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ABSTRACT 
 
Tunneling-induced surface settlements in soft ground conditions threaten the stability of nearby structures, especially 
during subway tunnel excavation in urban areas. Therefore, controlling the surface settlement before excavation is 
the key to successful tunneling. There have been numerous means for predicting surface settlements during TBM 
tunneling such as empirical, analytical and numerical approaches. However, these techniques occasionally show poor 
predicting performance when being applied to actual excavation sites due to complex and unique surface settlement 
mechanisms. To circumvent limitations of the existing prediction methods, machine learning techniques such as the 
artificial neural network has been recently introduced. In this paper, the extreme learning machine (ELM), which is 
an improved version of the artificial neural network, is applied to verify its cost efficient neural network model for 
the prediction of surface settlements. 14 settlement-inducing features categorized as the tunnel geometry, TBM 
operating conditions and geological conditions are collected from the Hong Kong shield TBM tunneling site. The 
performance of ELM is compared with the well-known Levenberg Marquardt and the Bayesian Regularization 
algorithm for the same single-layered neural network. The obtained results show the significance of performance 
achieved by the ELM-based prediction of surface settlements. 
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1 INTRODUCTION 

Ground surface settlements induced by shield 
tunneling in shallow, soft ground conditions have been 
a major concern for urban metro tunnel excavation. 
Settlement-induced vertical and horizontal ground 
movements cause critical damage to both surface and 
subsurface infrastructures in highly crowded urban 
areas. The precise prediction of surface settlements in 
such conditions remains challenging due to the complex 
interaction of ground and tunnel excavation. The 
empirical approaches to the estimation of surface 
settlements propose empirical formulae, based on an 
extensive database collected from the preceding tunnel 
excavation cases, to fit the settlement trough 
approximately corresponding to the Gaussian or normal 
distribution curve (Martos, 1958; Peck, 1969; Kimura 
and Mair, 1981; O’Reilly and New, 1982; Attewell et 
al., 1986). The analytical approaches adopt well-known 
mechanical theories for the estimation of surface 
settlements exclusively for simplified or idealized 
conditions (Clough and Schmidt, 1981; Sagaseta, 1987; 
Yi et al., 1993; Lognathan and Poulos, 1998). On the 
contrary, the numerical approaches such as the finite 
element method (FEM) and the finite difference method 
(FDM) take account more complex ground conditions, 
initial and boundary conditions and time-dependent 
effects to estimate surface settlements (Leca and New, 

2007). Estimating performance of the aforementioned 
approaches shows intrinsic limitations induced by 
highly complicated and nonlinear relationship among 
the settlement inducing factors. 

Well known features causing the settlement during 
TBM excavation are summarized as the face support 
pressure, excavation method, advance rate, geological 
condition and tunnel geometry (Suwansawat and 
Einstein, 2006; Neaupane and Adhikari, 2006; Santos Jr. 
and Celestino, 2008). Along with the complicated 
nonlinear relationship among the features, the inherent 
uniqueness of ground surface settlements tendency of 
each tunneling site impairs the performance of the 
classic approaches. To overcome this matter, 
computational network models such as the artificial 
neural network and the support vector machine have 
been suggested to reliably predict surface settlements 
during shield TBM excavation. 

Along with extensive databases collected from 
electronic sensors instrumented at the excavation site, 
the recent development of powerful computing systems 
allows the researchers to develop various network 
models as a promising prediction tool. One of the most 
powerful network models is the artificial neural 
network (ANN). The ANN is a computational network 
model inspired by the biological signal process of brain 
cells. Its prediction capability comes from the collective 



 

 

computation power between internal nodes, which 
enables the network to “self-learn” features of the given 
database. Since the first development of ANN by 
Hopfield (1982) and the multiple layer perceptron 
model of ANN by Rumelhart (1986), development of 
the backpropagation learning algorithm allows the 
ANN to be applied in almost all engineering areas. 

Even with the ANN’s self-learning and non-linear 
approximation feature, there are some typical 
disadvantages in the ANN such as the presence of local 
minima and slow learning convergence due to the 
intrinsic learning mechanism of the backpropagation 
algorithm. Being suggested by Huang et al. (2006), the 
ELM can be a new learning approach for 
single-hidden-layer feedforward neural networks, 
which was devised to overcome the ANN’s drawbacks. 
The ELM provides good generalization performance 
and rapid convergence rate. 

