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ABSTRACT

Penetration rate of shield TBM is a very important factor used to estimate the construction period and cost. However,
the prediction procedure of penetration rate is complicated because there are many factors to consider such as rock
mass condition and TBM operating parameters. Therefore, it has become a good alternative to develop a simple
prediction model of penetration rate based on some rock mass properties and mechanical measurement data. For this
reason, 32 data were collected from the field in this study, and rock quality designation, deformation modulus, Thrust,
and revolution per minute were selected as input parameters for model development. Using these variables, two
prediction models such as multivariate linear regression and adaptive neuro-fuzzy inference system were developed.
In addition, both models were verified and compared by various evaluation indices. The developed two models are
expected to be applied for prediction purposes under a similar condition to the field.
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1 INTRODUCTION

Shield TBM, one of the mechanized tunneling, is a
full section excavation method propelling forward as
supporting with a segment in inner space to prevent a
collapse of the surrounding ground by using ‘Shield’. A
small-diameter shield TBM(<@4m) was first used in
Korea in 1987 for supplying electric power and
telecommunication, and a larger diameter shield TBM
has been applied for the purpose of subway construction
since the mid-1990s (Lee et al. 2011). Since then, the use
of shield TBM has been increased constantly, and it has
become important to estimate a construction period and
cost.

Penetration rate can be defined as net excavation
distance per unit time. It is an important factor in
estimating the construction period. However, the process
of predicting the penetration rate is complicated because
there are many things to consider such as rock mass
conditions, TBM operating parameters (Rostami et al.
1996). To overcome this difficulty, empirical models
based on database obtained from the field have been
proposed by several researchers. Yagiz (2008)
developed a multivariate linear regression through the
database from the project in New York, Queens Water
Tunnel, in which the open TBM(®7.06m) was used.
Benardos and Kaliampakos (2004) applied the ANN
model based on the database from Athene Metro line 3
using EPB type shield TBM(®9.48m). Yagiz and
Karahan (2011) used particle swarm optimization for
Queens Water tunnel to predict the PR. Several
techniques such as differential evolution, grey wolf
optimization, and hybrid harmony search also were
applied (Yagiz and Karahan 2015).

In this study, an appropriate model satisfied with a

specific project where a small-diameter(<@4m) shield
TBM was used, was selected to estimate the penetration
rate. To develop the model, data were collected from a
field, and key parameters influencing a penetration rate
were selected. Using these variables, two predictive
models, multivariate linear regression and adaptive
neuro-fuzzy inference system (ANFIS) were constructed
and, verified and compared by various evaluation indices.

2 SELECTION OF INPUT VARIABLES

Selecting input variables to build a prediction model
is important. In general, statistical methods can be used
to select variables. It is necessary to select the input
variables with high correlation for output variable and
consider redundancy between the input variables.
However, when considering statistical methods only,
important variables for a specific field can be missed.
Therefore, in this study, not only statistical methods but
also geotechnical characteristics of variables were tried
to be considered.

As a preliminary work for selecting variables, 32 data
were collected through borehole data and automatically
measured mechanical data in the field in Korea. The
variables in these data, such as uniaxial compressive
strength (UCS), rock quality designation (RQD), rock
mass rating (RMR), lugeon, absorption, p wave velocity,
s wave velocity, deformation modulus, thrust, revolution
per minute (RPM), and torque were obtained as input
variables for penetration rate. Table 1 shows descriptive
statistics on the collected data. As a first step, the
Pearson’s correlation coefficient matrix was constructed
as shown in Table 2 to determine the degree of
correlation between variables. The correlation for
penetration rate was -0.636 for thrust, -0.447 for RPM, -
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0.340 for RMR, and -0.288 for RQD. The rest of the
input variables (lugeon, absorption, torque etc.) did not
show any significant correlation. In the relationship
between the input variables, the correlation coefficient
between RMR and RQD was very large (r=0.969) which
represents high redundancy. Also, RQD is the main
factor for estimating RMR. Therefore, RMR was
excluded under consideration in this study.

