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ABSTRACT 
 
Several lattice Boltzmann models for multi-phase flow have been developed, but few of them are capable of modeling 
fluid flows with high density ratio in the order of 1000. Therefore, an advanced chromodynamics, Rothmann-Keller 
(RK) type model is employed in current study, which can handle liquid-gas density ratio in the order of 1000 and 
viscosity ratio in the order of 100. Other distinctive characteristics of the proposed model are high stability, and 
capability of setting parameters such as surface tension independently. In spite of these benefits, the original RK model 
fails to model wetting tendency of the fluids. As a result, it is impossible to correctly simulate two-fluid phase flow in 
porous media. To cope with this limitation, a wall-density approach is proposed here and validated against several case 
studies, including various contact angles near the solid phase. This methodology is implemented in our newly 
developed software in C++. The simulation results show that the new software can be effectively used to study wetting 
front shape at the pore scale near the solid phase for two immiscible fluid flows with fluid characteristics similar to 
water and air. 
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1 INTRODUCTION 

Two-phase fluid flows in porous media is one of the 
most common phenomena such as water flow in vadose 
zone, transport of pollution in soil, oil recovery 
engineering, etc. The knowledge about spatial and 
temporal distribution of pressure of each phase is hence 
required for reliable analysis of multi-phase flows in 
porous media (Sadeghi et al. 2018). The problem 
becomes even more complicated if the interactions 
between fluids and solid phases have to be analytically 
considered in numerical simulations. The interaction 
between phases comprises physical phenomena such as 
wetting tendency of fluids, intrinsic permeability of the 
porous media, tortuosity of the flow’s path and so forth. 
One possible solution for overcoming this limitation is 
to employ Lattice Boltzmann Method (LBM) which can 
handle most of the complexities mentioned above even 
in pore-scale flows. 

Three popular lattice Boltzmann models for 
simulation of immiscible multiphase flows are 
chromodynamics (RK) model of (Rothman and Keller 
1988; Gunstensen et al. 1991), pseudopotential (SC) 
model of Shan and Chen (1993), and free-energy (FE) 
method of Swift et al. (1996). In recent years, researchers 
tried to improve stability and window of parameters for 
these three algorithms. Among them, the improved 
D2Q9, RK model, developed by Leclaire et al. (2011) is 
adopted in the current study. The model has the 
advantage of handling high density ratios of order 1000, 

and can provide an independent window of parameters 
simultaneously. Furthermore, it can independently set 
parameters such as density and viscosity of fluids and 
surface tension. On the other hand, SC model cannot take 
into consideration surface tension independent of density 
and viscosity of fluids. In contrast to the SC model used 
by Ghassemi and Pak (2011), the RK model does not 
have an intrinsic way of simulating the wetting tendency 
of fluids near the solid phase. Since the original RK 
model of Leclaire et al. (2011) cannot simulate wetting 
tendency of fluids, it cannot also simulate flow of two 
fluids in porous media reliably. In order to cope with this 
deficiency, the wall density approach of Latva-Koko and 
Rothman (2005), is employed and applied to the 
improved RK model in current study. 

2 LATTICE BOLTZMANN METHOD 

The RK LBM algorithm implemented in this study 
consists of six main parts in each time step. The first part 
is streaming operator, which is a single-phase operator 
responsible for streaming distribution functions of each 
fluid in a D2Q9 lattice with the velocity vectors ci. The 
discretized form of Boltzmann equation is given in Eq. 
(1) where Ni

k (x, t) represents distribution function for a 
fluid of color k in i direction, x is the node position, t is 
time step, and Ωi

k is the collision operator, which consists 
of three sub-operators. 

    𝑁𝑁𝑖𝑖𝑘𝑘(𝒙𝒙 + 𝒄𝒄𝑖𝑖 , 𝑡𝑡 + 1) = 𝑁𝑁𝑖𝑖𝑘𝑘(𝒙𝒙, 𝑡𝑡) + Ω𝑖𝑖𝑘𝑘(𝒙𝒙, 𝑡𝑡) (1) 



 

 

Velocity vectors ci for all values of i are given in Eq. (2). 
And θi = (4 - i) (π / 4).  

