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ABSTRACT

Geotechnical estimation is site-specific due to the significant inherent variability in the soil properties. Soil data from
one site may not be applicable to another site. Ideally, site-specific soil property estimation should rely on
site-specific data rather than generic data obtained from other sites. However, site-specific data are often sparse and
insufficient to support site-specific estimation. In practice, non-site-specific (generic) soil data is widely used to
estimate soil properties in one site by appealing to similarity in soil behavior primarily based on the judgment of the
engineer. This paper focuses on the possible role of generic databases in site-specific soil property estimation. It is
proposed that the site-specific data can be combined with generic data in a suitable way to support site-specific
estimation using Bayesian machine learning. The research outcomes are demonstrated through the problem of
estimating the soil properties at a target site, in which a generic database previously compiled by the authors is

adopted to support site-specific soil property estimation.
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1 INTRODUCTION

In geotechnical engineering, there are two facts that are
in contrast to each other. On one hand, when it comes
to a local site, site-specific data are sparse. For a typical
site investigation program, a few boreholes and cone
penetration test (CPT) soundings may be conducted.
For the boreholes, only a limited number of depths are
measured (sparsity in the vertical direction), whereas
for both boreholes and CPT soundings, only a limited
number of horizontal locations are measured (sparsity
in the horizontal direction). The volume of the
investigated soil mass is very small compared with the
total soil volume mobilized by the actual structure. Also,
only a limited number of soil samples is available to
verify the correlation among different soil properties,
e.g., Atterberg limits, SPT N, preconsolidation stress,
undrained shear strength, etc. are simultaneously
measured at close proximity, and this multivariate
information is rarely complete (complete means that all
soil properties are simultaneously measured in a
particular location and at a particular depth). It is fair to
say that we are in a data-poor scenario for a local site,
both in space and in correlation. Phoon (2018)
described this situation as MUSIC: site-specific data are
Multivariate, Uncertain and Unique, Sparse, and
InComplete. Geotechnical engineers routinely need to
make decisions under MUSIC site-specific data. Phoon
et al. (2019) venture to suggest that MUSIC can be

re-interpreted to cover extremes: Multivariate,
Uncertain and Unique, Sparse, Incomplete, and
potentially Corrupted. The screening for extremes or
outliers is clearly important, but not covered in this
paper. Ching et al. (2019) proposed a simple chi-square
approach to identify outliers in a rock property database,
but this approach does not work for MUSIC data.

On the other hand, it is widely known that generic
(non-site-specific) data are abundant. Phoon et al. (2019)
coined the phrase “Big Indirect Data” (BID) to
emphasize that common perception of data sparsity in
geotechnical engineering is only accurate within a
site-specific context. Indirect data arising from sites
outside of the project boundary can range from
irrelevant to relevant, but one can imagine abundance
of the order of tens of thousands of soil records at a
regional/national scale. It is pedantic to ignore BID —an
experienced engineer will consider data from
comparable sites but he/she is unlikely to find time to
trawl tens of thousands of potentially useful soil records
systematically. Hence, comparable sites are mostly
restricted to those within his/her experience base likely
to be restricted to a few municipalities/regions. The
challenge is how to complement current practice
steeped in empiricism with data-driven methods to
extract maximum value from BID. While engineering
judgment remains pivotal in decision making, it is
ineffective in dealing with MUSIC and BID and their
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complex inter-relationships.

The compilation of generic multivariate soil
databases is gaining interest in recent years. Table 1
summarizes some databases, labeled as (geo-material
type)/(number of parameters of interest)/(number of
data points). For example, the CLAY/10/7490 database
(Ching and Phoon 2014a) consists of 7490 data points
for 10 clay parameters. These generic databases can
produce empirical transformation models among
different soil properties, such as those shown in Figure
1. These models are based on generic databases
covering multiple sites such as those presented in Table
1, because data from a single site are insufficient to
establish a transformation model. It is worth noting that
a transformation model constructed based on a generic
database is a generic model. The generic correlation
trend may not be the same as the local correlation trend
for a particular site. Figure 2 shows an example of the
site-specific effect in the correlation trend. Local trends
are evidently different from the generic trend. This is
also widely known, but there is no method of
characterizing this site effect in a routine project
guantitatively, because site-specific data are sparse.
Hence, the need to appeal to qualitative understanding
of geology and engineering judgment for property
estimation.

