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ABSTRACT 
 
Climate change caused by global warming affects Taiwan significantly for the past decade. The increasing frequency 
of extreme rainfall events, in which concentrated and intensive rainfalls generally cause geohazards including 
landslides and debris flows. The extraordinary, such as 2004 Mindulle and 2009 Morakot, hit Taiwan and induced 
serious flooding and landslides. This study employs rainfall frequency analysis together with the atmospheric general 
circulation model (AGCM) downscaling estimation to understand the temporal rainfall trends, distributions, and 
intensities in the adopted Wu River watershed in Central Taiwan. To assess the spatial hazard of the landslides, 
landslide susceptibility analysis was also applied. Different types of rainfall factors were tested in the susceptibility 
models for a better accuracy. In addition, the routes of typhoons were also considered in the predictive analysis. The 
results of predictive analysis can be applied for risk prevention and management in the study area. 
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1 INTRODUCTION 

The climate change affects Taiwan significantly by 
an increasing frequency of extreme rainfall events, in 
which induced large scale landslides. Considering the 
existence of various types of large scale landslides and 
the protection targets, this study aims to analyze the 
landslide susceptibility along the Nantou County Road 
# 89 of Taiwan (see Fig.1). For the predictive analysis 
of landslide susceptibility, this study employed AGCM 
downscaling estimation. For the adopted large scale 
landslides (see Fig. 2), based on the information from 
boreholes, the temporal behavior and the complex 
mechanism of large scale landslides were analyzed in 
local scale. Based on the results, the pros and cons of 
the analysis in both scale were discussed, which could 
be applied for the risk assessment and management.  

 
Fig. 1. Geology of the study area 



 

 

 
Fig. 2. Large landslide along the Nantou County Road # 89 

2 METHODOLOGIES 

Landslide inventories, SPOT satellite images, 
borehole data were collected in the study area, 
including 5 major deep-seated landslides along the 
County Road #89. The obtain information and data 
were used for the shallow and deep-seated landslides in 
different scale. 

2.1 Landslides intepretation 

This study adopts the NDVI-slope angel criterion, in 
which the normalized differential vegetation index 
(NDVI) is from satellite images and the slope angle is 
from digital elevation model (DEM). And improving 
the accuracy of landslide identification in shadow areas 
with different screening indexes, including brightness 
(BRI, Hsieh et al 2011), greenness (GI, Liu et al 2012; 
Lin et al 2013), and vegetation mask (Beumier and 
Idrissa 2014). The compare of landslides interpretation 
in different indexes as Table 1. A1 is the number of 
landslide cells interpreted as landslide, A3 is the 
number of landslide cells not interpreted as landslide, 
A2 is the number of non-landslide cells interpreted as 
non-landslide, A4 is the number of non-landslide cells 
interpreted as landslide. 

 
Table 1. Comparison of the Criteria for Automatic Landslide 
Interpretation. 

Criterion 

Accuracy of 
Landslide 
Cells 
A1/ 
(A1+A3) 

Accuracy of 
Non-landslide  
Cells A4/ 
(A2+A4) 

Accuracy of 
Total Cells 
(A1+A4)/ 
(A1+A2+ 
A3+A4) 

Slope=20%, NDVI=0, 
BRI=40 6.60 99.63 98.49 

Slope=20%, NDVI=0, 
GI=0.25 7.11 99.62 98.49 

Slope=20%, NDVI=0.2 21.02 97.79 96.86 
Slope=20%, NDVI=0.2, 
BRI=40 18.81 97.87 96.90 

Slope=20%, NDVI=0.2, 
GI=0.25 20.40 97.92 97.00 

Slope=20%, NDVI=0.2, 
BRI=60 7.04 98.46 97.34 

2.2 Landslide-rainfall index (Id) 

For a specific typhoon event, by the overlapping 
function of GIS, the accumulated rainfall and rainfall 
intensity data at the landslide locations can be extracted 
and plotted in graph of accumulated rainfall and rainfall 
intensity (see Fig. 3).The landslide-rainfall index (Id) is 
defined by the distances d1 and d2 from the unknown 
point to the linear thresholds as d2/(d1+d2) (Shou et al, 
2015). 

 

 
Fig. 3. The landslide-rainfall index (Id) is defined as d2/(d1+d2). 

 
It ranges between 0 and 1. As Id approaches 1, the 

slope becomes increasingly susceptible to 
rainfall-induced landslide. On the contrary, as the point 
of the rainfall of potential landslide approaches the 
lower threshold, or as Id approaches 0, the slope 
becomes less susceptible to landslide. 