    𝒄𝒄𝑖𝑖 = �
(0,0),                                         𝑖𝑖 = 1
[sin(𝜃𝜃𝑖𝑖) , cos(𝜃𝜃𝑖𝑖)],       𝑖𝑖 = 2,4,6,8
[sin(𝜃𝜃𝑖𝑖) , cos(𝜃𝜃𝑖𝑖)]√2, 𝑖𝑖 = 3,5,7,9

 (2) 

 In the second part, all the boundary conditions 
including one-directional and fully periodic boundaries, 
simple bounceback boundary conditions implemented 
similar to the work of Sukop and Thorne (2006). The 
third part is a single-phase collision operator Ωi

k(1). This 
operator is calculated by a single-relaxation-time (SRT) 
approximation from Eq. (3). However, according to 
Sheikh and Pak (2015), the SRT has some inherent 
deficiencies which can be eliminated by using a multi-
relaxation-time (MRT) approximation for the collision 
operator. 

    (Ω𝑖𝑖𝑘𝑘)(1)𝑁𝑁𝑖𝑖𝑘𝑘 = 𝑁𝑁𝑖𝑖𝑘𝑘 − 𝜔𝜔𝑘𝑘(𝑁𝑁𝑖𝑖𝑘𝑘 −  𝑁𝑁𝑖𝑖
𝑘𝑘(𝑒𝑒)) (3) 

The equilibrium distribution functions Ni
k(e) expanded in 

Eq. (4) are chosen to respect the principles of mass and 
momentum conservation. Where ρk is the density of fluid 
k, which is calculated from Eq. (5). In addition, the 
macroscopic velocity u is obtained from Eq. (6). 

    𝑁𝑁𝑖𝑖
𝑘𝑘(𝑒𝑒) = 𝜌𝜌𝑘𝑘(𝜙𝜙𝑖𝑖𝑘𝑘 + 𝑊𝑊𝑖𝑖[3𝒄𝒄𝑖𝑖 ⋅ 𝒖𝒖 + 9

2
(𝒄𝒄𝑖𝑖 ⋅ 𝒖𝒖)2 − 3

2
𝒖𝒖2]) (4) 

       𝜌𝜌𝑘𝑘 = ∑ 𝑁𝑁𝑖𝑖𝑘𝑘𝑖𝑖 =  ∑ 𝑁𝑁𝑖𝑖
𝑘𝑘(𝑒𝑒)

𝑖𝑖  (5) 

 𝒖𝒖 = �∑ ∑ 𝑁𝑁𝑖𝑖𝑘𝑘𝒄𝒄𝑖𝑖𝑘𝑘𝑖𝑖 � / ∑ 𝜌𝜌𝑘𝑘𝒌𝒌  (6) 

The weights Wi are those of a standard D2Q9 lattice. ϕi 
values are given in Table 1. The arbitrary parameters of 
αk are chosen to satisfy ρr / ρb = (1- αb) / (1- αr). 
 

Table 1. D2Q9 parameters: Wi, ϕi, Bi, used in Eq. (4) & Eq. (8).  

i Wi ϕi Bi 
1 4 / 9 αk -4 / 27 
2,4,6,8 1 / 9 (1- αk) / 5 +2 / 27 
3,5,7,9 1 / 36 (1- αk) / 20 +5 / 108 
 
The relaxation parameter ωk is a function of fluid 
viscosity νk, given by ωk = 1/(3υk+0.5). Similar to the 
work of Leclaire et al. (2011), when the viscosities of the 
fluids are different, a type of interpolation is applied to 
define the parameter ω at the interface. 

