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Simulation of wetting tendency of fluids with high density ratios using RK Lattice Boltzmann method
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ABSTRACT

Several lattice Boltzmann models for multi-phase flow have been developed, but few of them are capable of modeling
fluid flows with high density ratio in the order of 1000. Therefore, an advanced chromodynamics, Rothmann-Keller
(RK) type model is employed in current study, which can handle liquid-gas density ratio in the order of 1000 and
viscosity ratio in the order of 100. Other distinctive characteristics of the proposed model are high stability, and
capability of setting parameters such as surface tension independently. In spite of these benefits, the original RK model
fails to model wetting tendency of the fluids. As a result, it is impossible to correctly simulate two-fluid phase flow in
porous media. To cope with this limitation, a wall-density approach is proposed here and validated against several case
studies, including various contact angles near the solid phase. This methodology is implemented in our newly
developed software in C++. The simulation results show that the new software can be effectively used to study wetting
front shape at the pore scale near the solid phase for two immiscible fluid flows with fluid characteristics similar to
water and air.

Keywords: Lattice Boltzmann method; Rothmann-Keller model; Two-phase flow; Wetting tendency; Contact angle

1 INTRODUCTION

Two-phase fluid flows in porous media is one of the
most common phenomena such as water flow in vadose
zone, transport of pollution in soil, oil recovery
engineering, etc. The knowledge about spatial and
temporal distribution of pressure of each phase is hence
required for reliable analysis of multi-phase flows in
porous media (Sadeghi et al. 2018). The problem
becomes even more complicated if the interactions
between fluids and solid phases have to be analytically
considered in numerical simulations. The interaction
between phases comprises physical phenomena such as
wetting tendency of fluids, intrinsic permeability of the
porous media, tortuosity of the flow’s path and so forth.
One possible solution for overcoming this limitation is
to employ Lattice Boltzmann Method (LBM) which can
handle most of the complexities mentioned above even
in pore-scale flows.

Three popular Ilattice Boltzmann models for
simulation of immiscible multiphase flows are
chromodynamics (RK) model of (Rothman and Keller
1988; Gunstensen et al. 1991), pseudopotential (SC)
model of Shan and Chen (1993), and free-energy (FE)
method of Swift et al. (1996). In recent years, researchers
tried to improve stability and window of parameters for
these three algorithms. Among them, the improved
D2Q9, RK model, developed by Leclaire et al. (2011) is
adopted in the current study. The model has the
advantage of handling high density ratios of order 1000,

and can provide an independent window of parameters
simultaneously. Furthermore, it can independently set
parameters such as density and viscosity of fluids and
surface tension. On the other hand, SC model cannot take
into consideration surface tension independent of density
and viscosity of fluids. In contrast to the SC model used
by Ghassemi and Pak (2011), the RK model does not
have an intrinsic way of simulating the wetting tendency
of fluids near the solid phase. Since the original RK
model of Leclaire et al. (2011) cannot simulate wetting
tendency of fluids, it cannot also simulate flow of two
fluids in porous media reliably. In order to cope with this
deficiency, the wall density approach of Latva-Koko and
Rothman (2005), is employed and applied to the
improved RK model in current study.

2 LATTICE BOLTZMANN METHOD

The RK LBM algorithm implemented in this study
consists of six main parts in each time step. The first part
is streaming operator, which is a single-phase operator
responsible for streaming distribution functions of each
fluid in a D2Q9 lattice with the velocity vectors ¢;. The
discretized form of Boltzmann equation is given in Eq.
(1) where N (x, 1) represents distribution function for a
fluid of color £ in i direction, x is the node position, 7 is
time step, and Q/is the collision operator, which consists
of three sub-operators.

NF(x + ¢t +1) = NF(x, ) + QF (x, ©) e))
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Velocity vectors ¢; for all values of i are given in Eq. (2).
And 0;=(4-1) (n/4).

