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ABSTRACT 

 
Geotechnical estimation is site-specific due to the significant inherent variability in the soil properties. Soil data from 

one site may not be applicable to another site. Ideally, site-specific soil property estimation should rely on 

site-specific data rather than generic data obtained from other sites. However, site-specific data are often sparse and 

insufficient to support site-specific estimation. In practice, non-site-specific (generic) soil data is widely used to 

estimate soil properties in one site by appealing to similarity in soil behavior primarily based on the judgment of the 

engineer. This paper focuses on the possible role of generic databases in site-specific soil property estimation. It is 

proposed that the site-specific data can be combined with generic data in a suitable way to support site-specific 

estimation using Bayesian machine learning. The research outcomes are demonstrated through the problem of 

estimating the soil properties at a target site, in which a generic database previously compiled by the authors is 

adopted to support site-specific soil property estimation. 
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1 INTRODUCTION 

In geotechnical engineering, there are two facts that are 

in contrast to each other. On one hand, when it comes 

to a local site, site-specific data are sparse. For a typical 

site investigation program, a few boreholes and cone 

penetration test (CPT) soundings may be conducted. 

For the boreholes, only a limited number of depths are 

measured (sparsity in the vertical direction), whereas 

for both boreholes and CPT soundings, only a limited 

number of horizontal locations are measured (sparsity 

in the horizontal direction). The volume of the 

investigated soil mass is very small compared with the 

total soil volume mobilized by the actual structure. Also, 

only a limited number of soil samples is available to 

verify the correlation among different soil properties, 

e.g., Atterberg limits, SPT N, preconsolidation stress, 

undrained shear strength, etc. are simultaneously 

measured at close proximity, and this multivariate 

information is rarely complete (complete means that all 

soil properties are simultaneously measured in a 

particular location and at a particular depth). It is fair to 

say that we are in a data-poor scenario for a local site, 

both in space and in correlation. Phoon (2018) 

described this situation as MUSIC: site-specific data are 

Multivariate, Uncertain and Unique, Sparse, and 

InComplete. Geotechnical engineers routinely need to 

make decisions under MUSIC site-specific data. Phoon 

et al. (2019) venture to suggest that MUSIC can be 

re-interpreted to cover extremes: Multivariate, 

Uncertain and Unique, Sparse, Incomplete, and 

potentially Corrupted. The screening for extremes or 

outliers is clearly important, but not covered in this 

paper. Ching et al. (2019) proposed a simple chi-square 

approach to identify outliers in a rock property database, 

but this approach does not work for MUSIC data. 

On the other hand, it is widely known that generic 

(non-site-specific) data are abundant. Phoon et al. (2019) 

coined the phrase “Big Indirect Data” (BID) to 

emphasize that common perception of data sparsity in 

geotechnical engineering is only accurate within a 

site-specific context. Indirect data arising from sites 

outside of the project boundary can range from 

irrelevant to relevant, but one can imagine abundance 

of the order of tens of thousands of soil records at a 

regional/national scale. It is pedantic to ignore BID – an 

experienced engineer will consider data from 

comparable sites but he/she is unlikely to find time to 

trawl tens of thousands of potentially useful soil records 

systematically. Hence, comparable sites are mostly 

restricted to those within his/her experience base likely 

to be restricted to a few municipalities/regions. The 

challenge is how to complement current practice 

steeped in empiricism with data-driven methods to 

extract maximum value from BID. While engineering 

judgment remains pivotal in decision making, it is 

ineffective in dealing with MUSIC and BID and their 



 

 

 

complex inter-relationships. 

The compilation of generic multivariate soil 

databases is gaining interest in recent years. Table 1 

summarizes some databases, labeled as (geo-material 

type)/(number of parameters of interest)/(number of 

data points). For example, the CLAY/10/7490 database 

(Ching and Phoon 2014a) consists of 7490 data points 

for 10 clay parameters. These generic databases can 

produce empirical transformation models among 

different soil properties, such as those shown in Figure 

1. These models are based on generic databases 

covering multiple sites such as those presented in Table 

1, because data from a single site are insufficient to 

establish a transformation model. It is worth noting that 

a transformation model constructed based on a generic 

database is a generic model. The generic correlation 

trend may not be the same as the local correlation trend 

for a particular site. Figure 2 shows an example of the 

site-specific effect in the correlation trend. Local trends 

are evidently different from the generic trend. This is 

also widely known, but there is no method of 

characterizing this site effect in a routine project 

quantitatively, because site-specific data are sparse. 