Although it is preferable that site-specific soil
property estimation is made based on site-specific
transformation models, site-specific data are MUSIC.
Transformation models based on site-specific data may
not have sufficient robustness. Adopting a generic
transformation model is one possible solution, but the

Table 1. Summary of some soil/rock databases

generic trend may not be the same as the site-specific
trend. The generic transformation uncertainty is also
large because the generic database covers diverse soil
types. One practical outcome of a large transformation
uncertainty is that a reasonable lower bound estimation,
say based on the lower bound of the 95% confidence
interval, will be very conservative.

The purpose of the current paper is to explore the
possibility of conducting site-specific soil property
estimation based on site-specific data with the aid from
a generic database. First, a Bayesian method capable of
analyzing MUSIC site-specific data is presented. The
method can construct the site-specific model even when
the site-specific data are very sparse. The data sparsity
is rigorously treated and is reflected as the statistical
uncertainty. Then, two strategies of making use of
generic database are presented. One strategy is called
“Bayesian data mining”. This strategy finds generic
cases that are “similar” to the site of interest and
constructs a quasi-site-specific transformation model
based on the combination of the site-specific data and
the similar generic cases. The other strategy is called
“hybridization”. This strategy hybridizes the generic
model and site-specific model in a rational way. Both
methods exhibit reasonable behaviors: when the
site-specific are abundant, the result converges to the
site-specific model, and when the site-specific data are
very sparse, the result converges to the generic model.
Finally, a recent development that further considers
spatial correlation is briefly mentioned. Case histories
are used to demonstrate the use of these strategies.

Database Reference Parameters of interest ﬁoliar?tt: zi tes/studies
CLAY/5/345 Ching and Phoon (2012) LI, sy, Su", o'p, G'v 345 37 sites
CLAY/6/535 Ching et al. (2014) sw/cv, OCR, qu, Qu, (U2—Uo)/c, Bg 535 40 sites
CLAY/7/6310 Ching and Phoon (2013) su from 7 different test procedures 6310 164 studies
CLAY/10/7490  Ching and Phoon (2014a) LL, PI, LI, 6\/Pa, St, Bg, 6p/Pa, Su/Gy, O, G~ 7490 251 studies
F-CLAY/7/216  D’Ignazio et al. (2016) su™V, v, o, Wn, LL, PL, St 216 24 sites
FG/KSAT-1358 Feng and Vardanega (20194, b) e, ksa, LL, PI 1358 33 studies
J-Clay/5/124 Liu et al. (2016) M, Qc, fs, Wn, yd 124 16
SAND/7/2794 Ching et al. (2017) Dso, Cu, Dr, 6v/Pa, ¢, qt1, (N1)60 2794 176 studies
ROCK/9/4069 Ching et al. (2018) N, v, R, Sh, obt, Isso, Vp, oc, E 4069 184 studies

Note: LL = liquid limit; PL = plastic limit; Pl = plasticity index; LI = liquidity index; wn = natural water content; M = resilient modulus;
gc = cone tip resistance; fs = sleeve friction; ya = dry density; Dso = median grain size; Cy = coefficient of uniformity; Dr = relative
density; e = void ratio; ksat = saturated hydraulic conductivity; c’v = vertical effective stress; ¢’y = preconsolidation stress; su = undrained
shear strength; sy"¥ = undrained shear strength from field vane; s = remoulded su; ¢’ = effective friction angle; St = sensitivity; OCR =
overconsolidation ratio; qu = (q/Pa)xCn (Cn is the correction factor for overburden stress); qw = (q-U2)/cv = effective cone tip resistance;
uo = hydrostatic pore pressure; Bq = pore pressure ratio = (uz-Uo)/(qt-ov); Pa = atmospheric pressure = 101.3 kPa;; (N1)so = NeoxCn (Neo is
the N value corrected for the energy ratio); n = porosity; y = unit weight; R = Schmidt hammer hardness (RL = L-type Schmidt hammer
hardness); Sh = Shore scleroscope hardness; ont = Brazilian tensile strength; Is = point load strength index (lsso = Is for diameter 50 mm);
Vp = P-wave velocity; oc = uniaxial compressive strength; E = Young’s modulus.
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Fig. 2. Example of site-specific effects in the correlation trend (Ching and Phoon 2019a)

