the random field model mainly 

focuses on the change of the horizontal correlation 

distance. The vertical correlation distance δv is set to 

1.0m, and the horizontal correlation distance δh is 

considered as 2m, 5m, 8m and 10m for case 1 to 4, 

respectively. The homogenous field is taken as case 5. 

The contour plot of the elastic modulus of soils for case 

4 and 5 are shown in Fig. 4. 

 

 
Fig. 3. Numerical model. 

 
Table 1. Material parameters of soil and structure. 

Parameter Soil Pipeline 

Density/(kg•m-3) 1850 7850 

Poisson ratio 0.25 0.3 

Elastic modulus/GPa 4.7(mean) 207 

Internal friction angle/° 26.5  

Cohesion stress/kPa 11  

Yield stress/MPa  441 

 

 
(a) 

 
(b) 
Fig. 4. Contour plots of soil elastic modulus considering δh = 

10m (a) and homogenous field (b). 

 

4 RESULTS 

4.1 Maximum principal stress of buried pipeline 

Contour plot of the max principal stress of pipeline 

for case 4 are shown in Fig. 5, where stress is assumed 



 

 

positive for tension and negative for compression. The 

means and standard deviations of the maximum 

principal stress under each case are listed in Table 2. 

 

 
Fig. 5. Contour plot of the calculated maximum principal stress 

of pipeline in one of the random samples used in Monte-Carlo 

simulation when δh = 10m. 

 
Table 2. Mean and standard deviation of the maximum principal 

stress under different cases (δv=1m, number of samples in 

Monte-Carlo simulation=100). 

δh Mean/MPa Standard deviation/MPa 

2m 128.29 0.1004 

5m 128.30 0.1189 

8m 128.26 0.1152 

10m 128.25 0.1152 

homogenous 128.43  

 

4.2 Maximum displacement of buried pipeline 

Contour plot of the maximum displacement of 

buried pipeline for case 4 is shown in Fig. 6. The means 

and standard deviations of the maximum displacement 

under each case are listed in Table 3. 

 

 
Fig. 6. Contour plot of the calculated maximum displacement of 

pipeline of pipeline in one of the random samples used in 

Monte-Carlo simulation when δh = 10m. 

 

Table 3. Mean and standard deviation of the max displacement 

under different cases (δv=1m, number of samples in Monte-Carlo 

simulation=100). 

δh Mean/mm Standard deviation/mm 

2m 29.241 0.547 

5m 29.224 0.928 

8m 29.410 1.059 

10m 29.234 1.134 

homogenous 30.855  

5 CONCLUSION AND EXPECTATION 

(1) The top and bottom of buried pipeline are 

critical section in terms of displacement and principal 

stress. 

(2) The section of pipeline which locates right under 

the ground load is a critical part in the design of 

pipeline. 

(3) The correlation distance of elastic modulus of 

the homogenous soil stratum exerts a negligible 

influence on the mean and standard deviation of 

displacement and maximum principal stress in the 

buried pipeline. 

(4) It deserves to be discussed how the correlation 

distance of soil properties in multi stratum influences 

the displacement and maximum principal stress in the 

buried pipeline. 
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