Hence, the need to appeal to qualitative understanding 

of geology and engineering judgment for property 

estimation. 

Although it is preferable that site-specific soil 

property estimation is made based on site-specific 

transformation models, site-specific data are MUSIC. 

Transformation models based on site-specific data may 

not have sufficient robustness. Adopting a generic 

transformation model is one possible solution, but the 

generic trend may not be the same as the site-specific 

trend. The generic transformation uncertainty is also 

large because the generic database covers diverse soil 

types. One practical outcome of a large transformation 

uncertainty is that a reasonable lower bound estimation, 

say based on the lower bound of the 95% confidence 

interval, will be very conservative. 

The purpose of the current paper is to explore the 

possibility of conducting site-specific soil property 

estimation based on site-specific data with the aid from 

a generic database. First, a Bayesian method capable of 

analyzing MUSIC site-specific data is presented. The 

method can construct the site-specific model even when 

the site-specific data are very sparse. The data sparsity 

is rigorously treated and is reflected as the statistical 

uncertainty. Then, two strategies of making use of 

generic database are presented. One strategy is called 

“Bayesian data mining”. This strategy finds generic 

cases that are “similar” to the site of interest and 

constructs a quasi-site-specific transformation model 

based on the combination of the site-specific data and 

the similar generic cases. The other strategy is called 

“hybridization”. This strategy hybridizes the generic 

model and site-specific model in a rational way. Both 

methods exhibit reasonable behaviors: when the 

site-specific are abundant, the result converges to the 

site-specific model, and when the site-specific data are 

very sparse, the result converges to the generic model. 

Finally, a recent development that further considers 

spatial correlation is briefly mentioned. Case histories 

are used to demonstrate the use of these strategies. 

 

Table 1. Summary of some soil/rock databases 

Database Reference Parameters of interest 
# Data 

points 

# 

Sites/studies 

CLAY/5/345 Ching and Phoon (2012) LI, su, su
re, ’

p, ’
v 345 37 sites 

CLAY/6/535 Ching et al. (2014) su/σ'
v, OCR, qt1, qtu, (u2−u0)/σ'

v, Bq 535 40 sites 

CLAY/7/6310 Ching and Phoon (2013) su from 7 different test procedures 6310 164 studies 

CLAY/10/7490 Ching and Phoon (2014a) LL, PI, LI, '
v/Pa, St, Bq, '

p/Pa, su/'
v, qt1, qtu 7490 251 studies 

F-CLAY/7/216 D’Ignazio et al. (2016) su
FV, '

v, '
p, wn, LL, PL, St 216 24 sites 

FG/KSAT-1358 Feng and Vardanega (2019a, b) e, ksat, LL, PI 1358 33 studies 

J-Clay/5/124 Liu et al. (2016) Mr, qc, fs, wn, γd 124 16 

SAND/7/2794 Ching et al. (2017) D50, Cu, Dr, '
v/Pa, , qt1, (N1)60 2794 176 studies 

ROCK/9/4069 Ching et al. (2018) n, , RL, Sh, bt, Is50, Vp, c, E 4069 184 studies 

Note: LL = liquid limit; PL = plastic limit; PI = plasticity index; LI = liquidity index; wn = natural water content; Mr = resilient modulus; 

qc = cone tip resistance; fs = sleeve friction; γd = dry density; D50 = median grain size; Cu = coefficient of uniformity; Dr = relative 

density; e = void ratio; ksat = saturated hydraulic conductivity; ’
v = vertical effective stress; ’

p = preconsolidation stress; su = undrained 

shear strength; su
FV = undrained shear strength from field vane; su

re = remoulded su;  = effective friction angle; St = sensitivity; OCR = 

overconsolidation ratio; qt1 = (qt/Pa)CN (CN is the correction factor for overburden stress); qtu = (qt-u2)/σ'
v = effective cone tip resistance; 

u0 = hydrostatic pore pressure; Bq = pore pressure ratio = (u2-u0)/(qt-σv); Pa = atmospheric pressure = 101.3 kPa;; (N1)60 = N60CN (N60 is 

the N value corrected for the energy ratio); n = porosity;  = unit weight; R = Schmidt hammer hardness (RL = L-type Schmidt hammer 

hardness); Sh = Shore scleroscope hardness; bt = Brazilian tensile strength; Is = point load strength index (Is50 = Is for diameter 50 mm); 

Vp = P-wave velocity; c = uniaxial compressive strength; E = Young’s modulus. 
 

