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ABSTRACT 
Penetration rate of shield TBM is a very important factor used to estimate the construction period and cost. However, 
the prediction procedure of penetration rate is complicated because there are many factors to consider such as rock 
mass condition and TBM operating parameters. Therefore, it has become a good alternative to develop a simple 
prediction model of penetration rate based on some rock mass properties and mechanical measurement data. For this 
reason, 32 data were collected from the field in this study, and rock quality designation, deformation modulus, Thrust, 
and revolution per minute were selected as input parameters for model development. Using these variables, two 
prediction models such as multivariate linear regression and adaptive neuro-fuzzy inference system were developed. 
In addition, both models were verified and compared by various evaluation indices. The developed two models are 
expected to be applied for prediction purposes under a similar condition to the field. 
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1 INTRODUCTION 

Shield TBM, one of the mechanized tunneling, is a 
full section excavation method propelling forward as 
supporting with a segment in inner space to prevent a 
collapse of the surrounding ground by using ‘Shield’. A 
small-diameter shield TBM(<∅4m) was first used in 
Korea in 1987 for supplying electric power and 
telecommunication, and a larger diameter shield TBM 
has been applied for the purpose of subway construction 
since the mid-1990s (Lee et al. 2011). Since then, the use 
of shield TBM has been increased constantly, and it has 
become important to estimate a construction period and 
cost. 

Penetration rate can be defined as net excavation 
distance per unit time. It is an important factor in 
estimating the construction period. However, the process 
of predicting the penetration rate is complicated because 
there are many things to consider such as rock mass 
conditions, TBM operating parameters (Rostami et al. 
1996). To overcome this difficulty, empirical models 
based on database obtained from the field have been 
proposed by several researchers. Yagiz (2008) 
developed a multivariate linear regression through the 
database from the project in New York, Queens Water 
Tunnel, in which the open TBM(∅7.06m) was used. 
Benardos and Kaliampakos (2004) applied the ANN 
model based on the database from Athene Metro line 3 
using EPB type shield TBM(∅9.48m). Yagiz and 
Karahan (2011) used particle swarm optimization for 
Queens Water tunnel to predict the PR. Several 
techniques such as differential evolution, grey wolf 
optimization, and hybrid harmony search also were 
applied (Yagiz and Karahan 2015). 

In this study, an appropriate model satisfied with a 

specific project where a small-diameter(<∅4m) shield 
TBM was used, was selected to estimate the penetration 
rate. To develop the model, data were collected from a 
field, and key parameters influencing a penetration rate 
were selected. Using these variables, two predictive 
models, multivariate linear regression and adaptive 
neuro-fuzzy inference system (ANFIS) were constructed 
and, verified and compared by various evaluation indices. 
 

2 SELECTION OF INPUT VARIABLES 
Selecting input variables to build a prediction model 

is important. In general, statistical methods can be used 
to select variables. It is necessary to select the input 
variables with high correlation for output variable and 
consider redundancy between the input variables. 
However, when considering statistical methods only, 
important variables for a specific field can be missed. 
Therefore, in this study, not only statistical methods but 
also geotechnical characteristics of variables were tried 
to be considered. 

As a preliminary work for selecting variables, 32 data 
were collected through borehole data and automatically 
measured mechanical data in the field in Korea. The 
variables in these data, such as uniaxial compressive 
strength (UCS), rock quality designation (RQD), rock 
mass rating (RMR), lugeon, absorption, p wave velocity, 
s wave velocity, deformation modulus, thrust, revolution 
per minute (RPM), and torque were obtained as input 
variables for penetration rate. Table 1 shows descriptive 
statistics on the collected data. As a first step, the 
Pearson’s correlation coefficient matrix was constructed 
as shown in Table 2 to determine the degree of 
correlation between variables. The correlation for 
penetration rate was -0.636 for thrust, -0.447 for RPM, -



 

 

0.340 for RMR, and -0.288 for RQD. The rest of the 
input variables (lugeon, absorption, torque etc.) did not 
show any significant correlation. In the relationship 
between the input variables, the correlation coefficient 
between RMR and RQD was very large (𝑟𝑟=0.969) which 
represents high redundancy. Also, RQD is the main 
factor for estimating RMR. Therefore, RMR was 
excluded under consideration in this study. 