In the second step, geotechnical characteristics were
considered to select input variables. The strength
characteristics for the rock mass is well known to have a
major influence on the bore-ability of TBM (Gong et al.
2009), and UCS, p wave velocity, s wave velocity, and
deformation modulus can be included in this category. A
representative property specifying the strength of rock
mass is UCS, which showed a correlation coefficient of
0.853 for p-wave velocity, 0.826 for s-wave velocity and
0.769 for deformation modulus. In this study, non-
redundant variables (RQD, Thrust, and RPM) were fixed
as input variables and multivariate linear regression
analysis was performed for each variable with strength
characteristics (Table 3). Thrust was the most significant
influence for penetration rate and, followed by RPM. On
the other hand, RQD and other properties related to
strength characteristics showed a relatively poor
correlation with the penetration rate. It can be seen that
the penetration rate is influenced by the TBM operating
parameters than the rock mass parameters. In Table 3,
the correlation coefficients of the four models did not
show a significant difference, but the linear regression
with deformation modulus had the highest fitness among
the four models. Therefore, in this study, thrust, RPM,
RQD and deformation modulus for model development
were selected as input variables.

3 CONCEPT AND CONSTRUCTION OF
MODEL

As mentioned earlier, the problem of predicting
penetration rate is complicated and nonlinear because
there are many factors to consider such as rock mass
condition and TBM operating parameters (Rostami et al.
1996). To overcome this difficulty, ANFIS has been
used by some researchers as a popular tool (Grima et al.
2000; salami et al. 2016). The ANFIS is a hybrid system
that can satisfy both the learning ability of artificial
neural network and the reasoning ability of the fuzzy
inference system of the Sugeno type (Takagi and Sugeno,
1985). The fuzzy inference system deals with high-level
inference using language information acquired by
experts in a specific field and this information is
reflected in an activation function called a membership
function. But it cannot adapt to the new environment
itself. Thus, Jang (1993) developed the ANFIS that
adjusts the membership functions effectively through
machine learning of neural networks.

The structure of the ANFIS consists of five layers.
For simplicity of illustration, it is assumed that it has two

input values (x, y) and one output value (f) as shown in
Fig. 1. It also uses two if-then rules of Takagi-Sugeno

type.

Rule 1:If x is Ay and y is By, then fi =pix+qy +1;
Rule 2:If x is A, and y is By, then f, = p,x + @,y + 15

Layer 1: every node i in this layer is a square node
containing a node function
0} = pa,(x) )
Where x is input to node i, O} is the activation
function of A; which is called the membership function.
It means the degree to which the given x satisfies the
quantifier A;. The membership function used mostly is
Gaussian and bell-shaped function with a maximum
equal to 1 and a minimum equal to 0. The Gaussian
membership function can be expressed as follow
—c:)2
ta;(x) = exp (— %) ()
Where a; and c¢; is a variance and mean value of
function respectively. When the values of these
parameters change, the shape of Gaussian function also
changes. Parameters in this layer are called as ‘premise
parameters’.

Layer 2: Every node in this layer is a circle node
which multiplies the incoming signals and sends output
signals to the next layer.

wi = g, (x) X pg,(x), i=1,2 3)
Each output of the node in this layer represents the firing
strength of the if-then rule.

Layer 3: Every node in this layer is a circle node. This
ith node computes the ratio of the ith firing strength to
the sum of all firing strengths.

J— wi
w, =

, i=1,2 4
wWi+w,
The output in this layer can be referred to as normalized
firing strengths.

Layer 4: Every node in this layer is a square node
Of =wfi =W, (fy = pix + qiy +17) (5)
Where, p;, q; and r; are the parameter set which
called as ‘consequent parameters’.

Layer 5: The single node in the last layer calculates
the overall output as the summation of all incoming
signals as follow,

Overall output = 05 = ¥, W,f; (6)
Unlike ANN learning in a backward direction, the
ANFIS proposed by Jang (1993) trains both forward and
backward direction. In a forward direction, the
parameters of the activation functions called
membership functions are fixed, and then the coefficient
estimates of the first-order formulas are adjusted by
recursive least squares. In a backward direction,
coefficients of first-order formulas are fixed first, and the



Ni~@

Asian Regional Conference on
Soil Mechanics and

techanic:
Geotechnical Engineering

Procds. of the 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering,

parameters of activation functions are renewed by the
gradient descent method. For this reason, ANFIS allows
fast convergence and it is also widely used in various
field.