 



 

 

 

 

 
 

Fig. 1. Examples of transformation models in EPRI EL-6800 (Kulhawy and Mayne 1990)  

 

 

Fig. 2. Example of site-specific effects in the correlation trend (Ching and Phoon 2019a)  

 

2 GENERIC DATABASE 

Consider the generic database CLAY/10/7490 (Ching 

and Phoon 2014a). This database consists of 7490 

records for 10 dimensionless clay parameters from 251 

studies in the literature that cover 30 countries/regions 

worldwide. It is not specific to any local site. The 10 

clay parameters are denoted by (Y1, Y2, …, Y10): 

Y1 = ln(LL) Y2 = ln(PI) 

Y3 = LI  Y4 = ln(v/Pa) 

Y5 = ln(p/Pa) Y6 = ln(su/v)    (1) 

Y7 = ln(St) Y8 = Bq 

Y9 = ln(qt1) Y10 = ln(qtu)   

where LL = liquid limit; PI = plasticity index; LI = 

liquidity index; ’
v = vertical effective stress; ’

p = 

preconsolidation stress; Pa = atmospheric pressure = 

101.3 kPa; su = undrained shear strength; St = 

sensitivity; qt = (corrected) cone tip resistance; u2 = 

pore pressure behind cone; Bq = pore pressure ratio = 

(u2-u0)/(qt-σv); u0 = hydrostatic pore pressure; qt1 = 

(qt-v)/v; qtu = (qt-u2)/v. The su values are all 

converted to the “mobilized” su values, which is the 

in-situ undrained shear strength mobilized in 

embankment and slope failures (Mesri and Huvaj 2007). 

The records can be visualized as a spreadsheet table of 

size (Ndb  m), where Ndb = 7490 is the total number of 

records in the target database and m = 10 is the 

dimension of each record, there are lots of missing 

entries in the spreadsheet table. Each record (row) is 

denoted as ydb, a vector containing 10 values. A missing 

value in a record ydb means that a particular test has not 

been carried out for this record. 

Ching and Phoon (2014b) adopted a transform 

based on the cumulative distribution function (CDF) of 

the Johnson distribution (Johnson 1949) to convert each 

record ydb in CLAY/10/7490 to a (roughly) multivariate 

standard normal record xdb = (X1, X2, …, X10). Ching 



 

 

 

and Phoon (2014b) further showed that the xdb records 

in CLAY/10/7490 roughly follow a multivariate normal 

probability density function (PDF): 

 ( ) ( )
( ) ( )

T
1

dbdb db

11 m x x
22 2

db dbf x 2 e
−− − −− −

= 
C

C  (2) 

where the subscript ‘db’ denotes ‘database’; db is the 

mean vector (db = 0); Cdb is the covariance matrix, 

which can be found in Table 8 in Ching and Phoon 

(2014b). 

3 SITE-SPECIFIC DATA 

At a site, geotechnical data are typically MUSIC, 

multivariate, unique (site-specific), uncertain, sparse, 

and incomplete. Table 2 shows the site investigation 

results for a clay site in Onsøy, Norway (Lacasse and 

Lunne 1982). The dataset can be visualized as a 

spreadsheet table of size (9  10), where Ns = 9 is the 

total number of records (measured depths) in Table 2 

and m = 10 to match information available in 

CLAY/10/7490. “Incomplete” means there are missing 

entries in the spreadsheet table. The term “sparse” 

refers to a small Ns. Each record (row) in Table 2, 

denoted by ys, are also converted to xs using the same 

Johnson CDF transform proposed by Ching and Phoon 

(2014b). It is further assumed that the resulting xs also 

follows a multivariate normal PDF: 

 ( ) ( )
( ) ( )

T
1

ss s

11 m x x
22 2

s sf x 2 e
−− − −− −

= 
C

C  (3)  

where the subscript ‘s’ denotes ‘site’. Note that s (the 

site-specific mean vector) and Cs (the site-specific 

covariance matrix) are unknown. In fact, s and Cs can 

be highly uncertain if the site-specific data (e.g., Table 

2) are MUSIC. 