(0,0), i=1
ci= {[sin(@i),cos(ei)], i=2468 ®)
[sin(6;),cos(6)IV2, i = 3,5,7,9

In the second part, all the boundary conditions
including one-directional and fully periodic boundaries,
simple bounceback boundary conditions implemented
similar to the work of Sukop and Thorne (2006). The
third part is a single-phase collision operator Q1. This
operator is calculated by a single-relaxation-time (SRT)
approximation from Eq. (3). However, according to
Sheikh and Pak (2015), the SRT has some inherent
deficiencies which can be eliminated by using a multi-
relaxation-time (MRT) approximation for the collision
operator.

@ODONE = NF - w, (NF = N[) 3)

The equilibrium distribution functions N/© expanded in
Eq. (4) are chosen to respect the principles of mass and
momentum conservation. Where py is the density of fluid
k, which is calculated from Eq. (5). In addition, the
macroscopic velocity u is obtained from Eq. (6).

N = p (@l + Wil3c; - u + g(ci ‘u)? - %uz]) “

k
pr = LiNF = TN (5)

u = (X Xk Nfei) /] Tkpr (6)

The weights W; are those of a standard D2Q9 lattice. ¢;
values are given in Table 1. The arbitrary parameters of
oy are chosen to satisfy p, / p» = (1- ap) / (1- o).

Table 1. D2Q9 parameters: Wi, ¢;, Bi, used in Eq. (4) & Eq. (8).

i Wi bi Bi

1 4/9 Ok -4/27
24,68 1/9 (- )/ 5 +2/27
3,5,7,9 1/36 (1- ) / 20 +5/108

The relaxation parameter w; is a function of fluid
viscosity v, given by wi= 1/(3v4+0.5). Similar to the
work of Leclaire et al. (2011), when the viscosities of the
fluids are different, a type of interpolation is applied to
define the parameter o at the interface.

The forth part is calculation of color gradient F,
which is an approximation of the perpendicular to the
interface between fluids. The usual color gradient in the
RK model is defined by Eq. (7). But, in this work a sixth
order isotropic approximation of the color gradient,
similar to the work of Leclaire et al. (2011) was used.

F(x) = Tic; (pr(x+¢)— pp(x+¢p)) @)

To calculate F for each node of the lattice, the two outer
layer nodes (24 nodes) are needed. In case of calculating
color gradient for fluid nodes near the solid nodes, some
fake densities of either red or blue fluids were assigned
to solid nodes.

The contribution of this work is to define a red
percentage parameter (Preq) S0 that the Preq portion of the
initial red fluid density is assigned to solid nodes. As a
color convention, the denser fluid is always represented
in red. Preq varies from -1 to 1, where Prq being equal to
one means that red fluid is completely wetting. The
minus values of Prgq are numerically implemented by
assigning the absolute value (|Pred|) of the blue fluid to
solid nodes, i.e. | Pred | = Pblue for Preq < 0. For instance,
Preq =-0.7 means that 70 percent of the initial value of
blue fluid density, and a null density of red fluid. There
is also no need to mention that setting one fluid (e.g. red)
wetting, would automatically make the other one (e.g.
blue) non-wetting. A completely wetting fluid should
make a contact angle of 0" near walls (solid phase). On
the other hand, a completely non-wetting fluid should
make a contact angle of 180" near walls (solid phase).
Therefore, the wetting tendency of fluids is adjustable
through the red percentage parameter (-1<Prea<t1).

Needless to mention that these fake densities -
which exist in the solid nodes- never flow through the
fluid domain and never interrupt with the standard
simple bounce-back boundary condition. Indeed, they
only affect color gradient in the neighboring fluid nodes,
that are only one or two lattice units away from solid
nodes. These fake densities also affect the two next two-
phase collision operators. In the fifth and sixth part of the
algorithm, the two-phase collision operators, namely
perturbation Q/® and recoloring Qf®), were
implemented respectively based on the calculated color
gradient, using Eq. (8), Eq. (9). In these equations,
p =prt+ pp, and ¢; is the angle between the color gradient
F and the direction ¢;. The free parameter £ influences
the thickness of the interface. For N/, Eq. (9) is used with
the plus sign, otherwise with minus sign. The constant
parameters B; are given in Table 1. In addition, 4% values
are chosen to set surface tension o =p (4,+ Ap) / Y.

