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ABSTRACT  

 

In this paper, the response of slab track system on stone column improved ground subjected to concentrated load 

moving with constant velocity has been obtained. Rail and slab have been represented by infinite Euler-Bernoulli 

beams with finite flexural rigidity. Rail pads, soft soil and the stone columns have been idealized as Winkler springs 

of different stiffnesses. The governing differential equations have been developed and the solution has been obtained 

employing iterative Gauss-Seidel method. The effect of inclusion of stone column on deflection of beams and critical 

velocity of the system has been studied. It has been observed that magnitude of applied load, stiffness and spacing to 

diameter ratio of stone columns significantly influence the response of slab track system. These results have been 

presented as ready to use charts which enable analysis and therefore the design of such slab track systems. 
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1 INTRODUCTION  

Increase in speed of modern trains are accompanied 

by large axle load which emphasizes on the need to 

determine suitable type of track systems. Due to the 

reduced need for maintenance, low ground borne 

vibrations and enhanced service life, slab tracks and 

floating slab tracks (FST) have gained more popularity 

in the field of rail transportation systems. In view of 

this, various case studies have reported the results of 

vibration measurements for different track systems and 

discussed the effects of these vibrations on the subsoil 

(Wilson 1983; Nelson 1996; and Saurenman and 

Phillips 2006). Many attempts have been undertaken in 

order to apprehend the usefulness of such systems by 

using analytical models. Some of these include Cui and 

Chew (2000), Hussien and Hunt (2006), Li and Wu 

(2008), Galvin (2010) and Auersch (2012).  

Random nature of substructure stiffness was 

considered by Mohammadzadeh et al. (2014) where 

they undertook stochastic approach to assess the 

dynamic behaviour of slab track system. Dimitrovová 

and Varandas (2009), Dimitrovová (2010) and Ang and 

Dai (2013) also investigated the abrupt transition in 

foundation stiffness in case of high speed rail system.  

In all these studies, the rail track system was laid on 

natural ground. Presence of poor soil strata will cause 

excessive track deformation which may be beyond the 

permissible limit and hence cannot be permitted. In this 

regard, ground is strengthened or improved with the 
help of prefabricated vertical drains or stone columns or 

any other appropriate ground improvement technique 

(Zhuang and Wang, 2017).   

Critical review of literature suggests that although 

the inhomogeneity of the foundation have been 

considered, no study was undertaken for the analysis of 

slab track system on improved ground. In view of this, 

an analysis has been proposed for slab track system on 

stone column reinforced ground subjected to moving 

load. The influence of magnitude of applied load, 

spacing to diameter ratio and stiffness of stone column 

on the response of slab track system has been analyzed 

with the help of detailed parametric study. 

2 MODELLING AND ANALYSIS 

Fig. 1 describes the slab track system as a double 

beam model subjected to a load Q moving with 

constant velocity v from left to right. Rail and slab have 

been represented as infinite beams with flexural 

rigidities E1I1, E2I2 and mass per unit length as ρ1, ρ2 

respectively. Rail pads (k1), foundation soil (k2 = ks) and 

stone columns (k2 = kc) have been idealized by Winkler 

springs. c1 and c2 are viscous damping coefficients for 

rail pads and the ground. The generalized differential 

equation of motion in order to obtain the flexural 

response of slab track system can be written as follows: 

gtxQyyk
dt

yyd
c

dt

yd

dx

yd
IE 1211

21
12

1

2

14

1

4

11 ),()(
)(

 


 (1) 

  gyykyk
dt

yyd
c

dt

dy
c

dt

yd

dx

yd
IE 221122

21
1

2
22

2

2

24

2

4

22 )(
)(

 




(2) 

where, g is the acceleration due to gravity, y1 and y2, the 

deflections of top and bottom beam respectively. 

For the purpose of simplicity, a variable ξ has been 

defined as the distance from point of action of load 



 

 

such that ξ = x-vt and equations (1) and (2) have been 

expressed in nondimensional form using the following 

non-dimensional terms: 
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where L is the half length of beam. Thus, the 

non-dimensional form of equations can be written as 
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Fig. 1. Proposed model for slab track system 

 

The above equations have been expressed in finite 

difference form for an internal node, i and solved 

employing the following boundary conditions in 

nondimensional form:  
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3 CRITERION FOR CONVERGENCE AND 

INPUT PARAMETRIC VALUES 

A computer program based on the formulation 

presented above has been developed to obtain the 

required response for entire extent of the problem 

( LxL  ). 5001 nodes have been considered for the 

analysis and a tolerance factor of 10-10 has been taken 

as an outcome of the convergence study. 

The realistic values of all parameters have been 

considered from available literature and presented in 

Table 1. Viscous damping (c1 and c2) has been 

expressed in terms of damping ratios.  
 