In this study, ANFIS and multivariate linear
regression were developed, and the data was classified
into 80% training and 20% test randomly for
performance comparison. 26 data for model training

were randomly selected and the rest were used for testing.

This procedure was repeated five times, and five ANFIS
and multivariate linear regression models were
developed. The number of membership functions which
is assigned to each input variable and the learning rate
were set to 2 and 0.01 respectively by trial and error.

4 PERFORMANCE EVALUATION AND
SELECTION OF OPTIMUM MODELS

As mentioned above, five ANFIS and multivariate
linear regression models were developed, and each
model was validated with training data and test data. The
performance of the training data means good learning of
the model, and the performance for the test data
represents generalization of the model. In this study,
three evaluation indices such as correlation coefficient,
root mean square error and variance accounted for were
introduced to prevent bias in performance evaluation.
Table 4 shows the results of performance evaluation for
each model. In these results, the correlation coefficient
of ANFIS was slightly larger than the multivariate linear
regression for the training data, but there was no
significant difference. On the other hand, for test data,
ANFIS showed better performance than the multivariate
linear regression, and it can be concluded that ANFIS is
a more generalized model.

To select the optimal model, a point system was
introduced. For example, in Table 4, the correlation
coefficient for training data in linear regression gives a
higher point in descending order. In the same way, after
the calculation is repeated for different performance
indices, the ‘sum of point’ is calculated as a summation
of the point for each performance index. Finally, the
‘performance point’ in Table 5 is computed as the
summation of the 'sum of point' of each model
(multivariate linear regression, ANFIS) for randomly
divided data. As shown in Table 5, the test point for
model 5 were calculated as 25 which is higher than that
of model 1. Nonetheless, model 1 showed the highest
performance point. It is due to the fact that the train point
denoting good learning for model 5 were less than that
of model 1. As a result, linear regression 1 and ANFIS 1
were selected as the best performance models.

5 CONCLUSIONS

Two different models were developed and compared
based on the data obtained from the field with shield

Table 1. Descriptive statistics for obtained data

TBM((<@4m). The performance of ANFIS for test data
was not noticeable but it was still higher than
multivariate linear regression. This seems to be due to
the small number of data collected from the field.
However, both models derived from this study have a
significance in explanatory power. Also, if the data is
accumulated continuously, it is expected that there will
be a meaningful improvement in performance,
especially ANFIS. Lastly, these models will be
applicable under similar rock mass condition and shield
TBM.
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Penetration rate ucCs RQD RMR Lugeon Absorption P wave S wave Deformation Thrust RPM Torque
velocity velocity modulus
(mm/min) (MPa) (%) (%) - - (m/sec) (m/sec) (MPa) (kN) - (kN'm)
Mean 36.75 96.2 41.1 50.2 8.3 0.26 4065 2473 38303 4340 7.37 2974
Std.deviation 9.55 47.1 29.0 16.4 252 0.16 994 640 17188 1007 1.68 499
Coef. of 0.26 049 071 033 3.03 0.61 0.24 0.26 0.45 023 023 0.17
variance
Skewness -0.64 0.29 0.59 0.59 4.56 0.99 -0.87 -0.86 0.45 0.44 -0.54 -0.85
Kurtosis -0.46 0.07 -0.61 -0.43 2221 -0.38 1.70 1.40 0.52 -0.36 -0.59 1.05
Num. of data 32 32 32 32 32 32 32 32 32 32 32 32
Table 2. correlation coefficient matrix between variables
11‘)::; etration ucs RQD RMR Lugeon Absorption felocv;l:;e seloc;:;ve zzt;(;:x:non Thrust RPM Torque
Penetration rate 1.00
ucs -0.01 1.00
RQD -0.29 0.42 1.00
RMR -0.34 0.51 0.97 1.00
Lugeon 0.06 0.04 -0.35 -0.29 1.00
Absorption -0.01 -0.76 -0.36 -0.47 0.14 1.00
P wave velocity 0.06 0.85 0.34 0.42 0.20 -0.62 1.00
S wave velocity 0.11 0.83 0.26 0.35 0.32 -0.58 0.99 1.00
Deformation modulus 0.02 0.77 0.37 0.42 0.17 -0.43 0.82 0.83 1.00
Thrust 0.64 -0.13 0.19 021 -0.03 0.28 -0.25 0.27 0.21 1.00
RPM -0.45 -0.05 0.45 0.40 -0.31 0.04 -0.14 -0.22 -0.14 0.35 1.00
Torque -0.08 0.23 0.36 0.29 0.14 -0.06 0.32 0.32 0.33 0.18 -0.12 1.00
Table 3. Multivariate linear regression for all data
Multiple linear regression r (correlation coefficient)
PR _n=-0.563(thrust_n) -0.217(RPM_n) -0.032(RQD_n) -0.088(UCS_n) +0.975 0.688
PR_n=-0.578(thrust_n) -0.224(RPM_n) -0.025(RQD_n) -0.135(p wave velocity n) +1.023 0.690
PR n=-0.574(thrust n) -0.226(RPM_n) -0.034(RQD n) -0.111(s wave velocity n) +1.016 0.689
PR _n =-0.563(thrust_n) -0.237(RPM_n) -0.007(RQD n) -0.149(deformation modulus n) +1.009 0.694