A (F-c;)?
@OPNf = Nf + 5 1F| [wi T~ By (8)

@OON = 2N, + B8 cosp T Nf (o 0)  (9)

In the RK model, the perturbation operator is
responsible for modeling surface tension between fluids.
The recoloring operator guarantees immiscibility of
fluids and simultaneously respects the principles of
conservation of mass and total momentum.
Comprehensive  details on the  mathematical
implementation of D2Q9 RK model used here can be
found in Leclaire et al. (2011).

3 NUMERICAL SIMULATIONS

Sadeghi (2013) indicated that the code can precisely
simulate fluid flow around a circle, sudden-expansion
flow, shear-driven cavity flow, Couette flow, and
Poiseuille flow. In this section, the validity of the code
for simulating just two-phase flow problems is examined.
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Afterwards, the new approach of simulating wetting
tendency is studied and discussed.

3.1 Two-phase flow problems

Bubble test is the standard verification test for all
two-phase LB models. Nine squares with different sizes
of the red fluid with density of 1000 kg/m’, and
kinematic viscosity of 0.01667 cm?/s were submerged in
a200%200 domain, filled with the blue fluid with density
of 1 kg/m®, and kinematic viscosity of 0.1667 cm?/s.
Both fluids tend to have the minimum interface with
each other. As a result, the surface tension changes the
form of square to a stable circular bubble. Laplace’s law
relates the pressure difference (Ap), with radius of

curvature (R), and surface tension (o), following Eq. (10):

g= R(pin - pout) (10)

Figure 1 shows pressure difference against curvature
for nine simulated bubble tests. The linear trend in the
figure reveals that the surface tension which was first
given to the developed RKLBM code is in accordance
with the one obtained from theoretical Laplace law.

0.004 0.006 0.008 0.010 0.012 0.014
1/R (1/lu)

Fig. 1. Nine bubble test results compared to Laplace’s law.

To further illustrate the robustness of RKLBM, a
100%x100 domain was filled randomly with both fluids.
Red fluid was assumed to have a density of 1000kg/m?,
and a kinematic viscosity of 0.01667cm?*/s, while the
density and kinematic velocity were assumed as 1kg/m’,
and 0.1667cm?/s for blue fluid, respectively. Fully
periodic boundary condition was applied to all four
boundaries. There is no unique solution to find the
interface between the fluids in stable state. Joseph and
Renardy (1993) predicted the formation of one giant
bubble or some large bubbles of the fluid having a less
viscosity compared with that of domain fluid at final
stable state. This prediction is the consequence of the
energy minimization principle, which subsequently
leads to minimization of the area of the interface between
the fluids. Figure 2(a) shows the initial condition and
Figure 2(b) indicates the final stable state reached by
RKLBM simulation. Results may not look like a bubble
at the first glance, but as we used fully periodic boundary
conditions, the domain repeats in all directions infinitely.
Reconstructing the domain shows the exact formation of
a large bubble of blue fluid inside red fluid in figure 2(c).
It is worthy to mention that the simulation of such
complex situation is extremely difficult using
conventional CFD techniques, if not impossible. Our

studies showed that even some two-phase LBMs, like SC
LBM with SRT operator cannot solve this problem even
for identical fluids (Sadeghi 2013).

@ (3 (¢

»

Fig. 2. Bubble formation (100x100); (a) initial condition, (b) final
stable simulation result, and (c) reconstructing the domain.