2 GENERIC DATABASE

Consider the generic database CLAY/10/7490 (Ching
and Phoon 2014a). This database consists of 7490
records for 10 dimensionless clay parameters from 251
studies in the literature that cover 30 countries/regions
worldwide. It is not specific to any local site. The 10

clay parameters are denoted by (Y1, Yo, ..., Yi0):
Y1=In(LL) Y2 = In(PI)

Y3 =LI Y4 = In(c'v/Pa)

Ys = In(c'p/Pa) Ys = In(su/c’y) Q)
Y7 =1In(Sy) Ys = Bq

Yo = In(qe) Y10 = In(qew)

where LL = liquid limit; Pl = plasticity index; LI
liquidity index; o'y = vertical effective stress; o
preconsolidation stress; Pa

101.3 KkPa;

sensitivity; gt

atmospheric pressure
Sy = undrained shear strength; S;
(corrected) cone tip resistance; us

pore pressure behind cone; Bq = pore pressure ratio
(u2-ug)/(gr-ov); uo = hydrostatic pore pressure; qu
(gr-ov)/o’v; qu = (Qr-u2)/c’v. The s, values are all
converted to the “mobilized” sy values, which is the
in-situ  undrained shear strength mobilized in
embankment and slope failures (Mesri and Huvaj 2007).
The records can be visualized as a spreadsheet table of
size (Ngb x m), where Ngpb = 7490 is the total number of
records in the target database and m 10 is the
dimension of each record, there are lots of missing
entries in the spreadsheet table. Each record (row) is
denoted as yan, a vector containing 10 values. A missing
value in a record yg, means that a particular test has not
been carried out for this record.

Ching and Phoon (2014b) adopted a transform
based on the cumulative distribution function (CDF) of
the Johnson distribution (Johnson 1949) to convert each
record ygp in CLAY/10/7490 to a (roughly) multivariate
standard normal record Xdo = (X1, X2, ..., X10). Ching
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and Phoon (2014b) further showed that the x4 records
in CLAY/10/7490 roughly follow a multivariate normal
probability density function (PDF):

l(X’Edb )T Cag(l’ﬁub)

1 m  _
fy(X)=|Cy| 2(2n) 2 2" (2)
where the subscript ‘db’ denotes ‘database’; pd is the
mean vector (ua = 0); Cab is the covariance matrix,
which can be found in Table 8 in Ching and Phoon
(2014b).

3 SITE-SPECIFIC DATA o AT
At a site, geotechnical data are typically MUSIC, T A =L.'.";r
multivariate, unique (site-specific), uncertain, sparse, el .. ?" .
and incomplete. Table 2 shows the site investigation e s .

results for a clay site in Onsgy, Norway (Lacasse and
Lunne 1982). The dataset can be visualized as a
spreadsheet table of size (9 x 10), where Ns = 9 is the
total number of records (measured depths) in Table 2
and m = 10 to match information available in
CLAY/10/7490. “Incomplete” means there are missing
entries in the spreadsheet table. The term “sparse”
refers to a small Ns. Each record (row) in Table 2,
denoted by ys, are also converted to xs using the same
Johnson CDF transform proposed by Ching and Phoon
(2014b). It is further assumed that the resulting xs also
follows a multivariate normal PDF:

1 m _1 T~
L(o=[c 2 (2ryze 2 T )
where the subscript ‘s’ denotes ‘site’. Note that ps (the
site-specific mean vector) and Cs (the site-specific
covariance matrix) are unknown. In fact, us and Cs can
be highly uncertain if the site-specific data (e.g., Table
2) are MUSIC.

Suppose that the purpose is to construct the
site-specific transformation model between OCR and
su/c’y (classical SHANSEP model). Figure 3 shows the
OCR-sy/c'y relationship for the Onsgy data points in
Table 2. With eight data points only, it is challenging to
construct the site-specific OCR-su/c’y relationship with
high precision. For comparison, the OCR-sy/c'y

relationship for the records in CLAY/10/7490 is also
shown in the figure. In the following, two strategies of
making use the CLAY/10/7490 database to enhance the
precision of the OCR-sy/c’y transformation model will
be presented next. One method is called “Bayesian data
mining” and the other is called “hybridization”.

