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ABSTRACT   

  
An analytical and design solution has been proposed for arbitrary shape rigid footings subjected to biaxial moments. 

Uniform and linear soil bearing distribution patterns are adopted for the algorithm. The Visual Studio C# platform is 

used for the program development and has been implemented into the software package Mat3D. The proposed 

algorithm can be applied to determine (1) the neutral axis position and soil bearing pressure values at each of the 

footing vertex, based on the static equilibrium criteria; (2) the stability and the sliding check of the rigid footing; (3) 

Soil bearing pressure, one-way and two-way shear design and ultimate moment design of the footing. A sample case 

is presented to show the accuracy and consistency of this algorithm. 
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1 INTRODUCTION  

Since the 1960s, engineers and researchers have 

been trying to find effective solutions for the 

cumbersome problem of rigid spread footing subjected 

to biaxial eccentricity. Czerniak (1963) proposed an 

early version of computer-based program for the 

footing soil bearing calculation using the geometric 

iteration algorithm, which can handle the rectangular 

shape footing with linear soil distribution. Bowles 

(1977), Jarquio (1983), Kramrisch (1985), 

Rodriguez-Gutierrez and Ochoa (2012) have also 

developed and published numerical methods and 

algorithms regarding the analysis and design of rigid 

footings with regular or irregular shapes (trapezoidal, 

circular, annular, octagonal). However, there is no 

unified method for arbitrary shape footing available in 

the technical literature, particularly when a biaxial 

bending loading case is applied. Moreover, the ACI 

code is only applicable for rectangular spread footing 

design, which leaves confusion and obstacles for 

engineering practice.  

Therefore, this research aims to propose an 

analytical solution that can be adopted for preliminary 

footing design and dimensioning. This paper is 

organized in two sections to briefly introduce: (1) the 

theoretical background and derivation process of the 

algorithm, including the equilibrium conditions, 

iteration algorithms, footing analysis and design 

methods. (2) A step-by-step analysis for a sample case, 

which shows the effectiveness of this algorithm in the 

analysis of isolated rigid footings resting on soil. 

2 ANALYTICAL SOLUTION 

2.1 A discrete method for arbitrary shape footing  
To perform the analysis of arbitrary shape footings, 

the proposed method discretizes the footing exterior 

boundaries and interior opening edges (if any) into 

linear segments. In this way, the complicated footing 

geometry is divided into trapezoids areas between each 

vertex and becomes more feasible to get integrated into 

the computational algorithm. 

 
Fig. 1. Footing Plan View and Typical Neutral Axis Location  

 As shown in Fig.1, the coordinates of each footing 

vertex are input clock-wisely in the Global system of 

axes X-Y, where the origin (Xo,Yo) can locate at any 

random point (here the origin locates at the bottom left 

footing vertex for convenience). It needs to be 

mentioned that the openings’ boundaries are input 

counter-clock-wisely, to obtain a negative output for 

axial forces and biaxial moments using the same 
algorithm. After all the geometry info is provided, the 

algorithm calculates the global centroid coordinates of 

the whole footing area, about which the final output of 



 

 

biaxial moments is calculated for the static equilibrium 

check. 

2.2 Coordinate Transfer, Loading Calculation and 

Iteration Method 
To start the algorithm, an initial neutral axis needs 

to be set. In this paper, location of the neutral axis is 

defined based on two variations: angle α and 

interception distance b. The neutral axis is considered 

as the x-axis of the local coordinate system x-y, while 

the local y-axis is a perpendicular line that passes the 

exterior footing vertex (Xr,Yr) with a minimum local x 

value. For each iteration steps of the algorithm, the 

calculation procedures of axial loads and biaxial 

moments are performed based on a specific local 

system of x-y, considering that the soil distribution 

pattern is perpendicular to the neutral axis (local x-axis) 

and for non-uniform distribution patterns, it is simpler 

to consider only one-way varying pressure distribution 

than two-way variations. Once the local outputs are 

obtained, the program transfers them back to the global 

system for the equilibrium check. Eq.1 shows the 

transformation between the global and local 

coordinates; Fig.2 shows the loading integration of each 

discrete section. 
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Fig. 2. (a) Integration along x-axis   (b) Integration along y-axis  

For each iteration step, expressions of axial force 

(P) and biaxial moments (Mx, My) are functions of 

neutral axis variations (α, b) and soil variations (qsoil). 

By using Cramer’s rule, a set of three linear equations 

(Eq.2) could be solved and residuals through every 

iteration can be evaluated (Yen, 1991)   

( , , ) ( , , )soil soil appliedp b q P b q P    

( , , ) ( , , )x soil x soil appliedm b q M b q M  
        (2) 

( , , ) ( , , )y soil y soil appliedm b q M b q M    

It is observed that the convergence process highly 

depends on the initial values, especially the α value. For 

example, if Mx and My are both positive, a positive 

initial α cannot converge due to the wrong location of 

the compression zone (Fig.3). In the algorithm, an 

added-on function has been implemented to solve this 

issue, by automatically judging the compression zone 

location and generating initial variations based on the 

input biaxial information. The add-on highly optimizes 

the stability and efficiency of the program.  