In the second step, geotechnical characteristics were 
considered to select input variables. The strength 
characteristics for the rock mass is well known to have a 
major influence on the bore-ability of TBM (Gong et al. 
2009), and UCS, p wave velocity, s wave velocity, and 
deformation modulus can be included in this category. A 
representative property specifying the strength of rock 
mass is UCS, which showed a correlation coefficient of 
0.853 for p-wave velocity, 0.826 for s-wave velocity and 
0.769 for deformation modulus. In this study, non-
redundant variables (RQD, Thrust, and RPM) were fixed 
as input variables and multivariate linear regression 
analysis was performed for each variable with strength 
characteristics (Table 3). Thrust was the most significant 
influence for penetration rate and, followed by RPM. On 
the other hand, RQD and other properties related to 
strength characteristics showed a relatively poor 
correlation with the penetration rate. It can be seen that 
the penetration rate is influenced by the TBM operating 
parameters than the rock mass parameters. In Table 3, 
the correlation coefficients of the four models did not 
show a significant difference, but the linear regression 
with deformation modulus had the highest fitness among 
the four models. Therefore, in this study, thrust, RPM, 
RQD and deformation modulus for model development 
were selected as input variables. 

 
3 CONCEPT AND CONSTRUCTION OF 
MODEL 

As mentioned earlier, the problem of predicting 
penetration rate is complicated and nonlinear because 
there are many factors to consider such as rock mass 
condition and TBM operating parameters (Rostami et al. 
1996). To overcome this difficulty, ANFIS has been 
used by some researchers as a popular tool (Grima et al. 
2000; salami et al. 2016). The ANFIS is a hybrid system 
that can satisfy both the learning ability of artificial 
neural network and the reasoning ability of the fuzzy 
inference system of the Sugeno type (Takagi and Sugeno, 
1985). The fuzzy inference system deals with high-level 
inference using language information acquired by 
experts in a specific field and this information is 
reflected in an activation function called a membership 
function. But it cannot adapt to the new environment 
itself. Thus, Jang (1993) developed the ANFIS that 
adjusts the membership functions effectively through 
machine learning of neural networks. 

The structure of the ANFIS consists of five layers. 
For simplicity of illustration, it is assumed that it has two 

input values (𝑥𝑥, y) and one output value (𝑓𝑓) as shown in 
Fig. 1. It also uses two if-then rules of Takagi-Sugeno 
type. 

 
Rule 1: If 𝑥𝑥 is 𝐴𝐴1 and 𝑦𝑦 is 𝐵𝐵1, then 𝑓𝑓1 = 𝑝𝑝1𝑥𝑥 + 𝑞𝑞1𝑦𝑦 + 𝑟𝑟1 
Rule 2: If 𝑥𝑥 is 𝐴𝐴2 and 𝑦𝑦 is 𝐵𝐵2, then 𝑓𝑓2 = 𝑝𝑝2𝑥𝑥 + 𝑞𝑞2𝑦𝑦 + 𝑟𝑟2 
 
Layer 1: every node 𝑖𝑖 in this layer is a square node 

containing a node function 
𝑂𝑂𝑖𝑖1 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥)               (1) 

Where 𝑥𝑥  is input to node 𝑖𝑖 , O𝑖𝑖
1  is the activation 

function of 𝐴𝐴𝑖𝑖 which is called the membership function. 
It means the degree to which the given 𝑥𝑥 satisfies the 
quantifier 𝐴𝐴𝑖𝑖. The membership function used mostly is 
Gaussian and bell-shaped function with a maximum 
equal to 1 and a minimum equal to 0. The Gaussian 
membership function can be expressed as follow 

𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 �− (𝑥𝑥−𝑐𝑐𝑖𝑖)2

2𝑎𝑎𝑖𝑖
2 �          (2) 

Where 𝑎𝑎𝑖𝑖  and 𝑐𝑐𝑖𝑖  is a variance and mean value of 
function respectively. When the values of these 
parameters change, the shape of Gaussian function also 
changes. Parameters in this layer are called as ‘premise 
parameters’. 

 
Layer 2: Every node in this layer is a circle node 

which multiplies the incoming signals and sends output 
signals to the next layer. 

𝑤𝑤𝑖𝑖 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥) × 𝜇𝜇𝐵𝐵𝑖𝑖(𝑥𝑥),   𝑖𝑖 = 1, 2       (3) 
Each output of the node in this layer represents the firing 
strength of the if-then rule. 

 
Layer 3: Every node in this layer is a circle node. This 

𝑖𝑖th node computes the ratio of the 𝑖𝑖th firing strength to 
the sum of all firing strengths. 

 
𝑤𝑤𝚤𝚤��� = 𝑤𝑤𝑖𝑖

𝑤𝑤1+𝑤𝑤2
,   𝑖𝑖 = 1, 2           (4) 

The output in this layer can be referred to as normalized 
firing strengths. 

 
Layer 4: Every node in this layer is a square node 

𝑂𝑂𝑖𝑖4 = 𝑤𝑤𝚤𝚤���𝑓𝑓𝑖𝑖 = 𝑤𝑤𝚤𝚤���(𝑓𝑓1 = 𝑝𝑝𝑖𝑖𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑦𝑦 + 𝑟𝑟𝑖𝑖)     (5) 
Where, 𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑖𝑖  and 𝑟𝑟𝑖𝑖  are the parameter set which 
called as ‘consequent parameters’. 