The forth part is calculation of color gradient F, 
which is an approximation of the perpendicular to the 
interface between fluids. The usual color gradient in the 
RK model is defined by Eq. (7). But, in this work a sixth 
order isotropic approximation of the color gradient, 
similar to the work of Leclaire et al. (2011) was used. 

      𝑭𝑭(𝒙𝒙) =  ∑ 𝒄𝒄𝑖𝑖𝑖𝑖 �𝜌𝜌𝑟𝑟(𝒙𝒙 + 𝒄𝒄𝑖𝑖) −  𝜌𝜌𝑏𝑏(𝒙𝒙 + 𝒄𝒄𝑖𝑖)� (7) 

To calculate F for each node of the lattice, the two outer 
layer nodes (24 nodes) are needed. In case of calculating 
color gradient for fluid nodes near the solid nodes, some 
fake densities of either red or blue fluids were assigned 
to solid nodes. 

The contribution of this work is to define a red 
percentage parameter (Pred) so that the Pred portion of the 
initial red fluid density is assigned to solid nodes. As a 
color convention, the denser fluid is always represented 
in red. Pred varies from -1 to 1, where Pred being equal to 
one means that red fluid is completely wetting. The 
minus values of Pred are numerically implemented by 
assigning the absolute value (|Pred|) of the blue fluid to 
solid nodes, i.e. | Pred | = Pblue for Pred < 0. For instance, 
Pred =-0.7 means that 70 percent of the initial value of 
blue fluid density, and a null density of red fluid. There 
is also no need to mention that setting one fluid (e.g. red) 
wetting, would automatically make the other one (e.g. 
blue) non-wetting. A completely wetting fluid should 
make a contact angle of 0◦ near walls (solid phase). On 
the other hand, a completely non-wetting fluid should 
make a contact angle of 180◦ near walls (solid phase). 
Therefore, the wetting tendency of fluids is adjustable 
through the red percentage parameter (-1<Pred<+1).     

  Needless to mention that these fake densities -
which exist in the solid nodes- never flow through the 
fluid domain and never interrupt with the standard 
simple bounce-back boundary condition. Indeed, they 
only affect color gradient in the neighboring fluid nodes, 
that are only one or two lattice units away from solid 
nodes. These fake densities also affect the two next two-
phase collision operators. In the fifth and sixth part of the 
algorithm, the two-phase collision operators, namely 
perturbation Ωi

k(2) and recoloring Ωi
k(3), were 

implemented respectively based on the calculated color 
gradient, using Eq. (8), Eq. (9). In these equations,     
ρ = ρr + ρb, and φi is the angle between the color gradient 
F and the direction ci. The free parameter β influences 
the thickness of the interface. For Ni

r, Eq. (9) is used with 
the plus sign, otherwise with minus sign. The constant 
parameters Bi are given in Table 1. In addition, Ak values 
are chosen to set surface tension σ = ρ (Ar + Ab) / 9ω. 

    (Ω𝑖𝑖𝑘𝑘)(2)𝑁𝑁𝑖𝑖𝑘𝑘 = 𝑁𝑁𝑖𝑖𝑘𝑘 + 𝐴𝐴𝑘𝑘
2

|𝑭𝑭| �𝑊𝑊𝑖𝑖
(𝑭𝑭⋅𝒄𝒄𝒊𝒊)2

|𝑭𝑭|2
− 𝐵𝐵𝑖𝑖� (8) 

    (Ω𝑖𝑖𝑘𝑘)(3)𝑁𝑁𝑖𝑖𝑘𝑘 = 𝜌𝜌𝑘𝑘
𝜌𝜌
𝑁𝑁𝑖𝑖 ± 𝛽𝛽 𝜌𝜌𝑟𝑟𝜌𝜌𝑏𝑏

𝜌𝜌2
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑖𝑖 ∑ 𝑁𝑁𝑖𝑖

𝑘𝑘(𝑒𝑒)(𝜌𝜌𝑘𝑘 , 0)𝑘𝑘  (9) 

In the RK model, the perturbation operator is 
responsible for modeling surface tension between fluids. 
The recoloring operator guarantees immiscibility of 
fluids and simultaneously respects the principles of 
conservation of mass and total momentum. 
Comprehensive details on the mathematical 
implementation of D2Q9 RK model used here can be 
found in Leclaire et al. (2011). 