2.3 Landslide susceptibility models 

This study adopts the In Logistic Regression 
Method for the landslide susceptibility analysis. Its 
performance was compared for the analyses of 2004 
Mindulle, 2009 Morakot, and 2012 Saola. Based on the 
training samples, which comprised a group of data 
points or data locations, categorized as landslide and 



 

 

non-landslide. The data layer of each factor was then 
placed upon the landslide and non-landslide layers, and 
the correlation between each factor and landslides was 
used to conduct binary logistic regression. For the 
susceptibility model obtained by logistic regression, 
this study employed the receiver operating 
characteristic (ROC) curve (Swets 1988), in which the 
area under the curve (AUC) of the ROC curve was used 
to evaluate the prediction accuracy. Generally, the 
larger the AUC values the better. As the area 
approaches 0.5, the result may not necessarily be 
superior to that of a random selection. AUC values of 
less than 0.5 are not worth employing. 

 

2.4 Rainfall predictions 

This study employs rainfall frequency analysis 
together with the atmospheric general circulation model 
(AGCM) downscaling estimation to understand the 
temporal rainfall trends (see Fig. 4), distributions, and 
intensities in the adopted study area in Central Taiwan. 

 

(a)  near future               (b) far future 
Fig. 4. The predicted rainfall distributions in the upper Wu River 
watershed for the near future (2017~2036) and far future 
(2075~2099), based on the MRI-WRF dynamical downscaling 
data provided by TCCIP. 

 

To assess the spatial hazard of the landslides along the 
mountain highways, landslide susceptibility analysis 
was applied. Landslide susceptibility model established 
by logistic regression method was applied and 
discussed. The results of predictive analysis can be 
applied for risk prevention and management in the 
study area. 

3  LANDSLIDE SUSCEPTIBILITY ANALYSIS 

This study adopts the Logistic Regression Method 
for the landslide susceptibility analysis. The model 
based on 2004 Mindulle can be expressed as 

 
P=0.663F1+0.055F2-0.317F3-0.062F4-0.301F5 
-0.216F6-0.093F7+0.081F8-2.451F9+0.295    (1)                                     
 

 

where P is the logistic function, F1 is the slope angle, 
F2 is the elevation, F3 is the aspect, F4 is the distance 
to fault, F5 is the distance to river, F6 is the distance to 
road, F7  is the dip slope index (Ids), F8 is the 
landslide-rainfall index (Id), and F9  is the normalized 
differential vegetation index (NDVI). Eq. (1) can be 
used to calculate the landslide susceptibility based on 
the predicted rainfalls, including various extreme 
weather scenarios as below. 

By using Eq. (1), we can estimate the landslide 
susceptibility of 2009 Morakot and 2012 Saola based 
on their specific rainfalls. The ROC curves for these 
estimations shows the AUC values are 0.806 for 2009 
Morakot and 0.717 for 2012 Saola, which also reveal an 
acceptable performance of the 2004 Mindulle model. 

For the predictive analysis, the rainfall in the future 
was estimated by the climate change model introduced 
as below. The Taiwan Climate Change Projection and 
Information Platform Project (TCCIP), analyzes the 
results from the assessment reports of the United 
Nations Intergovernmental Panel on Climate Change 
(IPCC), results of 2004Mindulle and Top1 Typhoon 
show as Figs. 5~6, and compare of cells number as 
Table 2. 

 

 
Figure 4. The landslide susceptibility along Nantou 
County Road #89 estimated by 2004 Mindulle model 



 

 

 
Figure 5. The landslide susceptibility along Nantou 
County Road #89 estimated by the TCCIP Top1 
Typhoon 
 

Table 2 Comparison of the Landslide Susceptibility and Risk 
Ranking of the Large Scale Landslides 

Site 
Mindulle Landslide 
Susceptibility 

Predict Top1 
Typhoon(2075-2099) 
Landslide 
Susceptibility 

Value Ranking Value Ranking 
12k+300 0.968026 1 0.966557 1 
15k+850 0.873673 3 0.8683 3 
22k+530 0.69316 4 0.688009 4 
32k+500 0.913266 2 0.914724 2 
49k+000 0.247912 5 0.271284 5 

 
4  CONCLUSIONS 

In this study, rainfall frequency analysis and the 
atmospheric general circulation model (AGCM) 
downscaling estimation were applied to understand the 
temporal rainfall trends and distributions in the study 
area. The susceptibility analysis in catchment scale and 

local scale were performed for the hazard assessment of 
the mountain highway, i.e., Nantou County Road # 89 
in Central Taiwan. The hazard of the major landslides 
can be ranked to prioritize the hazard mitigation. It is 
worth noting that the results of local scale analysis also 
suggest a similar hazard ranking of these landslides, i.e. 
the sites 15k+850 and 12k+300 are the most dangerous. 
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