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ABSTRACT

An analytical and design solution has been proposed for arbitrary shape rigid footings subjected to biaxial moments.
Uniform and linear soil bearing distribution patterns are adopted for the algorithm. The Visual Studio C# platform is
used for the program development and has been implemented into the software package Mat3D. The proposed
algorithm can be applied to determine (1) the neutral axis position and soil bearing pressure values at each of the
footing vertex, based on the static equilibrium criteria; (2) the stability and the sliding check of the rigid footing; (3)
Soil bearing pressure, one-way and two-way shear design and ultimate moment design of the footing. A sample case
is presented to show the accuracy and consistency of this algorithm.
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1 INTRODUCTION

Since the 1960s, engineers and researchers have
been trying to find effective solutions for the
cumbersome problem of rigid spread footing subjected
to biaxial eccentricity. Czerniak (1963) proposed an
early version of computer-based program for the
footing soil bearing calculation using the geometric
iteration algorithm, which can handle the rectangular
shape footing with linear soil distribution. Bowles
(1977), Jarquio  (1983), Kramrisch  (1985),
Rodriguez-Gutierrez and Ochoa (2012) have also
developed and published numerical methods and
algorithms regarding the analysis and design of rigid
footings with regular or irregular shapes (trapezoidal,
circular, annular, octagonal). However, there is no
unified method for arbitrary shape footing available in
the technical literature, particularly when a biaxial
bending loading case is applied. Moreover, the ACI
code is only applicable for rectangular spread footing
design, which leaves confusion and obstacles for
engineering practice.

Therefore, this research aims to propose an
analytical solution that can be adopted for preliminary
footing design and dimensioning. This paper is
organized in two sections to briefly introduce: (1) the
theoretical background and derivation process of the
algorithm, including the equilibrium conditions,
iteration algorithms, footing analysis and design
methods. (2) A step-by-step analysis for a sample case,
which shows the effectiveness of this algorithm in the
analysis of isolated rigid footings resting on soil.

2 ANALYTICAL SOLUTION

2.1 A discrete method for arbitrary shape footing

To perform the analysis of arbitrary shape footings,
the proposed method discretizes the footing exterior
boundaries and interior opening edges (if any) into
linear segments. In this way, the complicated footing
geometry is divided into trapezoids areas between each
vertex and becomes more feasible to get integrated into
the computational algorithm.

Compression fone

Fig. 1. Footing Plan View and Typical Neutral Axis Location

As shown in Fig.1, the coordinates of each footing
vertex are input clock-wisely in the Global system of
axes X-Y, where the origin (Xo,Y,o) can locate at any
random point (here the origin locates at the bottom left
footing vertex for convenience). It needs to be
mentioned that the openings’ boundaries are input
counter-clock-wisely, to obtain a negative output for
axial forces and biaxial moments using the same
algorithm. After all the geometry info is provided, the
algorithm calculates the global centroid coordinates of
the whole footing area, about which the final output of
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biaxial moments is calculated for the static equilibrium
check.

2.2 Coordinate Transfer, Loading Calculation and
Iteration Method

To start the algorithm, an initial neutral axis needs
to be set. In this paper, location of the neutral axis is
defined based on two variations: angle a and
interception distance b. The neutral axis is considered
as the x-axis of the local coordinate system x-y, while
the local y-axis is a perpendicular line that passes the
exterior footing vertex (X:,Y) with a minimum local x
value. For each iteration steps of the algorithm, the
calculation procedures of axial loads and biaxial
moments are performed based on a specific local
system of x-y, considering that the soil distribution
pattern is perpendicular to the neutral axis (local x-axis)
and for non-uniform distribution patterns, it is simpler
to consider only one-way varying pressure distribution
than two-way variations. Once the local outputs are
obtained, the program transfers them back to the global
system for the equilibrium check. Eqg.1 shows the
transformation  between the global and local
coordinates; Fig.2 shows the loading integration of each
discrete section.
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Fig. 2. (a) Integration along x-axis  (b) Integration along y-axis

For each iteration step, expressions of axial force
(P) and biaxial moments (My, My) are functions of
neutral axis variations (a, b) and soil variations (gsoil).
By using Cramer’s rule, a set of three linear equations
(Eq.2) could be solved and residuals through every
iteration can be evaluated (Yen, 1991)

p (a! b’ qsoil) = P (av b' qsoil ) - Papplied
m, (a' b' qsoil) =M X (0[, b’ qsoil) -M applied )

my (Of, b1 qsoil) = M y(a’ b’ qsoil ) - Mapplied

It is observed that the convergence process highly
depends on the initial values, especially the a value. For
example, if My and My are both positive, a positive
initial a cannot converge due to the wrong location of
the compression zone (Fig.3). In the algorithm, an
added-on function has been implemented to solve this
issue, by automatically judging the compression zone
location and generating initial variations based on the
input biaxial information. The add-on highly optimizes

the stability and efficiency of the program.
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Fig. 3. Initial Value Setting