 
Fig. 3. Initial Value Setting  

2.3 Stability Check  
The biggest challenge for stability analysis comes 

from the footing geometry. Unlike regular rectangular 

shape footing, where the overturning moment and the 

resisting moment about each edge can be easily 

obtained, the irregular shape footing does not always 

follow the orthogonal coordinate. Moreover, the 

stability factor of the footing edge may not be the 

governing case since the neutral axis’s location remains 

uncertain. Thus, the overturning check needs to be 

performed for the footing vertexes as well to find the 

most critical case. The overturning moment and 

resisting moment are decoupled into orthogonal 

coordinates, to precisely show the overturning ratio of 

inclined boundaries and vertexes, as shown in Fig.4. 

 
Fig. 4. Equivalent Loading for Stability Check   

2.4 Sliding Check 

Sliding analysis calculates the ratio of resisting 

sliding force from the soil and the applied equivalent 

horizontal force caused by the biaxial moment. The two 

different sources of the resisting forces are categorized 

as: (1) force from the footing bottom interface in 

contact with soil, where a friction force is developed 

against the applied force; (2) passive resistance force 

from the side surface of the footing that is opposite to 

the direction of the applied force, where cohesive 

resistance force is generated according to Coulomb 

earth pressure theory. For different types of soil or 

granular, the two resistance forces’ calculation may 

vary. The proposed algorithm summarized the 

resistance force and decouple them into global system 

of X-Y, where they can be compared to the applied load 



 

 

Vx and Vy and obtain the sliding ratio.  

2.5 Shear Design and Moment Design 

   Compared to the shear and flexural design of 

regular shape footing, this research’s challenge is in 

finding the direction at which the critical shear stress 

and moment stress sections are located.  

 
Fig. 5. Design for Arbitrary Shape Footing 

After establishing a specific neutral axis that 

satisfies the applied load, the critical direction of each 

column/wall is perpendicular to the neutral axis as 

shown in Fig.5. It can be seen that for each loading 

zone, there are two cases to be checked: one towards 

the footing edge in the compression direction and the 

other one towards the neutral axis (or the opposite side 

of the footing edges if the whole footing is under 

compression). For one-way shear and ultimate moment 

check, the ACI method can be applied using the 

described critical direction; for the two-way shear 

check, since the shape of the footing does not affect the 

design procedure, it is not discussed here in this paper.  

 
Fig. 6 Diamond Shape Footing  

3 COMPREHENSIVE EXAMPLES 

The full analysis of a diamond-shape footing with 

two biaxial loaded columns that subjected to linear soil 

distribution pattern is performed using the developed 

program (Fig. 6). The origin of the global coordinates is 

set at the centroid of the footing and the final neutral 

axis location is also shown, indicating that the whole 

footing is under compression with the given loading 

case. Table 1 shows the columns’ information and the 

total equivalent loading status. With positive 

eccentricities in both directions, the algorithm 

automatically assigns α=-89°, b=0’ and qsoil=5P/Afooting 

=50 ksf as the initial values. Each initial values will run 

100 loops to check the convergence before it is 

switched to the next initial guess with αi+1= αi+1°. For 

this case, the program shows that it takes 22 guesses to 

reach a proper initial value of α= -67° and the final 

maximum soil bearing pressure output is qsoil=16.40 

ksf. Detailed iteration information is shown in Table 2.  

Table 1. Columns Information and Equivalent Loading 

Unit: ft., kip Column I Column II Equivalent Loading 

Location (-4,4) (4,-4)     ex = 1 

Height 10 10     ey = 0.67 

P 1500 1500     P = 3000 

Mx 2000 0     Mx = 2000 

My 0 3000     My = 3000 

Table 2. Critical Variations in each iteration step (Unit: ft, kip) 

Iteration α° B qsoil P Mx My 

Initial -67.000 0.00 50.00 2926 -1573 16411 

1 -62.458 -26.07 -34.81 -6016 -264 -9089 

2 -69.365 -32.04 16.40 2690 -764 5027 

3 -47.828 -3.66 16.40 1531 3159 4295 

4 -48.946 -21.69 6.64 1303 711 1082 

5 -48.576 -10.99 16.40 2422 2652 3876 

6 -48.727 -16.25 16.38 2889 2124 3156 

7 -48.809 -17.77 16.40 2994 2006 3008 

8 -48.811 -17.82 16.39 2999 2000 3000 

Last -48.814 -17.86 16.40 3000 2000 3000 

As mentioned before, the overturning check is 

decoupled into x and y directions for each vertex and 

edge of the footing. Table 3 presents the detailed 

results. 