 

 

 

 

Table 1. Input parameter 

Parameters Notation Value Unit 

Applied Load Q 100-250 kN 

Mass per unit length of top 

beam 
ρ1 60 kg/m 

Mass per unit length of 

bottom beam 
ρ2 

3500 

(Mohammadzadeh 

et al., 2014) 

kg/m 

Relative stiffness of stone 

column with respect to 

surrounding soil 

α= kc/ ks 10-100 - 

Spacing to diameter ratio 

of the stone columns 
s/d 2-4 - 

Relative flexural rigidity 

of the beams 

R= E1I1/ 

E2I2 

0.01-0.04 

(Mohammadzadeh 

et al., 2014) 

- 

Damping ratio of the 

foundation soil 
ζ2 

0-25 (Vucetic and 

Dobry, 1991) 
% 

Velocity of applied load v 10-300 m/s 

4 RESULTS AND DISCUSSION 

4.1 Validation 

In order to validate the developed methodology, the 

results from proposed model has been compared with 

those from Hussein and Hunt (2006). Following 

parameters have been adopted for the purpose of 

validation: E1I1=10×106 Nm2, E2I2=1430×106 Nm2, ρ1= 

100 kg/m, ρ2= 3500 kg/m, k1=40×106 N/m2, k2=50×106 

N/m2, ζ1= ζ2= 5%. The results, as shown in Fig. 2, have 

been found to be in very good agreement and therefore, 

the validity of the developed model and methodology 

has been established. 

  

Fig. 2. Validation of proposed model. 

 

4.2 Effect of inclusion of stone columns on critical 

velocity 

The plot of maximum non-dimensional deflection of 

top beam for different velocity has been presented in 

Fig. 3 for soft rail pads (k1=40×106 N/m2) and stiff rail 

pads (k1=300×106 N/m2). The velocity corresponding to 

the peak value of the curves denotes the value at 

resonance and termed as critical velocity. It has been 

found to be independent of type of rail pad. However, 

inclusion of stone columns resulted in increase of 



 

 

critical velocity from 157 m/s to 292 m/s (about 86% 

increment) which is beyond the practically achieved 

value of velocity even for high speed trains. 

 

Fig. 3. Maximum non-dimensional rail deflection: Influence on 

critical velocity due to inclusion of stone columns 

 

4.3 Effect of inclusion of stone columns on 

deflections 
Fig. 4 shows the influence of inclusion of stone 

column on the deflection profile of top and the bottom 

beam for typical set of input parameters.  
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Fig. 4. Deflection profiles: effect of inclusion of stone column 

 

The maximum non-dimensional deflection has been 

found to reduce by 62% and 88% for top and bottom 

beam respectively suggesting a significant amount of 

improvement in reducing the deflection due to inclusion 

of stone columns. 

 

4.4 Effect of magnitude of applied load (Q) 

Figs. 5 and 6 show the influence of applied load on 

the deflection profile of top and bottom beam 

respectively. The maximum normalized deflection has 

been found to reduce by 56% for top beam and 40% for 

bottom beam as the applied load reduces from 250 to 

100 kN. 

 

4.5 Effect of relative stiffness of stone column (α) 

Fig. 7 depicts the effect of relative stiffness of 

stone columns with respect to surrounding soil on 

deflection profile of top beam. For the input parameters 

considered, a reduction of about 31% in the maximum 

normalized deflection has been observed corresponding 

to increase in ratio α from 10 to 100. The reduction in 

deflection has been observed due to the stiffer stone 

columns for higher values of α. 

  

Fig. 5. Deflection profile of top beam: effect of applied load. 

  

Fig. 6. Deflection profile of bottom beam: effect of applied load. 

  

Fig. 7. Deflection profile of top beam: effect of relative stiffness 

of stone columns. 

 

4.6. Effect of spacing to diameter ratio (s/d) 

For a particular value of diameter of stone column, 



 

 

spacing has been varied from 2 to 3.5 times the 

diameter and the corresponding responses of top and 

bottom beams have been presented in Figs. 8 and 9 

respectively. It has been observed that the normalized 

maximum deflection of top beam increases by 10% 

whereas in case of bottom beam, it increases by 73% 

which suggests that deflection of bottom beam is more 

sensitive towards this variation. Larger value of s/d, 

signifies the presence of lesser number of stone 

columns below the beams and therefore results in larger 

deflections.  

  

Fig. 8. Deflection profile of top beam: effect of s/d ratio. 

  

Fig. 9. Deflection profile of bottom beam: effect of s/d ratio. 

5 CONCLUSION 

Based on the analysis and detailed parametric study, 

the following conclusions can be drawn: 

i) As a result of improvement by stone columns, 86% 

increment in critical velocity of the system has been 

observed. Further, maximum non-dimensional 

deflection for top and bottom beams have been found to 

reduce by 62% and 88% respectively. 

ii) Moving load has been found to have significant 

effect on maximum normalized deflection of both top 

and bottom beam with reduction of 56% and 40% 

respectively for the range of values considered.  

iii) Upon variation of relative stiffness of stone column 

from 10 to 100, a reduction of 31% and 85% have been 

observed in maximum normalized deflection of top and 

bottom beam respectively. 

iv) For soft rail pads, deflection of top beam has been 

found to be less sensitive towards change in spacing to 

diameter ratio of stone columns as compared to bottom 

beam. 
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