3 NUMERICAL SIMULATIONS 

Sadeghi (2013) indicated that the code can precisely 
simulate fluid flow around a circle, sudden-expansion 
flow, shear-driven cavity flow, Couette flow, and 
Poiseuille flow. In this section, the validity of the code 
for simulating just two-phase flow problems is examined. 



 

 

Afterwards, the new approach of simulating wetting 
tendency is studied and discussed. 
3.1 Two-phase flow problems 

Bubble test is the standard verification test for all 
two-phase LB models. Nine squares with different sizes 
of the red fluid with density of 1000 kg/m3, and 
kinematic viscosity of 0.01667 cm2/s were submerged in 
a 200×200 domain, filled with the blue fluid with density 
of 1 kg/m3, and kinematic viscosity of 0.1667 cm2/s. 
Both fluids tend to have the minimum interface with 
each other. As a result, the surface tension changes the 
form of square to a stable circular bubble. Laplace’s law 
relates the pressure difference (∆p), with radius of 
curvature (R), and surface tension (𝜎𝜎), following Eq. (10): 
    𝜎𝜎 = 𝑅𝑅(𝑝𝑝𝑖𝑖𝑖𝑖  −  𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜) (10) 

Figure 1 shows pressure difference against curvature 
for nine simulated bubble tests. The linear trend in the 
figure reveals that the surface tension which was first 
given to the developed RKLBM code is in accordance 
with the one obtained from theoretical Laplace law. 

 

 
Fig. 1. Nine bubble test results compared to Laplace’s law. 

 
To further illustrate the robustness of RKLBM, a 

100×100 domain was filled randomly with both fluids. 
Red fluid was assumed to have a density of 1000kg/m3, 
and a kinematic viscosity of 0.01667cm2/s, while the 
density and kinematic velocity were assumed as 1kg/m3, 
and 0.1667cm2/s for blue fluid, respectively. Fully 
periodic boundary condition was applied to all four 
boundaries. There is no unique solution to find the 
interface between the fluids in stable state. Joseph and 
Renardy (1993) predicted the formation of one giant 
bubble or some large bubbles of the fluid having a less 
viscosity compared with that of domain fluid at final 
stable state. This prediction is the consequence of the 
energy minimization principle, which subsequently 
leads to minimization of the area of the interface between 
the fluids. Figure 2(a) shows the initial condition and 
Figure 2(b) indicates the final stable state reached by 
RKLBM simulation. Results may not look like a bubble 
at the first glance, but as we used fully periodic boundary 
conditions, the domain repeats in all directions infinitely. 
Reconstructing the domain shows the exact formation of 
a large bubble of blue fluid inside red fluid in figure 2(c). 
It is worthy to mention that the simulation of such 
complex situation is extremely difficult using 
conventional CFD techniques, if not impossible. Our 

studies showed that even some two-phase LBMs, like SC 
LBM with SRT operator cannot solve this problem even 
for identical fluids (Sadeghi 2013). 

      

 
Fig. 2. Bubble formation (100×100); (a) initial condition, (b) final 
stable simulation result, and (c) reconstructing the domain. 
 