10"

107 450w ---- 2 o +  CLAYM0/7490 ]
O  onsoy data

10 10°
OCR

Fig. 3. OCR-su/c'y relationship.

4 BAYESIAN DATA MINING

The Bayesian data mining approach proposed by Ching
and Phoon (2019a) contains three steps. In the first step,
a Gibbs sampler method is proposed to construct the
site-specific PDF, denoted by fs(x|D), where D denotes
the site data in Table 2. In its essence, fs(x|D)
summarizes the correlation behaviors among the soil
properties at the Onsgy site as a multivariate PDF. The
sharpness of this PDF depends on the amount of the
site-specific data. The PDF is sharp if the site-specific
data are abundant and is flat if the data are sparse and
incomplete. This behavior is reasonable, because it is
not possible to say which realizations are more likely
when data are sparse. In other words, in the near
absence of information, all realizations are equally
likely.

Table 2 Site investigation data for a site in Onsgy, Norway (Source: Lacasse and Lunne 1982).

Depth Site-specific data Y
Index (m) LL PI LI 6'vIPa 6'plPa Sulc'v St Bg Qit Qtu OCR
(Y1) | (Y2) (Ys) (Ya) (Ys) (Ye) (Yn) | (Ys) (Yo) | (Y1)
1 1.0 56.2 20.0 1.54 0.06 0.85 2.03 6 0.16 29.11 | 25.57 | 13.99
2 1.9 50.2 18.1 1.82 0.12 0.60 0.91 14 0.24 17.69 14.58 5.20
3 3.5 59.9 30.5 0.93 0.22 0.48 0.48 15 0.30 10.52 8.41 2.26
4 5.2 56.8 22.9 1.07 0.32 0.45 0.37 7 0.35 7.70 6.11 1.42
5 7.6 66.3 315 0.87 0.47 0.54 0.24 14 0.47 5.89 4.25 1.17
6 9.5 65.1 29.6 0.97 0.58 0.25 12 0.41 6.19 4.74
7 10.8 74.4 36.1 0.81 0.65 0.84 0.25 9 0.46 5.93 4.31 1.28
8 13.4 71.4 35.8 0.87 0.81 1.05 0.24 0.47 5.95 4.24 1.29
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9 | 163 | 727 | 347 | 076 | 099 | 099 | o024 | | 055 | 613 | 3.8 | 1.00 |

In the second step, a similarity measure quantifying
the similarity between a database record (denoted by
Xdo) and D is calculated. Here, Xd» is a record in the
database, one row in the (Ng» x m) spreadsheet for
CLAY/10/7490. This similarity measure, denoted by
S(xdb), is constructed such that a record with a larger
S(xqb) is more similar to the Onsgy site. In the third step,
the quasi-site-specific  transformation model s
constructed based on the combination of the
site-specific data and database records.

4.1 Step 1: Construction of the site-specific PDF

The main technical challenge for constructing the
site-specific PDF fs(x|D) is that D can be incomplete,
because most parameter estimation techniques require
complete D. Ching and Phoon (2019a) showed that this
challenge can be addressed by adopting the Gibbs
sampler (GS) (Geman and Geman 1984; Gilks et al.
1996) in conjunction with the assumed non-informative
conjugate prior PDFs. The GS is capable of drawing (us,
Cs) samples conditioning on incomplete D, and based
on the (us, Cs) samples, the site-specific PDF fs(x|D)
can be approximated as the following mixture of
multivariate normal PDF:

% (27{),% e‘%(ﬁ‘ﬂs,‘)T(Cs‘t) l(x—gs‘() (4)

L)~ | 3

-ty o

Cs,t

where (ust, Cst) denote the (us, Cs) sample at time step t
in GS; T is the total number of time steps in GS; ty is
the end of the burning-in period. Because of the use of
non-informative prior PDFs, the resulting fs(x|D) can
sensibly reflect the statistical uncertainty associated
with MUSIC Onsgy data.