Suppose that the purpose is to construct the 

site-specific transformation model between OCR and 

su/v (classical SHANSEP model). Figure 3 shows the 

OCR-su/v relationship for the Onsøy data points in 

Table 2. With eight data points only, it is challenging to 

construct the site-specific OCR-su/v relationship with 

high precision. For comparison, the OCR-su/v 

relationship for the records in CLAY/10/7490 is also 

shown in the figure. In the following, two strategies of 

making use the CLAY/10/7490 database to enhance the 

precision of the OCR-su/v transformation model will 

be presented next. One method is called “Bayesian data 

mining” and the other is called “hybridization”. 

 

Fig. 3. OCR-su/v relationship.  

4 BAYESIAN DATA MINING 

The Bayesian data mining approach proposed by Ching 

and Phoon (2019a) contains three steps. In the first step, 

a Gibbs sampler method is proposed to construct the 

site-specific PDF, denoted by fs(x|D), where D denotes 

the site data in Table 2. In its essence, fs(x|D) 

summarizes the correlation behaviors among the soil 

properties at the Onsøy site as a multivariate PDF. The 

sharpness of this PDF depends on the amount of the 

site-specific data. The PDF is sharp if the site-specific 

data are abundant and is flat if the data are sparse and 

incomplete. This behavior is reasonable, because it is 

not possible to say which realizations are more likely 

when data are sparse. In other words, in the near 

absence of information, all realizations are equally 

likely. 

Table 2 Site investigation data for a site in Onsøy, Norway (Source: Lacasse and Lunne 1982).  

Index 
Depth 

(m) 

Site-specific data Y 

LL 

(Y1) 

PI 

(Y2) 

LI 

(Y3) 
v/Pa 

(Y4) 

p/Pa 

(Y5) 

su/v 

(Y6) 

St 

(Y7) 

Bq 

(Y8) 

qt1 

(Y9) 

qtu 

(Y10) 

OCR 

1 1.0 56.2 20.0 1.54 0.06 0.85 2.03 6 0.16 29.11 25.57 13.99 

2 1.9 50.2 18.1 1.82 0.12 0.60 0.91 14 0.24 17.69 14.58 5.20 

3 3.5 59.9 30.5 0.93 0.22 0.48 0.48 15 0.30 10.52 8.41 2.26 

4 5.2 56.8 22.9 1.07 0.32 0.45 0.37 7 0.35 7.70 6.11 1.42 

5 7.6 66.3 31.5 0.87 0.47 0.54 0.24 14 0.47 5.89 4.25 1.17 

6 9.5 65.1 29.6 0.97 0.58  0.25 12 0.41 6.19 4.74  

7 10.8 74.4 36.1 0.81 0.65 0.84 0.25 9 0.46 5.93 4.31 1.28 

8 13.4 71.4 35.8 0.87 0.81 1.05 0.24  0.47 5.95 4.24 1.29 



 

 

 

9 16.3 72.7 34.7 0.76 0.99 0.99 0.24  0.55 6.13 3.88 1.00 

 

In the second step, a similarity measure quantifying 

the similarity between a database record (denoted by 

xdb) and D is calculated. Here, xdb is a record in the 

database, one row in the (Ndb  m) spreadsheet for 

CLAY/10/7490. This similarity measure, denoted by 

S(xdb), is constructed such that a record with a larger 

S(xdb) is more similar to the Onsøy site. In the third step, 

the quasi-site-specific transformation model is 

constructed based on the combination of the 

site-specific data and database records.  

4.1 Step 1: Construction of the site-specific PDF 

The main technical challenge for constructing the 

site-specific PDF fs(x|D) is that D can be incomplete, 

because most parameter estimation techniques require 

complete D. Ching and Phoon (2019a) showed that this 

challenge can be addressed by adopting the Gibbs 

sampler (GS) (Geman and Geman 1984; Gilks et al. 