(PR_n : normalized penetration rate, thrust_n : normalized thrust, RPM_n : normalized RPM, RQD_n : normalized RQD, UCS_n : normalized UCS, p wave velocity n:
normalized p wave velocty, s wave velocity n : normalized s wave velocity, deformation modulus_n : normalized deformation modulus)

Table 4. Performance evaluation for each model

Model Test r (Correlation coefficient) RMSE VAF  Point for r  Point for RMSE  Point for VAF _ Sum of Point
Linear regression 1~ Train 1 0.69 0.1797 476 2 4 2 8
Linear regression 2 Train 2 0.66 0.1824 432 1 1 1 3
Linear regression 3 Train 3 0.69 0.1823  48.0 3 2 3 8
Linear regression 4  Train 4 0.72  0.1763 51.8 5 5 5 15
Linear regression 5 Train 5§ 0.70  0.1820  49.6 4 3 4 11
ANFIS 1 Train 1 0.74  0.1658 554 5 5 4 14
ANFIS 2 Train 2 0.71  0.1696 515 1 4 1 6
ANFIS 3 Train 3 0.73 01729 537 3 3 2 8
ANFIS 4 Train 4 0.73  0.1746  56.2 2 2 5 9
ANFIS 5 Train 5 0.73 01749  54.1 4 1 3 8
Linear regression 1~ Test 1 0.62 02041 529 5 3 5 13
Linear regression 2 Test 2 048 02014 344 2 4 4 10
Linear regression 3~ Test 3 048  0.2049 24.0 3 2 1 6
Linear regression4  Test 4 044 02124 26.1 1 1 2 4
Linear regression 5 Test 5 0.54 0.1860  33.7 4 5 3 12
ANFIS 1 Test 1 0.73  0.1781  70.9 4 2 5 11
ANFIS 2 Test 2 0.69 0.1657 613 3 4 4 11
ANFIS 3 Test 3 0.68 0.1702 479 2 3 2 7
ANFIS 4 Test 4 0.44 02119 304 1 1 1 3
ANFIS 5 Test 5 0.74  0.1477 554 5 5 3 13

Table 5. Calculation of performance point for each model

Model Train Test Performance point
model 1 8+14=22 13+11=24 8+14+13+11=46
model 2 3+6=9 10+11=21 3+6+10+11=30
model 3 8+8=16 6+7=13 8+8+6+7=29
model 4 15+9=24 4+3=7 15+9+4+3=31
model 5 11+8=19 12+13=25 1148+12+13=44

Fig. 1. ANFIS structure (Jang, 1993)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
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