To illustrate the behavior of the GS method, Figure
3 illustrates the shape of fs(x|D) for a simulated
example, the histogram of the mean of Xi, and the
histogram of the correlation coefficient for Ns = 2, 10,
and 100 data points simulated from a bivariate standard
normal distribution (X1, Xz) with mean = 0 and
correlation coefficient = 0.8. The resulting site-specific
PDF fs(x|D) is not a bivariate normal distribution. It is
flat or non-informative when Ns = 2, because there is
almost no site data to “learnt” from. The histogram of
the mean covers a wide range and the histogram of the
correlation coefficient is not too far from a uniform
distribution as to be expected. Nonetheless, when Ns
increases, fs(x|D) converges to the underlying PDF with
zero mean and correlation coefficient = 0.8.

Ns f(xs|D)
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Fig. 3. Site-specific PDF f(xs|D) and the histograms of mean and correlation coefficient “learnt” from 2, 10, and 100 measured data

points simulated from a bivariate standard normal distribution (X1

, X2) with mean = 0 and correlation coefficient = 0.8.
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4.2 Step 2: Computation of the similarity measure
The site-specific PDF fs(x|D) obtained from Step 1
summarizes the data structure at the Onsgy site. In Step
2, a similarity measure S(xdb) is proposed in Ching and
Phoon (2019a) to measure the similarity between fs(x|D)
and a database record xq,. The main technical challenge
here is, again, Xqpb can be incomplete, i.e., Xqb is a (10x1)
vector with missing entries. Let us denote xq° a vector
that contains only the observed entries. For instance, if
only the 1%, 3, and 7" entries in xa» are observed. The
‘0’ superscript in Xg,° means only the 1%, 3¢ and 7"
entries are selected so that xqn° is now a (3x1) vector.
Ching and Phoon (2019a) proposed the following
similarity measure S(Xab):

< L e ) () (o
Z C;l Zxe 2(— Es‘!) (C / ) ( Es,x)
S(de): t=t,+1 (5)

T _
i 00 0 [y o et (Coect) (15t
db st

t=t,+1

where pgn and Cgp are the mean and covariance matrix

(us,°, 1ab®, Csit® Cap®) has the similar meaning, e.g., u°
is a (3x1) sub-vector that only contains the 1%, 3, and
7" entries in p, and C° is a (3x3) sub-matrix. For each
record Xa» in CLAY/10/7490, its similarity measure
with respect to the Onsgy site can be computed. For
S(xdp) computed based on Eq. (5), Ching and Phoon
(2019a) showed that for a randomly chosen record in
CLAY/10/7490, its S(Xgb) is “on average” 1, regardless
of whether there are missing entries or how many the
missing entries are. In other words, a record Xq, with
S(Xdo) > 1 is more similar to the Onsgy site than an
average record in CLAY/10/7490 regardless of where
or how many the missing entries are. Let us denote the
i-th record in CLAY/10/7490 by xa'. Because the
average S(xa) is the same, S(xa) and S(xqy') can be
compared even though xg' and xg' have different
observed components. Table 3 shows the top 10 records
in CLAY/10/7490 with the highest S(xdo) values. These
records all have S(xap) values significantly larger than 1,
suggesting that they are way more similar to the
Onsgy site than an average record in CLAY/10/7490.

that summarize the second-moment statistics of the
CLAY/10/7490 database for the illustrative example
discussed in this paper (see Eq. 2); the ‘o’ superscript in

Table 3 Top 10 records in CLAY/10/7490 with the highest S(xab) values.

Rank S(Xdb) (%/OL) (OP/:) LI |c'v/Pa|c'p/Pa| sulc'v | St Bq gu Qu OCR Location
1 389.0 618 | 28.1 | 1.10 | 0.44 | 046 | 0.38 | 120 1.04 Okishin (Japan)
2 71.2 73.6 | 36.5 0.46 | 0.66 | 0.49 040 | 7.76 | 534 | 143 Bothkennar (UK)
3 53.6 67.0 | 35.0 | 0.80 | 0.73 | 1.54 | 0.26 0.35| 14.28 | 10.19 | 2.10 Anacostia (USA)
4 51.9 64.2 | 37.4 | 096 | 0.12 | 0.49 | 1.00 4.03 -
5 45.0 727 | 468 | 082 | 0.70 | 0.70 | 0.22 | 6.3 1.00 Shellhaven (UK)
6 44.8 782 | 425 | 069 | 0.74 | 0.79 | 0.24 | 4.0 1.06 Shellhaven (UK)
7 40.0 64.4 | 40.0 | 1.00 | 0.68 | 0.78 | 0.23 1.15 Canada
8 37.2 60.0 | 30.0 | 093 | 0.17 | 0.38 | 0.54 2.28 USA
9 33.2 758 | 605 | 077 | 0.74 | 1.13 | 0.21 | 3.0 | 050 | 537 | 3.67 | 1.54 | Drammen (Norway)
10 28.0 62.0 | 32.0 | 1.09 | 0.29 | 0.33 | 0.32 1.13 USA