2.3 Stability Check

The biggest challenge for stability analysis comes
from the footing geometry. Unlike regular rectangular
shape footing, where the overturning moment and the
resisting moment about each edge can be easily
obtained, the irregular shape footing does not always
follow the orthogonal coordinate. Moreover, the
stability factor of the footing edge may not be the
governing case since the neutral axis’s location remains
uncertain. Thus, the overturning check needs to be
performed for the footing vertexes as well to find the
most critical case. The overturning moment and
resisting moment are decoupled into orthogonal

coordinates, to precisely show the overturning ratio of
inclined boundaries and vertexes, as shown in Fig.4.
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Fig. 4. Equivalent Loading for Stability Check

2.4 Sliding Check

Sliding analysis calculates the ratio of resisting
sliding force from the soil and the applied equivalent
horizontal force caused by the biaxial moment. The two
different sources of the resisting forces are categorized
as: (1) force from the footing bottom interface in
contact with soil, where a friction force is developed
against the applied force; (2) passive resistance force
from the side surface of the footing that is opposite to
the direction of the applied force, where cohesive
resistance force is generated according to Coulomb
earth pressure theory. For different types of soil or
granular, the two resistance forces’ calculation may
vary. The proposed algorithm summarized the
resistance force and decouple them into global system
of X-Y, where they can be compared to the applied load
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Vx and Vy and obtain the sliding ratio.

2.5 Shear Design and Moment Design

Compared to the shear and flexural design of
regular shape footing, this research’s challenge is in
finding the direction at which the critical shear stress
and moment stress sections are located.

v t= Effective thickness

qpe=Soil bearing pressure

Fig. 5. Design for Arbitrary Shape Footing

After establishing a specific neutral axis that
satisfies the applied load, the critical direction of each
column/wall is perpendicular to the neutral axis as
shown in Fig.5. It can be seen that for each loading
zone, there are two cases to be checked: one towards
the footing edge in the compression direction and the
other one towards the neutral axis (or the opposite side
of the footing edges if the whole footing is under
compression). For one-way shear and ultimate moment
check, the ACI method can be applied using the
described critical direction; for the two-way shear
check, since the shape of the footing does not affect the
design procedure, it is not discussed here in this paper.

Neutral Axis Info
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Fig. 6 Diamond Shape Footing

3 COMPREHENSIVE EXAMPLES

The full analysis of a diamond-shape footing with
two biaxial loaded columns that subjected to linear soil
distribution pattern is performed using the developed
program (Fig. 6). The origin of the global coordinates is
set at the centroid of the footing and the final neutral
axis location is also shown, indicating that the whole

t ype=Critical section boundaries

footing is under compression with the given loading
case. Table 1 shows the columns’ information and the
total equivalent loading status. With positive
eccentricities in both directions, the algorithm
automatically assigns a=-89°, b=0" and qsoil=5P/Afooting
=50 ksf as the initial values. Each initial values will run
100 loops to check the convergence before it is
switched to the next initial guess with ai+1= a;+1°. For
this case, the program shows that it takes 22 guesses to
reach a proper initial value of a= -67° and the final
maximum soil bearing pressure output is Qsi=16.40
ksf. Detailed iteration information is shown in Table 2.

Table 1. Columns Information and Equivalent Loading

Unit: ft., kip Column 1  Column Il |Equivalent Loading
Location (-4,4) (4,-4) ex=1
Height 10 10 ey=0.67
P 1500 1500 P =3000
Mx 2000 0 Mx = 2000
My 0 3000 My = 3000
Table 2. Critical Variations in each iteration step (Unit: ft, kip)
Iteration a’ B soil P Mx My
Initial -67.000 0.00 50.00 2926 -1573 16411
1 -62.458 -26.07 -34.81 -6016 -264 -9089
2 -69.365 -32.04 16.40 2690 -764 5027
3 -47.828 -3.66 16.40 1531 3159 4295
4 -48.946 -21.69 6.64 1303 711 1082
5 -48576 -10.99 16.40 2422 2652 3876
6 -48.727 -16.25 16.38 2889 2124 3156
7 -48.809 -17.77 1640 2994 2006 3008
8 -48.811 -17.82 16.39 2999 2000 3000
Last -48.814 -17.86 16.40 3000 2000 3000

As mentioned

before, the overturning check is

decoupled into x and y directions for each vertex and
edge of the footing. Table 3 presents the detailed
results.