3.2 Static contact angle simulation 
Wettability is the inherent adhesion of one liquid to 

the solid surface. Wetting tendency can be 
mathematically defined trough the static contact angle. 
When the contact angle is less than 90◦, the fluid is 
wetting; otherwise non-wetting. As explained in section 
2, a new parameter (Pred) was introduced to the improved 
RKLBM to make the simulation of wetting tendency for 
two fluids near the solid phase or wall possible. 
Although a mathematical relationship between the 
contact angle and Pred, -for non-identical fluids- was not 
proposed, simulation results show that the introduced 
parameter Pred, enables the model to simulate wetting 
tendency for two fluids with density ratio of 1000. On 
the other hand, Latva-Koko and Rothman (2005) proved 
that for two identical density, and identical viscosity 
fluids in RKLBM, the contact angle is related to Pred 
through Eq. (12). 

    cos𝜃𝜃 =  𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 (11) 

 

 
Fig. 3. Static contact angle for two fluids with density ratio of 1000 
near wall at stable state for different Pred values including: (a) 0.3, 
(b) 0.5, (c) 0.7, (d) -0.3, (e) -0.5, (f) -0.7, and (g) -0.95. 
 

A 200×100 lattice was initialized with two fluids with 



 

 

density and viscosity ratios of 1000 and 0.1, respectively. 
All four boundaries were bounceback. The red fluid 
placed in a square of 40×20 on the bottom wall, and 
horizontally in the middle of the domain. For seven 
different values of Pred, the model was run until reaching 
the stable state. The simulation results for wetting red 
fluid with different Pred>0, are shown in figure 3(a) to 
3(c). Greater values for Pred result in a higher wetting 
tendency and a lower contact angle for red fluid. Figures 
3(d) to 3(g) show the results for non-wetting red fluid 
with different Pred<0. Also, the higher is the value of Pblue, 
the higher the contact angle and the lower the wetting 
tendency of red fluid will be. 

3.3 Capillary rise simulation 
To demonstrate the capability of proposed parameter 

Pred, another well-known problem of capillary rise was 
simulated for two fluids with densities and viscosities 
relatively similar to those of water and air. 

A 25×100 domain filled half-bottom with wetting 
fluid (ρ = 1000 kg/m3) and, half-top with non-wetting 
fluid (ρ = 1 kg/m3) was used to simulate the capillary rise. 
Four bounce-back boundaries enclose the domain and a 
tiny downward acceleration applied only to the red fluid. 
At equilibrium state, capillary rise is obtained from Eq. 
(12):  

    ℎ =  2𝜎𝜎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝜌𝜌𝜌𝜌𝜌𝜌⁄  (12) 

where ρ is density, g is ground acceleration, w is the 
width of tube, σ is surface tension, θ is contact angle, and 
h is capillary height. Figure 4, shows the initial and 
stable conditions of four different capillary rise problems 
with four Pred values of 0.2, 0.5, 0.7, and 1.0. Although 
the new model simulated the capillary rise for different 
wetting tendencies, it did not necessarily predict the 
contact angle from Eq. (11) for non-identical fluids at 
high density ratios. The more promising method to 
calculate the contact angle (θ) is therefore to input the 
height of capillary rise (h) obtained from simulation to 
Eq. (12). 
 

 
Fig. 4. Initial condition and capillary rise for different Pred values 
while density ratio = 1000, and kinematic viscosity ratio = 0.1. 

3 CONCLUSIONS 

A newly developed two-phase Lattice Boltzmann 
numerical C++ code was presented and validated. This 
model is based on improved Rothmann-Keller (RK) 

formulation of Leclaire et al. (2011) which is capable of 
simulating the simultaneous flow of two immiscible 
fluids at the pore scale with high density and viscosity 
ratios in the order of 1000, and 100, respectively. 
Afterwards, a new red percentage parameter (Pred) was 
introduced to the formulation which makes the original 
model capable of simulating wetting tendency of two 
fluids -with water-air density and viscosity ratios- near 
solid boundaries (wall). The performance of new 
parameter in simulating wetting tendency was studied 
through simulating two types of problem namely, static 
contact angle and, capillary rise. The obtained results 
demonstrated that the improved RKLBM is a powerful 
method, capable of simulating the behavior of two 
immiscible -high density and viscosity ratio- fluid flows 
near the solid phase. In addition to these fundamental 
problems, further developments of the method are under 
way for studying more complex flow phenomena such 
as relative permeability. 
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