(a) All Onsgy records (b) 6 Onsgy records (c) 2 Onsay records (d) no record

Fig. 4. Quasi-site-specific transformation models by combining Onsgy data with records in CLAY/10/7490.
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4.3 Step 3: Construct the quasi-site-specific
transformation model

Ching and Phoon (2019a) proposed a method for
constructing the quasi-site-specific transformation
model based on the combination of the site-specific
records (e.g., Onsgy) and database records (e.g.,
CLAY/10/7490). For the Onsgy data, a “leave-one-out
method” is adopted to compute S(xs) for each record in
the Onsgy data with respect to the remaining Ns-1
Onsgy records. This is done by first constructing the
leave-one-out site-specific PDF using the Ns-1 Onsgy
records and then computing the S(xs) for the left-out X
using Eq. 5. By conducting this leave-one-out method,
each Onsgy record is associated with an S(xs) value.
The two types of records, Onsgy and CLAY/10/7490,
are next combined. Each record in this combined
dataset has an S(x) value. A bootstrap method is then
adopted to resample the records in the combined dataset
based on their weights that are proportional to their S(x)
values. The proportionality relationship has been
established using the leave-one-out method described
above. The resampled records are used to construct the
quasi-site-specific transformation model of interest, the
OCR-sJ/c’y relationship:

In(s,/c,)=a+b-In(OCR)+¢ (6)

where (a,b) are unknown SHANSEP parameters to be
determined, and ¢ is assumed to be a zero-mean normal
variable with standard deviation = o, also unknown and
to be determined. This bootstrap method is conducted
many times to obtain many bootstrap samples for
(a,b,6). These bootstrap samples can be used to
establish the median and 95% confidence interval for
the OCR-su/c’y relationship.

Figure 4 shows the median estimate and 95%
confidence interval for the OCR-sy/c’v relationship
based on the bootstrap method. The median is the solid
line. The 95% confidence interval is given by the pair
of dashed lines. The CLAY/10/7490 records with S(Xab)
> 1 are shown as dark circles to illustrate a
representative sample of “similar” records - analysis is
not restricted to these samples. The resulting formula
for the median quasi-site-specific transformation model
are also annotated in the plots. To demonstrate the
effect of sparsity of the site-specific data, four scenarios
are considered: (a) all site-specific data in Table 2 are
adopted; (b) only six records (rows) in Table 2 (depths
= 1.9, 3.5, 5.2, 9.5, 10.8, and 13.4) are available; (c)
only two records (rows) in Table 2 (depths = 1.9 and
13.4) are available; (c) no site-specific data is available.
From Fig. 4, it is clear that there are less records with
S(xdb) > 1 when site-specific are abundant (Fig. 4a),
and the number of records with S(xda) > 1 increases
when the site-specific data are sparse. This is because
the proposed method correctly captures the statistical
uncertainty. Moreover, the transformation uncertainty,
quantified by the 95% confidence interval, seems to

increase with decreasing amount of site-specific data.
When there are more site-specific data points (Fig. 4a),
the analysis is significantly affected by the site-specific
data. When there is no site-specific data (Fig. 4d), the
analysis is completely governed by the CLAY/10/7490
database. Fig. 4c may represent the scenario where
site-specific data are very sparse. With only two
site-specific OCR-s /o’y records, traditional regression
analysis may not be able to construct a transformation
model with any acceptable robustness. Nonetheless,
with the proposed method that adopts the union dataset
(e.g., Onsgy + CLAY/10/7490), it is now possible to
construct a quasi-site-specific transformation model
with acceptable robustness.