1996) in conjunction with the assumed non-informative 

conjugate prior PDFs. The GS is capable of drawing (s, 

Cs) samples conditioning on incomplete D, and based 

on the (s, Cs) samples, the site-specific PDF fs(x|D) 

can be approximated as the following mixture of 

multivariate normal PDF: 

 ( ) ( )
( ) ( ) ( )

T 1

s ,ts ,t s ,t

b

11T m x x
22 2

s s,t

t t 1b

1
f x | 2 e

T t

−
− − −− −

= +

 
  

−  


C

D C  (4) 

where (s,t, Cs,t) denote the (s, Cs) sample at time step t 

in GS; T is the total number of time steps in GS; tb is 

the end of the burning-in period. Because of the use of 

non-informative prior PDFs, the resulting fs(x|D) can 

sensibly reflect the statistical uncertainty associated 

with MUSIC Onsøy data. 

To illustrate the behavior of the GS method, Figure 

3 illustrates the shape of fs(x|D) for a simulated 

example, the histogram of the mean of X1, and the 

histogram of the correlation coefficient for Ns = 2, 10, 

and 100 data points simulated from a bivariate standard 

normal distribution (X1, X2) with mean = 0 and 

correlation coefficient = 0.8. The resulting site-specific 

PDF fs(x|D) is not a bivariate normal distribution. It is 

flat or non-informative when Ns = 2, because there is 

almost no site data to “learnt” from. The histogram of 

the mean covers a wide range and the histogram of the 

correlation coefficient is not too far from a uniform 

distribution as to be expected. Nonetheless, when Ns 

increases, fs(x|D) converges to the underlying PDF with 

zero mean and correlation coefficient = 0.8. 

 
Ns f(xs|D) Mean of X1 Correlation coefficient 

2 

   

10 

   

100 

   

Fig. 3. Site-specific PDF f(xs|D) and the histograms of mean and correlation coefficient “learnt” from 2, 10, and 100 measured data 

points simulated from a bivariate standard normal distribution (X1, X2) with mean = 0 and correlation coefficient = 0.8.  



 

 

 

 

4.2 Step 2: Computation of the similarity measure 

The site-specific PDF fs(x|D) obtained from Step 1 

summarizes the data structure at the Onsøy site. In Step 

2, a similarity measure S(xdb) is proposed in Ching and 

Phoon (2019a) to measure the similarity between fs(x|D) 

and a database record xdb. The main technical challenge 

here is, again, xdb can be incomplete, i.e., xdb is a (101) 

vector with missing entries. Let us denote xdb
o a vector 

that contains only the observed entries. For instance, if 

only the 1st, 3rd, and 7th entries in xdb are observed. The 

‘o’ superscript in xdb
o means only the 1st, 3rd, and 7th 

entries are selected so that xdb
o is now a (31) vector. 

Ching and Phoon (2019a) proposed the following 

similarity measure S(xdb): 
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 (5) 

where db and Cdb are the mean and covariance matrix 

that summarize the second-moment statistics of the 

CLAY/10/7490 database for the illustrative example 

discussed in this paper (see Eq. 2); the ‘o’ superscript in 

(s,t
o, db

o, Cs,t
o, Cdb

o) has the similar meaning, e.g., o 

is a (31) sub-vector that only contains the 1st, 3rd, and 

7th entries in , and Co is a (33) sub-matrix. For each 

record xdb in CLAY/10/7490, its similarity measure 

with respect to the Onsøy site can be computed. For 

S(xdb) computed based on Eq. (5), Ching and Phoon 

(2019a) showed that for a randomly chosen record in 

CLAY/10/7490, its S(xdb) is “on average” 1, regardless 

of whether there are missing entries or how many the 

missing entries are. In other words, a record xdb with 

S(xdb) > 1 is more similar to the Onsøy site than an 

average record in CLAY/10/7490 regardless of where 

or how many the missing entries are. Let us denote the 

i-th record in CLAY/10/7490 by xdb
i. Because the 

average S(xdb) is the same, S(xdb
i) and S(xdb

j) can be 

compared even though xdb
i and xdb

j have different 

observed components. Table 3 shows the top 10 records 

in CLAY/10/7490 with the highest S(xdb) values. These 

records all have S(xdb) values significantly larger than 1, 

suggesting that they are way more similar to the  

Onsøy site than an average record in CLAY/10/7490. 

 

Table 3 Top 10 records in CLAY/10/7490 with the highest S(xdb) values. 

