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Prediction of surface settlement during shield TBM excavation using extreme learning machine
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ABSTRACT

Tunneling-induced surface settlements in soft ground conditions threaten the stability of nearby structures, especially
during subway tunnel excavation in urban areas. Therefore, controlling the surface settlement before excavation is
the key to successful tunneling. There have been numerous means for predicting surface settlements during TBM
tunneling such as empirical, analytical and numerical approaches. However, these techniques occasionally show poor
predicting performance when being applied to actual excavation sites due to complex and unique surface settlement
mechanisms. To circumvent limitations of the existing prediction methods, machine learning techniques such as the
artificial neural network has been recently introduced. In this paper, the extreme learning machine (ELM), which is
an improved version of the artificial neural network, is applied to verify its cost efficient neural network model for
the prediction of surface settlements. 14 settlement-inducing features categorized as the tunnel geometry, TBM
operating conditions and geological conditions are collected from the Hong Kong shield TBM tunneling site. The
performance of ELM is compared with the well-known Levenberg Marquardt and the Bayesian Regularization
algorithm for the same single-layered neural network. The obtained results show the significance of performance
achieved by the ELM-based prediction of surface settlements.

Keywords: Extreme learning machine; Artificial neural network; Ground settlement prediction; Tunnel excavation;
Twin tunnel

1 INTRODUCTION 2007). Estimating performance of the aforementioned
approaches shows intrinsic limitations induced by
highly complicated and nonlinear relationship among
the settlement inducing factors.

Well known features causing the settlement during
TBM excavation are summarized as the face support
pressure, excavation method, advance rate, geological
condition and tunnel geometry (Suwansawat and
Einstein, 2006; Neaupane and Adhikari, 2006; Santos Jr.
and Celestino, 2008). Along with the complicated
nonlinear relationship among the features, the inherent
uniqueness of ground surface settlements tendency of
each tunneling site impairs the performance of the
classic approaches. To overcome this matter,
computational network models such as the artificial
neural network and the support vector machine have
been suggested to reliably predict surface settlements
during shield TBM excavation.

Along with extensive databases collected from
electronic sensors instrumented at the excavation site,
the recent development of powerful computing systems
allows the researchers to develop various network
models as a promising prediction tool. One of the most
powerful network models is the artificial neural
network (ANN). The ANN is a computational network
model inspired by the biological signal process of brain
cells. Its prediction capability comes from the collective

Ground surface settlements induced by shield
tunneling in shallow, soft ground conditions have been
a major concern for urban metro tunnel excavation.
Settlement-induced vertical and horizontal ground
movements cause critical damage to both surface and
subsurface infrastructures in highly crowded urban
areas. The precise prediction of surface settlements in
such conditions remains challenging due to the complex
interaction of ground and tunnel excavation. The
empirical approaches to the estimation of surface
settlements propose empirical formulae, based on an
extensive database collected from the preceding tunnel
excavation cases, to fit the settlement trough
approximately corresponding to the Gaussian or normal
distribution curve (Martos, 1958; Peck, 1969; Kimura
and Mair, 1981; O’Reilly and New, 1982; Attewell et
al., 1986). The analytical approaches adopt well-known
mechanical theories for the estimation of surface
settlements exclusively for simplified or idealized
conditions (Clough and Schmidt, 1981; Sagaseta, 1987;
Yi et al., 1993; Lognathan and Poulos, 1998). On the
contrary, the numerical approaches such as the finite
element method (FEM) and the finite difference method
(FDM) take account more complex ground conditions,
initial and boundary conditions and time-dependent
effects to estimate surface settlements (Leca and New,
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computation power between internal nodes, which
enables the network to “self-learn” features of the given
database. Since the first development of ANN by
Hopfield (1982) and the multiple layer perceptron
model of ANN by Rumelhart (1986), development of
the backpropagation learning algorithm allows the
ANN to be applied in almost all engineering areas.

Even with the ANN’s self-learning and non-linear
approximation feature, there are some typical
disadvantages in the ANN such as the presence of local
minima and slow learning convergence due to the
intrinsic learning mechanism of the backpropagation
algorithm. Being suggested by Huang et al. (2006), the
ELM <can be a new learning approach for
single-hidden-layer feedforward neural networks,
which was devised to overcome the ANN’s drawbacks.
The ELM provides good generalization performance
and rapid convergence rate.