4 HYBRIDIZATION

The hybridization method is an alternative approach
proposed by Ching and Phoon (2019b) of dealing with
MUSIC site-specific data. When site-specific data are
MUSIC (sparse and incomplete), the site-specific PDF
fs(x|D) has significant statistical uncertainty. Figure 3a
shows one such example. It may not be possible to
construct a useful OCR-sy/c'y relationship purely based
on the site-specific data. In this case, it is sensible to
rely more on generic database, CLAY/10/7490. This is
reasonable: if local experience is absent, a reasonable
choice is to rely on generic experience. This is in line
with current standard practice where a desk study is
integral to site investigation. In contrast, when
site-specific training data are abundant, it is sensible to
rely more on site-specific data. Estimation purely based
on site-specific data is equivalent to adopting fs(x|D) in
Eq. (4), and estimation purely based on generic
database is equivalent to adopting fa(X) in Eq. (2). In
this section, a method is proposed to hybridize fs(x|D)
and fan(X) so that the hybrid PDF approaches fan(x)
when site-specific data are very sparse and approaches
fs(x|D) when site-specific data are abundant.

The idea of hybridization proposed by Ching and
Phoon (2019b) is straightforward: the hybrid
multivariate PDF, denoted by fi(x|D), is proportional
to the direct product between fs(x|D) and fan(X):

fio (Zl D)ocfdb (Z)'fs ()_(l D) )

Figure 5 illustrates the hybridization idea and explains
why it works. The generic PDF fqu(X) (the solid curves
in the figure) does not change with respect to the
amount of site-specific data D because it only depends
on ugp and Cgy. However, the site-specific PDF fs(x|D)
depends on the amount of D: it is relatively flat when D
is sparse and incomplete (Fig. 5a) and is relatively
peaked when D is abundant (Fig. 5b). When D is sparse
and incomplete (Fig. 5a), fan(X|D) oc fan(X)x(a relatively
flat PDF) o« fgn(X), hence the hybrid PDF approaches
faw(X). When D is abundant (Fig. 5b), the opposite
happens: the hybrid PDF o« (a relatively flat
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PDF)xfy(x|D) o fs(x|D),
approaches fs(x|D).

By combining Egs. (2) and (5), Ching and Phoon
(2019b) showed that the hybrid PDF fuy(x|D) is still a
mixture of multivariate normal PDF:

fio (Z| D) o fy, (Z)'fs (X| D)

T 1 m _1 e T o .
* Z W, X|Chb,t|7§(2ﬂ:)7fe 2(* Enm) (i) (7 E"bl)

t=ty+1

hence the hybrid PDF

8)
where w; is the weight for each multivariate normal
PDF:

- _m O . -1
Wt =|Cg +Cs,t 2 X(ZTE) 2 xe ZES‘I(C9+C ,t) Moy (9)

and

-1

m,, =(C+CH) G, Cuo=(C)+Cl) T (10)

To demonstrate the effect of hybridization, Fig. 6
shows how the hybrid PDF varies with respect to the
amount of site-specific data. In the figure, the
probability density contours for the OCR-sJ/c'y

bivariate hybrid PDFs are shown. The four scenarios
with different data sparsity in Fig. 4 are also considered
in Fig. 6. In general, the observations in Fig. 6 are
similar to those in Fig. 4: the transformation uncertainty
increases with decreasing amount of site-specific data.
When there is no site-specific data (Figs. 4d & 6d), the
result is completely governed by the CLAY/10/7490
database.

The OCR-sy/c’y bivariate hybrid PDF can be further
used to deduce the median estimate and 95%
confidence interval for the OCR-sy/c’y relationship,
shown as the thick red lines in Fig. 7. Figure 7 can also
be compared with Fig. 4 (the results in Fig. 4 are shown
as thin dark lines in Fig. 7). It is clear that the median
estimates and 95% confidence intervals obtained from
the Bayesian data mining method (Fig. 4) and from the
hybridization method (Fig. 7) are qualitatively similar
(e.g., the confidence interval is wide when site-specific
data are sparse) but are quantitatively different. This
suggests that the two methods (Bayesian data mining
and hybridization) are not equivalent.

25 - - . 25 . . ' v .
— G000 POF () | (b) Abundant site-specific data
- e Sitegpecific POF !a(x|[)) I
‘ w e w Hybnd PO 1 _(4D) i 2 1. .(xD) |'
Jrh | ,,:( Io/.,
() Sparse site-specific data | =1,xi0) y

] ]
g v,,,(-sm&v,,nu) §

CLAYn07ean | |

CS 2 Hyvnd FOF

1
10

9 Onsoy dals

i 10'
OCR OCR
(a) All Onsgy records (b) 6 Onsgy records

Fig. 6. Contour plots for the OCR-su/c'v bivariate hybrid PDF.