 
Layer 5: The single node in the last layer calculates 

the overall output as the summation of all incoming 
signals as follow, 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑂𝑂15 = ∑ 𝑤𝑤𝚤𝚤���𝑓𝑓𝑖𝑖𝑖𝑖        (6) 
Unlike ANN learning in a backward direction, the 
ANFIS proposed by Jang (1993) trains both forward and 
backward direction. In a forward direction, the 
parameters of the activation functions called 
membership functions are fixed, and then the coefficient 
estimates of the first-order formulas are adjusted by 
recursive least squares. In a backward direction, 
coefficients of first-order formulas are fixed first, and the 



 

 

parameters of activation functions are renewed by the 
gradient descent method. For this reason, ANFIS allows 
fast convergence and it is also widely used in various 
field. 

In this study, ANFIS and multivariate linear 
regression were developed, and the data was classified 
into 80% training and 20% test randomly for 
performance comparison. 26 data for model training 
were randomly selected and the rest were used for testing. 
This procedure was repeated five times, and five ANFIS 
and multivariate linear regression models were 
developed. The number of membership functions which 
is assigned to each input variable and the learning rate 
were set to 2 and 0.01 respectively by trial and error. 

 

4 PERFORMANCE EVALUATION AND 
SELECTION OF OPTIMUM MODELS 

As mentioned above, five ANFIS and multivariate 
linear regression models were developed, and each 
model was validated with training data and test data. The 
performance of the training data means good learning of 
the model, and the performance for the test data 
represents generalization of the model. In this study, 
three evaluation indices such as correlation coefficient, 
root mean square error and variance accounted for were 
introduced to prevent bias in performance evaluation. 
Table 4 shows the results of performance evaluation for 
each model. In these results, the correlation coefficient 
of ANFIS was slightly larger than the multivariate linear 
regression for the training data, but there was no 
significant difference. On the other hand, for test data, 
ANFIS showed better performance than the multivariate 
linear regression, and it can be concluded that ANFIS is 
a more generalized model. 

To select the optimal model, a point system was 
introduced. For example, in Table 4, the correlation 
coefficient for training data in linear regression gives a 
higher point in descending order. In the same way, after 
the calculation is repeated for different performance 
indices, the ‘sum of point’ is calculated as a summation 
of the point for each performance index. Finally, the 
‘performance point’ in Table 5 is computed as the 
summation of the 'sum of point' of each model 
(multivariate linear regression, ANFIS) for randomly 
divided data. As shown in Table 5, the test point for 
model 5 were calculated as 25 which is higher than that 
of model 1. Nonetheless, model 1 showed the highest 
performance point. It is due to the fact that the train point 
denoting good learning for model 5 were less than that 
of model 1. As a result, linear regression 1 and ANFIS 1 
were selected as the best performance models. 

 
5 CONCLUSIONS 

Two different models were developed and compared 
based on the data obtained from the field with shield 

TBM((<∅4m). The performance of ANFIS for test data 
was not noticeable but it was still higher than 
multivariate linear regression. This seems to be due to 
the small number of data collected from the field. 
However, both models derived from this study have a 
significance in explanatory power. Also, if the data is 
accumulated continuously, it is expected that there will 
be a meaningful improvement in performance, 
especially ANFIS. Lastly, these models will be 
applicable under similar rock mass condition and shield 
TBM. 
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Table 1. Descriptive statistics for obtained data 



 

 

 Penetration rate UCS RQD RMR Lugeon Absorption P wave 
velocity 

S wave 
velocity 

Deformation 
modulus Thrust RPM Torque 

 (mm/min) (MPa) (%) (%) - - (m/sec) (m/sec) (MPa) (kN) - (kN∙m) 
Mean 36.75 96.2 41.1 50.2 8.3 0.26 4065 2473 38303 4340 7.37 2974 

Std.deviation 9.55 47.1 29.0 16.4 25.2 0.16 994 640 17188 1007 1.68 499 
Coef. of 
variance 0.26 0.49 0.71 0.33 3.03 0.61 0.24 0.26 0.45 0.23 0.23 0.17 

Skewness -0.64 0.29 0.59 0.59 4.56 0.99 -0.87 -0.86 0.45 0.44 -0.54 -0.85 
Kurtosis -0.46 0.07 -0.61 -0.43 22.21 -0.38 1.70 1.40 0.52 -0.36 -0.59 1.05 