Table 3 (a). Stability Check — Vertexes (Unit: kip-ft.)

Safety Factor
Vertex Direction Resisting  Overturning against
Overturning
1 X 0 33000 0
y 30000 2000 15
2 X 0 3000 0
y 30000 2000 15
3 X 30000 3000 10
y 0 32000 0
4 X 30000 3000 10
y 0 32000 0
5 X 0 3000 0
y 0 2000 0
6 X 0 33000 0
y 0 2000 0
Table 3 (b). Stability Check — Edges (Unit: kip-ft)
Edge ngfé:zgte Resisting  Overturning S;Zt;gﬁy
1 X 0 0 3000 0
y 10 30000 2000 15
5 X 5 15000 3000 5
y 5 15000 2000 7.5
3 X 10 30000 3000 10
y 0 0 2000 0
4 X 0 0 3000 0
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y -10 0 32000 0 | Net Moment per foot | 15.38 39.10

5 x -5 0 18000 0
y - 0 17000 0 4. CONCLUSION

6 x -10 0 33000 0 ) o
y 0 0 2000 0 A complete method of analyzing and designing

Per the ACI code, the stability factor should be
larger than 1.5. In this case, since the whole footing is
under compression, there is no overturning issue. The
most critical case occurs in Edge 2 (highlighted),
considering that the neutral axis is barely parallel to it,
providing the minimum resisting moment.

biaxially loaded arbitrary shape rigid footing is
developed based on loading equilibrium conditions.
Uniform and linear soil bearing distribution patterns
have been implemented using pure theoretical method.
This also enables the future introduction of more
customized patterns that may take other variations into
account.

S;ﬂ‘;:é Soil Pro”gfsesive Fosiing Thickness R The proposed algorithm adds value in solving
Cohesion Factor 15 Concrete Weight 150 pcf engineering d.eSIQn ISSUG? (.)f arb'tfafy shape fo_otmg and
Adhesion Factor 15 Soil Unit Weight | 100 pcf allow the engineer to efficiently finish the design work.
Soil Cover 3 A comprehensive example is presented in this paper,
N showing a step-by-step analysis and design process of a
IT;?TI]e 5. Sliding %}SZK X Y diamond-shape spread footing. The example results
a Cohesive force 300 300 validate and indicate the go_od precision and application

b Adhesive force 450 450 scope of the proposed algorithm. - _
c=a+b Resistance force 750 750 The developed program is based on static
d Horizontal force 300 200 equilibrium and assumption of certain soil distribution
Sliding factor = d:c 25 3.75 patterns, future work should focus on the development

Table 4 shows the soil property that is used to
evaluate the sliding factor of the footing. The sliding
factor in x and y directions both satisfy the minimum

requirement per code, as shown in Table 5.

Finally, the

shear

thickness and reinforcement design.

Table 6. Critical Shear Section Information

and moment checks are
performed. The detailed results are listed in Tables 6~8.
The shear and moment stress for both columns in two
directions are outputted by the program for further

(ft) Yp1 Yp2 Yp3 Yp4
Column | 18.47 14.88 7.88 4.17
Column 11 19.22 15.64 8.64 3.42

(kips) Ot Qp2 Op3 Op4
Column | 15.70 12.66 6.70 3.55
Column 11 16.35 13.29 7.34 2.91
Table 7. One-Way Shear Stress

Dir Item Column | Column 11

Soil Bearing Support 132.24 138.03

1 Soil & Footing Weight 8.14 8.14
Net Shear Force (kip) 124.09 129.89
Net Shear Stress (psi) 70.34 73.63
Soil Bearing Support 44.61 69.37

2 Soil & Footing Weight 8.54 13.28
Net Shear Force (kip) 36.07 56.08
Net Shear Stress (psi) 20.44 31.79

Allowable: 2¢ci\/f—c' =2x0.75x1x+/3000 =82.16 psi ...... OK!

Table 8. Ultimate Moment Stress

Dir Item Column | Column Il
Soil Support Moment 175.33 182.83
1 Self-Weight Moment 10.53 10.53
Net Moment (kip-ft) 164.79 172.29
Net Moment per foot 47.08 49.22
Soil Support Moment 65.44 164.88
2 Self-Weight Moment 11.58 28.01
Net Moment (Kip-ft) 53.86 136.87

of more sophisticated soil models that consider other
effects like soil-structure interaction, soil properties and
settlements, and so on. Also, the future development of
the user interface can also be performed based on the
latest Mat3D version, to satisfy the engineering
requirements of real projects.
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