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ABSTRACT 

 
Simplified numerical analyses are conducted wherein the Newmark type slope model is shaken underneath by verti-

cally propagating SH wave. Earthquake energy for slope sliding as energy difference between upward and downward 

waves is confirmed to balance with the energies associated with slope sliding. The residual slope displacements δr 

are uniquely correlated with the energy irrespective of earthquake waves, indicating that δr can be readily evaluated 

without using acceleration time-histories. The evaluation procedure has been developed using the analytical results 

and empirical formulas on wave energies. An example study for slope displacements of varying hypocenter distances 

during a M6.8 earthquake has shown a qualitative compatibility with a case history of road embankments. 
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1 CONCEPT OF ENERGY-BASED METHOD  

To evaluate seismic slope failures in terms of energy, 

an energy approach was previously proposed by the 

present author (Kokusho & Ishizawa 2007). In that 

method, earthquake induced slope displacement δr for 

an infinitely long slope is expressed simply as; 

( )tanr eqE gD   = −       (1) 

where, Eeq = earthquake energy for slope displacement 

in unit area, g and D = unit weight and thickness of 

sliding soil, = mobilized slope friction angle including 

cohesion, and = slope angle. This equation was theoret-

ically derived from energy balance in slope failure and 

demonstrated by model shaking table tests. 

  In applying Eq. (1) to slopes as schematically shown 

in Fig. 1, it is necessary to determine Eeq in field condi-

tions by steps illustrated in Fig. 2. If a design earth-

quake motion is given at a base, the cumulative incident 

energy EIP per unit area is formulated (Kokusho 2017); 

( ) ( )
2

IP s s base
E V u t dt=        (2) 

where, ( )u t =time history of upward-propagating particle 

velocity and (ρsVs)base=S-wave impedance at the base. If 

the earthquake motion is not available,
IPE may be roughly 

estimated at a seismological base layer corresponding to 

Vs=3000 m/s and ρs=2.7 t/m3 as; 
2

0 4IPE E R= , 0log 1.5 1.8E M= +    (3)   

where M=earthquake magnitude, R=hypocenter distance 

and E0=total energy released based on Gutenberg (1956). 

Vertical array earthquake observation data demonstrated 

 
Fig.1. Infinitely long slope model with SH-wave. 

 

Fig. 2. Evaluation steps for input earthquake energy for 

energy-based slope failure evaluation. 

 



 

 

that observed energies at seismological base layer
IPE are 

mostly compatible with Eq. (3). Total upward energy 

,2DuE  summed in 2 horizontal directions at a slope can 

be evaluated using another empirical formula based on 

strong motion vertical array records (Kokusho & Suzu-

ki 2012) as; 

( ) ( )
0.7

,2Du IP s s s s base
E E V V  =            (4) 

wherein ρsVs and (ρsVs)base are S-wave impedance at the 

slope and base, respectively. The upward energy Eu in 

sloping direction should be ,2 2u u DE E=  averagely for a 

soil mass to slide in that direction according to previous 

study on earthquake observation (Kokusho et al. 2014).  

2 ENERGY-BASED NEWMARK SLOPE MODEL 

  From the upward energy Eu beneath a potential slid-

ing block, the earthquake energy Eeq for slope sliding is 

to be determined. For that goal, “Energy-based New-

mark slope model” has been developed and shaken by 

SH-wave as depicted in Fig. 1, wherein a shaded virtual 

slope body of infinite rigidity and no mass is on the top 

of a horizontal layer where the SH-wave propagates 

vertically with S-wave velocity sV as;  

( ) ( ) ( )1 2, s su t z u t z V u t z V= − + +    (5) 

At the surface of the horizontal layer (z=0); 

( ) ( ) ( ) ( )0 1 2,0u t u t u t u t = +     (6) 

Relative acceleration for the block sliding downslope in 

the Newmark model is expressed as (Sarma 1975); 

( ) ( ) ( ) ( )0 tan cos cos cosr t u t g      =  − −  −      (7) 

where =friction angle between the block and slope 

and  = slope angle. In Eq. (7), ( ) 0t  only if 

( )0 tan 0u g  − −              (8) 

Horizontal force equilibrium of the block coupled 

with the SH-wave vibration transmitted through the 

virtual slope body can be expressed as; 

    ( ) ( )( ) ( )( )0 0
, 0r s z

D u t t G u t z z 
=

− +   =    (9) 

where ( ) ( )0 ru t t− =absolute acceleration of the block, 

and 2
s s sG V= =shear stiffness. Substituting Eq. (5) 

into Eq. (9) yields the following basic equation. 