2 EXTREME LEARNING MACHINE 

The ELM is a single-hidden-layer feedforward 
network (SLFN) that adopts analytical determination 
for tuning the hidden neurons (Huang et al., 2006). 
Compared to traditional neural networks, the ELM 
algorithm performs significantly faster training task. 
The traditional learning algorithm iteratively optimizes 
network parameters by minimizing the cost function 
with the aid of gradient-based algorithms. In case of the 
complex neural network structure, the computation 
process becomes expensive and time consuming. In 
order to reduce the computational cost and time, the 
ELM randomly assigns the values of input weights and 
hidden layer bias, then calculates the system of linear 
equations for the hidden layer output matrix and output 
weights. The hidden layer of ELM nonlinearly 
transforms input data into the ELM feature space, 
which is a higher dimensional space (Huang et al., 
2015). The transformation often allows linear 
partitioning of the nonlinear input data in the ELM 
feature space as shown in Figure 1. 

 
Fig. 1. ELM feature mapping and ELM feature space 

3 SITE CONDITION AND DATABASE 

3.1 Site condition 
The data set, which was collected from slurry shield 

TBM subway tunnelling site at Hong Kong, was used 
to verify the performance of implemented neural 
networks. The tunnel was constructed in the mixed 

ground condition consisted of alluvial soil, weathered 
soil and weathered rock. Details of the geological 
profile at the site, consists of granite, are sorted into 
layers according to the level of weathering 
(moderately/completely decomposed granite, 
MDG/CDG). The surface layer of ground contains 
alluvium and fill, with the groundwater table around 2.5 
m below the ground surface. 

The diameter of the excavated tunnel is 7.45 m with 
the inner segment diameter of 6.8 m. The tunnel depth 
ranges between 12.6 m and 18.6 m, that is 1.7 ~ 2.5 
times of the tunnel diameter. In most sections, the 
tunnel passes through fill, alluvium and CDG layer, 
which are weathered rock region.  

3.2 Settlement measurements 
The measurement of surface settlements along the 

up-track tunnel was collected from 248 points within 
the target area. Like other urban area metro tunnels, 
most of settlement measuring points should be located 
away from the centerline of the tunnel (i.e., tunnel 
crown) due to the existing buildings and roads. In this 
study, settlements within 25.5 m at maximum 
longitudinal distance were merged into one section, 
consisting of different numbers of measurements 
between 1 to 9. The horizontal distance from the 
centerline for each settlement point was also concerned. 
The final or maximum settlement was defined as the 
settlement measurement after two months of excavation 
to consider the secondary settlement effect. Figure 2 
shows the distribution of 69 longitudinal sections along 
the up-track tunnel defined for this study. 

 
Fig. 2. Distribution of 69 sections along the up-track tunnel 

3.3 Network input 
For the training phase of network models, 

settlement-inducing input features are divided into three 
main categories; tunnel geometry, excavation method 
and ground geological conditions. The settlement 
inducing features are chosen based on previous 
researches with consideration of the degree of influence 
to the settlement. The chainage length, horizontal 
distance, soil cover above the tunnel and twin tunnel 
parameter are chosen as the tunnel geometry features. 
The twin tunnel parameter corresponds to the distance 
between the up and down track tunnel, which ranges 
between 0 and 16.77 m. At the further most point, the 
distance between the two tunnel is as long as twice of 
tunnel diameter (2D). Face pressure, advance speed, 
back grout injection volume and pitching data are 



 

 

selected as the TBM operating data. For the input 
feature of geological conditions, the soil type at the 
tunnel crown, springline and invert, and N value were 
collected. 

Soil types around the tunnel were divided into four 
sections and labeled in numerical values between 1 to 4, 
in the order of fill, alluvium, CDG and corestone. In 
addition, the N value at the crown and springline of 
tunnel were considered to relate with the shear strength 
of ground formations, which correlates with the ground 
loss, . All of 13 input features for 248 data sets were 
collected from the actual measurement at the site. The 
range of input values is shown in Table 1. 