Rank S(xdb) 
LL 

(%) 

PI 

(%) 
LI v/Pa p/Pa su/v St Bq qt1 qtu OCR Location 

1 389.0 61.8 28.1 1.10 0.44 0.46 0.38 12.0    1.04 Okishin (Japan) 

2 71.2 73.6 36.5  0.46 0.66 0.49  0.40 7.76 5.34 1.43 Bothkennar (UK) 

3 53.6 67.0 35.0 0.80 0.73 1.54 0.26  0.35 14.28 10.19 2.10 Anacostia (USA) 

4 51.9 64.2 37.4 0.96 0.12 0.49 1.00     4.03 - 

5 45.0 72.7 46.8 0.82 0.70 0.70 0.22 6.3    1.00 Shellhaven (UK) 

6 44.8 78.2 42.5 0.69 0.74 0.79 0.24 4.0    1.06 Shellhaven (UK) 

7 40.0 64.4 40.0 1.00 0.68 0.78 0.23     1.15 Canada 

8 37.2 60.0 30.0 0.93 0.17 0.38 0.54     2.28 USA 

9 33.2 75.8 60.5 0.77 0.74 1.13 0.21 3.0 0.50 5.37 3.67 1.54 Drammen (Norway) 

10 28.0 62.0 32.0 1.09 0.29 0.33 0.32     1.13 USA 

 

 

      (a) All Onsøy records          (b) 6 Onsøy records            (c) 2 Onsøy records             (d) no record 

Fig. 4. Quasi-site-specific transformation models by combining Onsøy data with records in CLAY/10/7490.  

 



 

 

 

4.3 Step 3: Construct the quasi-site-specific 

transformation model 

Ching and Phoon (2019a) proposed a method for 

constructing the quasi-site-specific transformation 

model based on the combination of the site-specific 

records (e.g., Onsøy) and database records (e.g., 

CLAY/10/7490). For the Onsøy data, a “leave-one-out 

method” is adopted to compute S(xs) for each record in 

the Onsøy data with respect to the remaining Ns-1 

Onsøy records. This is done by first constructing the 

leave-one-out site-specific PDF using the Ns-1 Onsøy 

records and then computing the S(xs) for the left-out xs 

using Eq. 5. By conducting this leave-one-out method, 

each Onsøy record is associated with an S(xs) value. 

The two types of records, Onsøy and CLAY/10/7490, 

are next combined. Each record in this combined 

dataset has an S(x) value. A bootstrap method is then 

adopted to resample the records in the combined dataset 

based on their weights that are proportional to their S(x) 

values. The proportionality relationship has been 

established using the leave-one-out method described 

above. The resampled records are used to construct the 

quasi-site-specific transformation model of interest, the 

OCR-su/v relationship: 

 
( ) ( )u vln s a b ln OCR = +  +   (6) 

where (a,b) are unknown SHANSEP parameters to be 

determined, and  is assumed to be a zero-mean normal 

variable with standard deviation = , also unknown and 

to be determined. This bootstrap method is conducted 

many times to obtain many bootstrap samples for 

(a,b,). These bootstrap samples can be used to 

establish the median and 95% confidence interval for 

the OCR-su/v relationship. 

Figure 4 shows the median estimate and 95% 

confidence interval for the OCR-su/v relationship 

based on the bootstrap method. The median is the solid 

line. The 95% confidence interval is given by the pair 

of dashed lines. The CLAY/10/7490 records with S(xdb) 

> 1 are shown as dark circles to illustrate a 

representative sample of “similar” records - analysis is 

not restricted to these samples. The resulting formula 

for the median quasi-site-specific transformation model 

are also annotated in the plots. To demonstrate the 

effect of sparsity of the site-specific data, four scenarios 

are considered: (a) all site-specific data in Table 2 are 

adopted; (b) only six records (rows) in Table 2 (depths 

= 1.9, 3.5, 5.2, 9.5, 10.8, and 13.4) are available; (c) 

only two records (rows) in Table 2 (depths = 1.9 and 

13.4) are available; (c) no site-specific data is available. 

From Fig. 4, it is clear that there are less records with 

S(xdb) > 1 when site-specific are abundant (Fig. 4a), 

and the number of records with S(xdb) > 1 increases 

when the site-specific data are sparse. This is because 

the proposed method correctly captures the statistical 

uncertainty. Moreover, the transformation uncertainty, 

quantified by the 95% confidence interval, seems to 

increase with decreasing amount of site-specific data. 