2 EXTREME LEARNING MACHINE

The ELM is a single-hidden-layer feedforward
network (SLFN) that adopts analytical determination
for tuning the hidden neurons (Huang et al., 2006).
Compared to traditional neural networks, the ELM
algorithm performs significantly faster training task.
The traditional learning algorithm iteratively optimizes
network parameters by minimizing the cost function
with the aid of gradient-based algorithms. In case of the
complex neural network structure, the computation
process becomes expensive and time consuming. In
order to reduce the computational cost and time, the
ELM randomly assigns the values of input weights and
hidden layer bias, then calculates the system of linear
equations for the hidden layer output matrix and output
weights. The hidden layer of ELM nonlinearly
transforms input data into the ELM feature space,
which is a higher dimensional space (Huang et al.,
2015). The transformation often allows linear
partitioning of the nonlinear input data in the ELM
feature space as shown in Figure 1.
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Fig. 1. ELM feature mapping and ELM feature space

3 SITE CONDITION AND DATABASE

3.1 Site condition

The data set, which was collected from slurry shield
TBM subway tunnelling site at Hong Kong, was used
to verify the performance of implemented neural
networks. The tunnel was constructed in the mixed

ground condition consisted of alluvial soil, weathered
soil and weathered rock. Details of the geological
profile at the site, consists of granite, are sorted into
layers according to the level of weathering
(moderately/completely decomposed granite,
MDG/CDG). The surface layer of ground contains
alluvium and fill, with the groundwater table around 2.5
m below the ground surface.

The diameter of the excavated tunnel is 7.45 m with
the inner segment diameter of 6.8 m. The tunnel depth
ranges between 12.6 m and 18.6 m, that is 1.7 ~ 2.5
times of the tunnel diameter. In most sections, the
tunnel passes through fill, alluvium and CDG layer,
which are weathered rock region.

3.2 Settlement measurements

The measurement of surface settlements along the
up-track tunnel was collected from 248 points within
the target area. Like other urban area metro tunnels,
most of settlement measuring points should be located
away from the centerline of the tunnel (i.e., tunnel
crown) due to the existing buildings and roads. In this
study, settlements within 25.5 m at maximum
longitudinal distance were merged into one section,
consisting of different numbers of measurements
between 1 to 9. The horizontal distance from the
centerline for each settlement point was also concerned.
The final or maximum settlement was defined as the
settlement measurement after two months of excavation
to consider the secondary settlement effect. Figure 2
shows the distribution of 69 longitudinal sections along
the up-track tunnel defined for this study.
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Fig. 2. Distribution of 69 sections along the up-track tunnel

3.3 Network input

For the training phase of network models,
settlement-inducing input features are divided into three
main categories; tunnel geometry, excavation method
and ground geological conditions. The settlement
inducing features are chosen based on previous
researches with consideration of the degree of influence
to the settlement. The chainage length, horizontal
distance, soil cover above the tunnel and twin tunnel
parameter are chosen as the tunnel geometry features.
The twin tunnel parameter corresponds to the distance
between the up and down track tunnel, which ranges
between 0 and 16.77 m. At the further most point, the
distance between the two tunnel is as long as twice of
tunnel diameter (2D). Face pressure, advance speed,
back grout injection volume and pitching data are
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selected as the TBM operating data. For the input
feature of geological conditions, the soil type at the
tunnel crown, springline and invert, and N value were
collected.

Soil types around the tunnel were divided into four
sections and labeled in numerical values between 1 to 4,
in the order of fill, alluvium, CDG and corestone. In
addition, the N value at the crown and springline of
tunnel were considered to relate with the shear strength
of ground formations, which correlates with the ground
loss, V;. All of 13 input features for 248 data sets were
collected from the actual measurement at the site. The
range of input values is shown in Table 1.