 
Table 1. Network input database of settlement inducing features 

Type Description 

Geometrical 

Chainage length 
Horizontal distance 
Soil cover above tunnel 
Twin tunnel parameter 

TBM Data 

Face pressure 
Advance speed 
Back grout injection volume 
Pitching 

Geological conditions 

Soil type at tunnel crown 
Soil type at tunnel springline 
Soil type at tunnel invert 
SPT N value at tunnel crown 
SPT N value at tunnel springline 

4 NEURAL NETWORK MODELS 

The neural network models for settlement predicting 
are implemented using the Matlab program. Along with 
the ELM algorithm, two most popular backpropagation 
neural network training algorithms, i.e. Levenberg 
Marquardt (LM) and Bayesian Regularization (BR) 
algorithm, were considered for the purpose of 
comparison as the same single-layered neural network. 
In this study, 70% of the input data sets were randomly 
assigned as the training sets, while the remaining sets 
were assigned as the testing sets. In case of the LM 
algorithm, the testing sets were additionally divided 
into the validation and testing sets equally. 

4.1 Model implementation 
The prediction performance of neural networks is 

evaluated based on two statistical evaluation criteria: 
the root mean square error (RMSE) and coefficient of 
correlation (R) as given by Equation 1 and 2. 
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where o is the actual value and t is the predicted value, 

 and  are the means of actual and predicted values, 
respectively. N is the number of data sets. 

The backpropagation neural networks with the LM 
and BR training algorithms are implemented. The 
automatic recommendation tuning parameters were 
chosen for the best training performance in both 
algorithms. The optimal hidden node number was 
determined for each algorithm by the trial-and-error 
method, ten hidden nodes for both LM and BR 
respectively. The average performance of the 
backpropagation neural network algorithm is measured 
after 20 runs.  

The same SLFN structure was trained using the 
ELM algorithm. The optimal hidden node number for 
the ELM prediction model was 50 according to the 
testing result. The average performance of ELM was 
measured after running 100 times because of the 
randomly assigned input weights and hidden bias 
values. Figure 3 shows the result of parametric analysis 
for the optimal number of hidden nodes. 

4.2 Performance 
The performance indices of the developed neural 

network models with the optimal hidden-node number 
are presented in Table 2 indicating that the ELM model 
has the lowest value of RMSE in the testing datasets. 
Although the RMSE value of ELM with the training 
datasets is higher than the other ANN algorithms, the 
low value of RMSE with the testing datasets indicates 
that the ELM has better generalization performance 
than the backpropagation neural networks. Also, the 
R-value of ELM with the testing datasets shows 
excellent performance, similar to that of ANN-BR’s. 
The computing time of each run in the ELM was at 
least 100 times faster than the other two methods, 
showing the superiority of ELM in both performance 
and computing time. 

 
Table 2. Performance of ANN-LM, ANN-BR, and ELM models 

Predictive model Train Test 
RMSE R RMSE R 

ANN-LM 
(10 hidden nodes) 1.972 0.837 3.166 0.678 

ANN-BR 
(10 hidden nodes) 1.206 0.939 2.510 0.841 

ELM 
(50 hidden nodes) 2.220 0.857 2.496 0.832 

 



 

 

 
Fig. 3. Performances of neural network models depending on 

hidden neuron numbers for (a) ANN-LM (b) ANN-BR (c) ELM  

5 DISCUSSION AND CONCLUSION 

Computer aided analysis such as machine learning 
techniques helps establish the complex and nonlinear 
relationship between the excavated TBM tunnel and 
ground movement. Machine learning-based prediction 
of surface settlements considers all of the 
settlement-inducing factors, which have been neglected 
in previous approaches such as empirical, analytical 
and numerical methods. Despite wide adaptability of 
the backpropagation ANN, the high computational cost 
with time consuming training demand becomes 
problematic when being applied at actual tunneling 
sites for the prediction of surface settlements. The ELM 
successfully complements the shortcomings of the 
backpropagation ANN, resulting in a lower prediction 
RMSE value and swift training time. 

The testing result of the ELM showed the lowest 
RMSE value of 2.496, while the ANN-LM and 
ANN-BR showed the RMSE of 3.166 and 2.510, 
respectively. The R-value of ELM testing result was 
0.832, lower than that of the ANN-BR of 0.841. 
However, compared to ANN-LM’s R-value of 0.678, 
the R-value of ELM testing is promising enough. Even 
with high performance, the training of ELM networks 
was fastest, showing around 100 times faster training 
process when compared to the ANN-LM. 

Some of the issues regarding the ELM algorithm 
can be summarized as follows; During the training 
phase of neural network models, the ELM may need 
higher numbers of hidden neurons due to the random 
determination of the input weights and hidden biases to 
obtain good generalization performance. For this matter, 
there may exist some suboptimal or unnecessary input 
weights and hidden biases arising in the ELM structure. 
Further studies on these matters will lead to better 
performance of prediction of surface settlements using 
the ELM. 
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