When there are more site-specific data points (Fig. 4a), 

the analysis is significantly affected by the site-specific 

data. When there is no site-specific data (Fig. 4d), the 

analysis is completely governed by the CLAY/10/7490 

database. Fig. 4c may represent the scenario where 

site-specific data are very sparse. With only two 

site-specific OCR-su/v records, traditional regression 

analysis may not be able to construct a transformation 

model with any acceptable robustness. Nonetheless, 

with the proposed method that adopts the union dataset 

(e.g., Onsøy + CLAY/10/7490), it is now possible to 

construct a quasi-site-specific transformation model 

with acceptable robustness. 

4 HYBRIDIZATION 

The hybridization method is an alternative approach 

proposed by Ching and Phoon (2019b) of dealing with 

MUSIC site-specific data. When site-specific data are 

MUSIC (sparse and incomplete), the site-specific PDF 

fs(x|D) has significant statistical uncertainty. Figure 3a 

shows one such example. It may not be possible to 

construct a useful OCR-su/v relationship purely based 

on the site-specific data. In this case, it is sensible to 

rely more on generic database, CLAY/10/7490. This is 

reasonable: if local experience is absent, a reasonable 

choice is to rely on generic experience. This is in line 

with current standard practice where a desk study is 

integral to site investigation. In contrast, when 

site-specific training data are abundant, it is sensible to 

rely more on site-specific data. Estimation purely based 

on site-specific data is equivalent to adopting fs(x|D) in 

Eq. (4), and estimation purely based on generic 

database is equivalent to adopting fdb(x) in Eq. (2). In 

this section, a method is proposed to hybridize fs(x|D) 

and fdb(x) so that the hybrid PDF approaches fdb(x) 

when site-specific data are very sparse and approaches 

fs(x|D) when site-specific data are abundant. 

The idea of hybridization proposed by Ching and 

Phoon (2019b) is straightforward: the hybrid 

multivariate PDF, denoted by fhb(x|D), is proportional 

to the direct product between fs(x|D) and fdb(x): 

 ( ) ( ) ( )hb db sf x | f x f x | D D  (7) 

Figure 5 illustrates the hybridization idea and explains 

why it works. The generic PDF fdb(x) (the solid curves 

in the figure) does not change with respect to the 

amount of site-specific data D because it only depends 

on db and Cdb. However, the site-specific PDF fs(x|D) 

depends on the amount of D: it is relatively flat when D 

is sparse and incomplete (Fig. 5a) and is relatively 

peaked when D is abundant (Fig. 5b). When D is sparse 

and incomplete (Fig. 5a), fhb(x|D)  fdb(x)(a relatively 

flat PDF)  fdb(x), hence the hybrid PDF approaches 

fdb(x). When D is abundant (Fig. 5b), the opposite 

happens: the hybrid PDF  (a relatively flat 



 

 

 

PDF)fs(x|D)  fs(x|D), hence the hybrid PDF 

approaches fs(x|D). 

By combining Eqs. (2) and (5), Ching and Phoon 

(2019b) showed that the hybrid PDF fhb(x|D) is still a 

mixture of multivariate normal PDF: 
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where wt is the weight for each multivariate normal 

PDF: 
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To demonstrate the effect of hybridization, Fig. 6 

shows how the hybrid PDF varies with respect to the 

amount of site-specific data. In the figure, the 

probability density contours for the OCR-su/v 

bivariate hybrid PDFs are shown. The four scenarios 

with different data sparsity in Fig. 4 are also considered 

in Fig. 6. In general, the observations in Fig. 6 are 

similar to those in Fig. 4: the transformation uncertainty 

increases with decreasing amount of site-specific data. 

When there is no site-specific data (Figs. 4d & 6d), the 

result is completely governed by the CLAY/10/7490 

database. 

The OCR-su/v bivariate hybrid PDF can be further 

used to deduce the median estimate and 95% 

confidence interval for the OCR-su/v relationship, 

shown as the thick red lines in Fig. 7. Figure 7 can also 

be compared with Fig. 4 (the results in Fig. 4 are shown 

as thin dark lines in Fig. 7). It is clear that the median 

estimates and 95% confidence intervals obtained from 

the Bayesian data mining method (Fig. 4) and from the 

hybridization method (Fig. 7) are qualitatively similar 

(e.g., the confidence interval is wide when site-specific 

data are sparse) but are quantitatively different. This 

suggests that the two methods (Bayesian data mining 

and hybridization) are not equivalent. 