Num. of data 32 32 32 32 32 32 32 32 32 32 32 32 
 
Table 2. correlation coefficient matrix between variables 

 Penetration 
rate UCS RQD RMR Lugeon Absorption P wave 

velocity 
S wave 
velocity 

Deformation 
modulus Thrust RPM Torque 

Penetration rate 1.00            
UCS -0.01 1.00           
RQD -0.29 0.42 1.00          
RMR -0.34 0.51 0.97 1.00         
Lugeon 0.06 0.04 -0.35 -0.29 1.00        
Absorption -0.01 -0.76 -0.36 -0.47 0.14 1.00       
P wave velocity 0.06 0.85 0.34 0.42 0.20 -0.62 1.00      
S wave velocity 0.11 0.83 0.26 0.35 0.32 -0.58 0.99 1.00     
Deformation modulus 0.02 0.77 0.37 0.42 0.17 -0.43 0.82 0.83 1.00    
Thrust -0.64 -0.13 0.19 0.21 -0.03 0.28 -0.25 -0.27 -0.21 1.00   
RPM -0.45 -0.05 0.45 0.40 -0.31 0.04 -0.14 -0.22 -0.14 0.35 1.00  
Torque -0.08 0.23 0.36 0.29 0.14 -0.06 0.32 0.32 0.33 0.18 -0.12 1.00 

 
Table 3. Multivariate linear regression for all data 

Multiple linear regression r (correlation coefficient) 
PR_n = -0.563(thrust_n) -0.217(RPM_n) -0.032(RQD_n) -0.088(UCS_n) +0.975 0.688 
PR_n = -0.578(thrust_n) -0.224(RPM_n) -0.025(RQD_n) -0.135(p wave velocity_n) +1.023 0.690 
PR_n = -0.574(thrust_n) -0.226(RPM_n) -0.034(RQD_n) -0.111(s wave velocity_n) +1.016 0.689 
PR_n = -0.563(thrust_n) -0.237(RPM_n) -0.007(RQD_n) -0.149(deformation modulus_n) +1.009 0.694 

(PR_n : normalized penetration rate, thrust_n : normalized thrust, RPM_n : normalized RPM, RQD_n : normalized RQD, UCS_n : normalized UCS, p wave velocity_n : 
normalized p wave velocty, s wave velocity_n : normalized s wave velocity, deformation modulus_n : normalized deformation modulus) 
 
Table 4. Performance evaluation for each model  

Model Test r (Correlation coefficient) RMSE VAF Point for r Point for RMSE Point for VAF Sum of Point 
Linear regression 1 Train 1 0.69  0.1797  47.6  2  4  2  8  
Linear regression 2 Train 2 0.66  0.1824  43.2  1  1  1  3  
Linear regression 3 Train 3 0.69  0.1823  48.0  3  2  3  8  
Linear regression 4 Train 4 0.72  0.1763  51.8  5  5  5  15  
Linear regression 5 Train 5 0.70  0.1820  49.6  4  3  4  11  
ANFIS 1 Train 1 0.74  0.1658  55.4  5  5  4  14  
ANFIS 2 Train 2 0.71  0.1696  51.5  1  4  1  6  
ANFIS 3 Train 3 0.73  0.1729  53.7  3  3  2  8  
ANFIS 4 Train 4 0.73  0.1746  56.2  2  2  5  9  
ANFIS 5 Train 5 0.73  0.1749  54.1  4  1  3  8  
Linear regression 1 Test 1 0.62  0.2041  52.9  5  3  5  13  
Linear regression 2 Test 2 0.48  0.2014  34.4  2  4  4  10  
Linear regression 3 Test 3 0.48  0.2049  24.0  3  2  1  6  
Linear regression 4 Test 4 0.44  0.2124  26.1  1  1  2  4  
Linear regression 5 Test 5 0.54  0.1860  33.7  4  5  3  12  
ANFIS 1 Test 1 0.73  0.1781  70.9  4  2  5  11  
ANFIS 2 Test 2 0.69  0.1657  61.3  3  4  4  11  
ANFIS 3 Test 3 0.68  0.1702  47.9  2  3  2  7  
ANFIS 4 Test 4 0.44  0.2119  30.4  1  1  1  3  
ANFIS 5 Test 5 0.74  0.1477  55.4  5  5  3  13  

 
Table 5. Calculation of performance point for each model 

Model Train Test Performance point 
model 1 8+14= 22 13+11=24 8+14+13+11=46 
model 2 3+6= 9 10+11=21 3+6+10+11=30 
model 3 8+8= 16 6+7=13 8+8+6+7=29 
model 4 15+9=24 4+3=7 15+9+4+3=31 
model 5 11+8=19 12+13=25 11+8+12+13=44 

 

Fig. 1. ANFIS structure (Jang, 1993) 
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