OCR QOCR

(c) 2 Onsgy records (d) no record
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(a) All Onsgy records (b) 6 Onsgy records
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Fig. 7. Median estimate and 95% confidence interval for the OCR-su/c’v relationship deduced from the bivariate PDF.

5 SPATIAL CORRELATION

The above two methods (Bayesian data mining and
hybridization) only considered the correlation among
soil properties at the same depth when constructing the
site-specific PDF fs(x|D) or the hybrid PDF fuy(X|D).
The correlation among soil properties at the same depth
is called the cross correlation in this paper. However,
these methods did not consider correlation among
different depths. This is called the spatial correlation. In
reality, soil properties are spatially correlated, i.e., soil
properties at nearby depths are usually positively
correlated. Ching and Phoon (2019c) proposed a
modified Gibbs sampler method for constructing the
site-specific PDF fs(x|D) that not only considers the
cross correlation at the same depth but also considers
the spatial correlation among different depths. The
method is quite general, because it can construct the
site-specific PDF fy(x|D) based on spatially correlated
site-specific data. It can also simulate conditional
cross-correlated random  fields based on the
site-specific data. The hybridization idea can also be
implemented to this method, which is illustrated in the
current paper.

According to Ching and Phoon (2019c), the
spatial-correlation (or auto-correlation) structure of the
site-specific data needs to be first identified. This is
achieved by analyzing the CPT data at the Onsgy site
(Fig. 8) (Lacasse and Lunne 1982) by adopting the
single exponential model (Vanmarcke 1983). The scale
of fluctuation (8) is identified to be about 1 m. The
site-specific PDF fs(x|D) can be estimated based on the
spatially correlated data using the modified Gibbs
sampler method proposed in Ching and Phoon (2019c).
In the current paper, fs(x|D) is further hybridized with
fan(X) to obtain the hybrid PDF fny(x|D). Together with
the identified auto-correlation model, this hybrid PDF
fin(X|D) can simulate conditional cross-correlated
random field samples for all soil properties. These
conditional random field samples can be used to obtain

the 95% confidence interval of the soil property profiles.
The solid lines in Fig. 9 are the conditional
cross-correlated random field samples for the ¢’ and sy
profiles, whereas the dashed lines are the resulting 95%
confidence intervals. The random field samples are
conditioning on the site-specific data in Table 2, so
these random field samples pass through the
site-specific data (the measured data in Fig. 9).

There are additional s, data in Lacasse and Lunne
(1982) not included in Table 2. These s, data are shown
as the validation data in Fig. 9. From Fig. 9, it can be
seen that 25 out of the 28 validation data lie within the
95% confidence interval. Because 25/28 ~ 90%, which
is close to 95%, the 95% confidence interval seems to
be effective for this particular example.

Depth (m)

Q 'le'n;:

Fig. 8. Cone resistance profile at the Onsgy site.

CONCLUSION

Geotechnical engineering has two features that are in
significant contrast with each other. On one hand,
site-specific data are sparse and incomplete. On the
other hand, generic (non-site-specific) data in the
literature are abundant. There is a dilemma to choose
between these two scenarios. By only relying on the
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sparse and incomplete site-specific data, it is typically
not feasible to construct site-specific transformation
model for the purpose of soil property estimation. By
only relying on the generic database, the constructed
transformation model is not site-specific and the
transformation uncertainty is large resulting in
potentially very conservative lower bound estimates.
This paper introduces two strategies that take advantage
of both the site-specific data and the generic database to
construct a quasi-site-specific transformation model.

It is worth noting that the methods introduced in this
paper are purely data-driven. Therefore, their
application is not limited to soil property estimation.
They can be applied to other types of datasets, such as
load test and monitoring data, as well.

Wi

= Cond. RF sample
.......... 5% (1

Measwred data

Diepth (m)
Uepth {m)

fris Qi

144

Fig. 9. Conditional cross-correlated random field samples and
95% confidence intervals for the o’p and su profiles.
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