Table 3 (a). Stability Check – Vertexes (Unit: kip-ft.) 

Vertex Direction Resisting Overturning 

Safety Factor 

against 

Overturning 

1 
x 0 33000 0 

y 30000 2000 15 

2 
x 0 3000 0 

y 30000 2000 15 

3 
x 30000 3000 10 

y 0 32000 0 

4 
x 30000 3000 10 

y 0 32000 0 

5 
x 0 3000 0 

y 0 2000 0 

6 
x 0 33000 0 

y 0 2000 0 

Table 3 (b). Stability Check – Edges (Unit: kip-ft) 

Edge 
Footing 

Coordinate 
Resisting  Overturning  

Stability 

Factor  

1 
x 0 0 3000 0 

y 10 30000 2000 15 

2 
x 5 15000 3000 5 

y 5 15000 2000 7.5 

3 
x 10 30000 3000 10 

y 0 0 2000 0 

4 x 0 0 3000 0 



 

 

y -10 0 32000 0 

5 
x -5 0 18000 0 

y -5 0 17000 0 

6 
x -10 0 33000 0 

y 0 0 2000 0 

Per the ACI code, the stability factor should be 

larger than 1.5. In this case, since the whole footing is 

under compression, there is no overturning issue. The 

most critical case occurs in Edge 2 (highlighted), 

considering that the neutral axis is barely parallel to it, 

providing the minimum resisting moment. 

Table 4. Soil Properties             

Soil Type Cohesive Footing Thickness 4’ 

Cohesion Factor 1.5 Concrete Weight 150 pcf 

Adhesion Factor 1.5 Soil Unit Weight 100 pcf 

Soil Cover 3’   

Table 5. Sliding Check        

Item Type X Y 

a Cohesive force 300 300 

b Adhesive force 450 450 

c=a+b Resistance force 750 750 

d Horizontal force 300 200 

Sliding factor = d:c 2.5 3.75 

Table 4 shows the soil property that is used to 

evaluate the sliding factor of the footing. The sliding 

factor in x and y directions both satisfy the minimum 

requirement per code, as shown in Table 5. 

Finally, the shear and moment checks are 

performed. The detailed results are listed in Tables 6~8. 

The shear and moment stress for both columns in two 

directions are outputted by the program for further 

thickness and reinforcement design. 

Table 6. Critical Shear Section Information       

(ft) yp1 yp2 yp3 yp4 

Column I 18.47 14.88 7.88 4.17 

Column II 19.22 15.64 8.64 3.42 

(kips) qp1 qp2 qp3 qp4 

Column I 15.70 12.66 6.70 3.55 

Column II 16.35 13.29 7.34 2.91 

Table 7. One-Way Shear Stress       

Dir Item Column I Column II 

1  

Soil Bearing Support  132.24 138.03 

Soil & Footing Weight  8.14 8.14 

Net Shear Force (kip) 124.09 129.89 

Net Shear Stress (psi) 70.34 73.63 

2 

Soil Bearing Support  44.61 69.37 

Soil & Footing Weight  8.54 13.28 

Net Shear Force (kip) 36.07 56.08 

Net Shear Stress (psi) 20.44 31.79 

Allowable: '2 2 0.75 1 3000 82.16c cf        psi ……OK! 

Table 8. Ultimate Moment Stress       

Dir Item Column I Column II 

1  

Soil Support Moment 175.33 182.83 

Self-Weight Moment 10.53 10.53 

Net Moment (kip-ft) 164.79 172.29 

Net Moment per foot 47.08 49.22 

2 

Soil Support Moment 65.44 164.88 

Self-Weight Moment 11.58 28.01 

Net Moment (kip-ft) 53.86 136.87 

Net Moment per foot 15.38 39.10 

4. CONCLUSION 

A complete method of analyzing and designing 

biaxially loaded arbitrary shape rigid footing is 

developed based on loading equilibrium conditions. 

Uniform and linear soil bearing distribution patterns 

have been implemented using pure theoretical method. 

This also enables the future introduction of more 

customized patterns that may take other variations into 

account.  

The proposed algorithm adds value in solving 

engineering design issues of arbitrary shape footing and 

allow the engineer to efficiently finish the design work. 

A comprehensive example is presented in this paper, 

showing a step-by-step analysis and design process of a 

diamond-shape spread footing. The example results 

validate and indicate the good precision and application 

scope of the proposed algorithm.   

The developed program is based on static 

equilibrium and assumption of certain soil distribution 

patterns, future work should focus on the development 

of more sophisticated soil models that consider other 

effects like soil-structure interaction, soil properties and 

settlements, and so on. Also, the future development of 

the user interface can also be performed based on the 

latest Mat3D version, to satisfy the engineering 

requirements of real projects. 
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