3.2 Static contact angle simulation

Wettability is the inherent adhesion of one liquid to
the solid surface. Wetting tendency can be
mathematically defined trough the static contact angle.
When the contact angle is less than 90°, the fluid is
wetting; otherwise non-wetting. As explained in section
2, anew parameter (Prq) was introduced to the improved
RKLBM to make the simulation of wetting tendency for
two fluids near the solid phase or wall possible.
Although a mathematical relationship between the
contact angle and Pr.q, -for non-identical fluids- was not
proposed, simulation results show that the introduced
parameter Pr.q, enables the model to simulate wetting
tendency for two fluids with density ratio of 1000. On
the other hand, Latva-Koko and Rothman (2005) proved
that for two identical density, and identical viscosity
fluids in RKLBM, the contact angle is related to Preq
through Eq. (12).

cos@ = P,y )

B ‘ 100 ’ 10 50 L 150
Fig. 3. Static contact angle for two fluids with density ratio of 1000
near wall at stable state for different Prea values including: (a) 0.3,
(b) 0.5, () 0.7, (d) -0.3, (e) -0.5, (f) -0.7, and (g) -0.95.

A 200x100 lattice was initialized with two fluids with
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density and viscosity ratios of 1000 and 0.1, respectively.
All four boundaries were bounceback. The red fluid
placed in a square of 40x20 on the bottom wall, and
horizontally in the middle of the domain. For seven
different values of Preq, the model was run until reaching
the stable state. The simulation results for wetting red
fluid with different Preq>0, are shown in figure 3(a) to
3(c). Greater values for Preq result in a higher wetting
tendency and a lower contact angle for red fluid. Figures
3(d) to 3(g) show the results for non-wetting red fluid
with different Prq<0. Also, the higher is the value of Pyiye,
the higher the contact angle and the lower the wetting
tendency of red fluid will be.

3.3 Capillary rise simulation

To demonstrate the capability of proposed parameter
Pred, another well-known problem of capillary rise was
simulated for two fluids with densities and viscosities
relatively similar to those of water and air.

A 25x100 domain filled half-bottom with wetting
fluid (p = 1000 kg/m?) and, half-top with non-wetting
fluid (p = 1 kg/m?) was used to simulate the capillary rise.
Four bounce-back boundaries enclose the domain and a
tiny downward acceleration applied only to the red fluid.
At equilibrium state, capillary rise is obtained from Eq.
(12):

h = 20 cosO / pgw (12)

where p is density, g is ground acceleration, w is the
width of tube, o is surface tension, 4 is contact angle, and
h is capillary height. Figure 4, shows the initial and
stable conditions of four different capillary rise problems
with four Pr.q values of 0.2, 0.5, 0.7, and 1.0. Although
the new model simulated the capillary rise for different
wetting tendencies, it did not necessarily predict the
contact angle from Eq. (11) for non-identical fluids at
high density ratios. The more promising method to
calculate the contact angle (0) is therefore to input the
height of capillary rise (#) obtained from simulation to
Eq. (12).

initial
condition re

Py=02 Poy=0.5 P

re re.

=07 Py=10

Fig. 4. Initial condition and capillary rise for different Pred values
while density ratio = 1000, and kinematic viscosity ratio = 0.1.

3 CONCLUSIONS

A newly developed two-phase Lattice Boltzmann
numerical C++ code was presented and validated. This
model is based on improved Rothmann-Keller (RK)

formulation of Leclaire et al. (2011) which is capable of
simulating the simultaneous flow of two immiscible
fluids at the pore scale with high density and viscosity
ratios in the order of 1000, and 100, respectively.
Afterwards, a new red percentage parameter (Preq) Was
introduced to the formulation which makes the original
model capable of simulating wetting tendency of two
fluids -with water-air density and viscosity ratios- near
solid boundaries (wall). The performance of new
parameter in simulating wetting tendency was studied
through simulating two types of problem namely, static
contact angle and, capillary rise. The obtained results
demonstrated that the improved RKLBM is a powerful
method, capable of simulating the behavior of two
immiscible -high density and viscosity ratio- fluid flows
near the solid phase. In addition to these fundamental
problems, further developments of the method are under
way for studying more complex flow phenomena such
as relative permeability.
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