Table 1. Network input database of settlement inducing features

Type Description

Chainage length

Horizontal distance

Soil cover above tunnel
Twin tunnel parameter

Face pressure

Advance speed

Back grout injection volume
Pitching

Soil type at tunnel crown
Soil type at tunnel springline
Soil type at tunnel invert
SPT N value at tunnel crown
SPT N value at tunnel springline

Geometrical

TBM Data

Geological conditions

4 NEURAL NETWORK MODELS

The neural network models for settlement predicting
are implemented using the Matlab program. Along with
the ELM algorithm, two most popular backpropagation
neural network training algorithms, i.e. Levenberg
Marquardt (LM) and Bayesian Regularization (BR)
algorithm, were considered for the purpose of
comparison as the same single-layered neural network.
In this study, 70% of the input data sets were randomly
assigned as the training sets, while the remaining sets
were assigned as the testing sets. In case of the LM
algorithm, the testing sets were additionally divided
into the validation and testing sets equally.

4.1 Model implementation

The prediction performance of neural networks is
evaluated based on two statistical evaluation criteria:
the root mean square error (RMSE) and coefficient of
correlation (R) as given by Equation 1 and 2.

RMSE = (%)Z(oj -)° (1
j=1
J=1(t; — D)(0; — 3) )
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where o is the actual value and ¢ is the predicted value,

o and t are the means of actual and predicted values,
respectively. N is the number of data sets.

The backpropagation neural networks with the LM
and BR ftraining algorithms are implemented. The
automatic recommendation tuning parameters were
chosen for the best training performance in both
algorithms. The optimal hidden node number was
determined for each algorithm by the trial-and-error
method, ten hidden nodes for both LM and BR
respectively. The average performance of the
backpropagation neural network algorithm is measured
after 20 runs.

The same SLFN structure was trained using the
ELM algorithm. The optimal hidden node number for
the ELM prediction model was 50 according to the
testing result. The average performance of ELM was
measured after running 100 times because of the
randomly assigned input weights and hidden bias
values. Figure 3 shows the result of parametric analysis
for the optimal number of hidden nodes.

4.2 Performance

The performance indices of the developed neural
network models with the optimal hidden-node number
are presented in Table 2 indicating that the ELM model
has the lowest value of RMSE in the testing datasets.
Although the RMSE value of ELM with the training
datasets is higher than the other ANN algorithms, the
low value of RMSE with the testing datasets indicates
that the ELM has better generalization performance
than the backpropagation neural networks. Also, the
R-value of ELM with the testing datasets shows
excellent performance, similar to that of ANN-BR’s.
The computing time of each run in the ELM was at
least 100 times faster than the other two methods,
showing the superiority of ELM in both performance
and computing time.

Table 2. Performance of ANN-LM, ANN-BR, and ELM models

Predictive model RMSll;raln = RMSEeSt -

(10 lﬁgiﬁl\g desy 1972 0837 3166 0.678
(10 lﬁggﬁBn%des) 1206 0.939 2510 0841
(50 hiﬂ;ffno desy 2220 0857 2496 0832
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Fig. 3. Performances of neural network models depending on
hidden neuron numbers for (a) ANN-LM (b) ANN-BR (c¢) ELM

5 DISCUSSION AND CONCLUSION

Computer aided analysis such as machine learning
techniques helps establish the complex and nonlinear
relationship between the excavated TBM tunnel and
ground movement. Machine learning-based prediction
of surface settlements considers all of the
settlement-inducing factors, which have been neglected
in previous approaches such as empirical, analytical
and numerical methods. Despite wide adaptability of
the backpropagation ANN, the high computational cost
with time consuming training demand becomes
problematic when being applied at actual tunneling
sites for the prediction of surface settlements. The ELM
successfully complements the shortcomings of the
backpropagation ANN, resulting in a lower prediction
RMSE value and swift training time.

The testing result of the ELM showed the lowest
RMSE value of 2.496, while the ANN-LM and
ANN-BR showed the RMSE of 3.166 and 2.510,
respectively. The R-value of ELM testing result was
0.832, lower than that of the ANN-BR of 0.841.
However, compared to ANN-LM’s R-value of 0.678,
the R-value of ELM testing is promising enough. Even
with high performance, the training of ELM networks
was fastest, showing around 100 times faster training
process when compared to the ANN-LM.

Some of the issues regarding the ELM algorithm
can be summarized as follows; During the training
phase of neural network models, the ELM may need
higher numbers of hidden neurons due to the random
determination of the input weights and hidden biases to
obtain good generalization performance. For this matter,
there may exist some suboptimal or unnecessary input
weights and hidden biases arising in the ELM structure.
Further studies on these matters will lead to better
performance of prediction of surface settlements using
the ELM.
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