 

 

Fig. 5. Illustration of hybridization: (a) sparse site-specific data; (b) abundant site-specific data. 

 

      (a) All Onsøy records          (b) 6 Onsøy records            (c) 2 Onsøy records             (d) no record 

Fig. 6. Contour plots for the OCR-su/v bivariate hybrid PDF.  

 



 

 

 

 

 

      (a) All Onsøy records          (b) 6 Onsøy records            (c) 2 Onsøy records             (d) no record 

Fig. 7. Median estimate and 95% confidence interval for the OCR-su/v relationship deduced from the bivariate PDF. 

 

5 SPATIAL CORRELATION 

The above two methods (Bayesian data mining and 

hybridization) only considered the correlation among 

soil properties at the same depth when constructing the 

site-specific PDF fs(x|D) or the hybrid PDF fhb(x|D). 

The correlation among soil properties at the same depth 

is called the cross correlation in this paper. However, 

these methods did not consider correlation among 

different depths. This is called the spatial correlation. In 

reality, soil properties are spatially correlated, i.e., soil 

properties at nearby depths are usually positively 

correlated. Ching and Phoon (2019c) proposed a 

modified Gibbs sampler method for constructing the 

site-specific PDF fs(x|D) that not only considers the 

cross correlation at the same depth but also considers 

the spatial correlation among different depths. The 

method is quite general, because it can construct the 

site-specific PDF fs(x|D) based on spatially correlated 

site-specific data. It can also simulate conditional 

cross-correlated random fields based on the 

site-specific data. The hybridization idea can also be 

implemented to this method, which is illustrated in the 

current paper. 

According to Ching and Phoon (2019c), the 

spatial-correlation (or auto-correlation) structure of the 

site-specific data needs to be first identified. This is 

achieved by analyzing the CPT data at the Onsøy site 

(Fig. 8) (Lacasse and Lunne 1982) by adopting the 

single exponential model (Vanmarcke 1983). The scale 

of fluctuation () is identified to be about 1 m. The 

site-specific PDF fs(x|D) can be estimated based on the 

spatially correlated data using the modified Gibbs 

sampler method proposed in Ching and Phoon (2019c). 

In the current paper, fs(x|D) is further hybridized with 

fdb(x) to obtain the hybrid PDF fhb(x|D). Together with 

the identified auto-correlation model, this hybrid PDF 

fhb(x|D) can simulate conditional cross-correlated 

random field samples for all soil properties. These 

conditional random field samples can be used to obtain 

the 95% confidence interval of the soil property profiles. 

The solid lines in Fig. 9 are the conditional 

cross-correlated random field samples for the p and su 

profiles, whereas the dashed lines are the resulting 95% 

confidence intervals. The random field samples are 

conditioning on the site-specific data in Table 2, so 

these random field samples pass through the 

site-specific data (the measured data in Fig. 9). 

There are additional su data in Lacasse and Lunne 

(1982) not included in Table 2. These su data are shown 

as the validation data in Fig. 9. From Fig. 9, it can be 

seen that 25 out of the 28 validation data lie within the 

95% confidence interval. Because 25/28  90%, which 

is close to 95%, the 95% confidence interval seems to 

be effective for this particular example. 

 

Fig. 8. Cone resistance profile at the Onsøy site.  

CONCLUSION 

Geotechnical engineering has two features that are in 

significant contrast with each other. On one hand, 

site-specific data are sparse and incomplete. On the 

other hand, generic (non-site-specific) data in the 

literature are abundant. There is a dilemma to choose 

between these two scenarios. By only relying on the 



 

 

 

sparse and incomplete site-specific data, it is typically 

not feasible to construct site-specific transformation 

model for the purpose of soil property estimation. By 

only relying on the generic database, the constructed 

transformation model is not site-specific and the 

transformation uncertainty is large resulting in 

potentially very conservative lower bound estimates. 

This paper introduces two strategies that take advantage 

of both the site-specific data and the generic database to 

construct a quasi-site-specific transformation model. 

It is worth noting that the methods introduced in this 

paper are purely data-driven. Therefore, their 

application is not limited to soil property estimation. 

They can be applied to other types of datasets, such as 

load test and monitoring data, as well. 
 

 

Fig. 9. Conditional cross-correlated random field samples and 

95% confidence intervals for the p and su profiles. 
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