  ( ) ( ) ( )( ) ( ) ( )1 2 1 2r s sD u t u t t V u t u t  + − = −       (10) 

Eq. (10) together with Eqs. (7) and (8) can solve the 

slope system shown in Fig. 1 and its stationary har-

monic response for angular frequency  can be ob-

tained by substituting  

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1

2 2 2 2

i t i t

i t i t

u t A e u t A i e

u t A e u t A i e

 

 





= = 


= = 

      (11) 

into Eq. (10) as; 

( ) ( ) ( )1 2 1 2
i t i t

r
s s

D
i A A e t A A e

V

 



 + − = −
 

   (12)   

This indicates that ( )s sD V  = serves as a key pa-

rameter controlling Eq. (10), named here as impedance 

ratio, wherein D has the same dimension as s sV . The 

nonlinear equation Eq. (10) for ( ) 0t  has to be solved 

by numerical methods as explained below.   

3 NUMERICAL ANALYSIS 

 Time integration of Eq. (10) together with Eqs. (7), (8) 

was implemented for a given input harmonic motion by 

using Wilson’s “θ-method” with “ θ ” =1.4 to have a 

stable solution. Fig. 3 exemplifies the numerical results 

of the slope of =35ᵒ,  =30ᵒ, D=10 m, Vs=200 m/s, 

and s = = 1.8 t/m3. As the input wave, a 10-cycle 

harmonic wave of frequency f=1.0 Hz, was given 

wherein the amplitude increases from 0 to 100% line-

arly with time until 5th cycle followed by a constant 

amplitude A1=2.0 m/s2 to avoid unfavorable effects of 

initial conditions. The slope starts to slide at 2nd cycle 

when 0u exceeds threshold (0.85 m/s2) defined by Eq. 

(8), and accumulates downward displacements. The 

bottom frame of Fig. 3 shows time-dependent varia-

tions of the associated energies. As the difference of 

energy eq u dE E E= − and its sum with the gravitational 

energy grE accumulate with time, gr eqE E+ is observed 

to be almost identical with the energy dissipating be-

tween the block and slope dsE . This is compatible with 

the theoretical energy balance already discussed in pre-

vious papers by the author (e. g. Kokusho 2017).  

  Fig. 4(a) shows a slope displacement r versus 

earthquake energy eqE relationship obtained as a sta-

tionary response per one cycle (in the 10th cycle of the 

tapered harmonic wave for different input accelera-

tions). The calculations conducted for 3 different fre-

quencies f=0.5~1.0 Hz tend to give a unique correlation 

for the displacement around 0.3 m or smaller though 

they tend to diverge with increasing for higher f in 

particular presumably due to errors in the numerical 
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Fig. 3. Example analytical result of Energy-based Newmark 

slope model by a tapered harmonic wave ( =35º.  =30º) 

 



 

 

analysis. Also note that for the small displacements the 

calculated results coincide with dashed straight line in 

the diagram representing Eq. (1) derived theoretically 

from a simple energy principle (Kokusho & Ishizawa 

2007). In Fig. 4(b), the same calculated -values are 

plotted versus horizontal slope accelerations (≈2A1) 

quite differently for three f-values, indicating that not 

the acceleration but the energy can serve as a unique 

indicator for slope displacements as already observed in 

previous model tests (Kokusho & Ishizawa 2007).  

  A series of analyses conducted for pertinent parame-

ters,  =35º,  =20~30º, f=0.5~1.0Hz, D=2.5~10 m, 

Vs=150~300 m/s, yield relationships between normal-

ized energies Eeq/Eu/α and Eu/Neq/Eu0 superposed in Fig. 

5, where Eu and Eeq are upward and dissipated wave 

energies of an given earthquake,α is impedance ratio 

involved in Eq. (12), Neq= number of cycles of equiva-

lent harmonic motion and Eu0 is threshold upward en-

ergy for initiating slope sliding expressed as; 

( )2 2

0 3
tan

4

s s
u

V
E g


 


= −    (13) 

for an equivalent harmonic motion with its angular fre-

quency 2 f = . Despite data dispersions due to calcu-

lation errors in the nonlinear analyses presumably, a 

trilinear dashed line may be drawn commonly for all 

the parameters considered here, yielding the following 

equation; 

( )
0

0 10 0

0

1.0 : 0

1.0 5.0 : 1.43log

5.0 : 1.0

u eq u eq u

u eq u eq u u eq u

u eq u eq u

E N E E E

E N E E E E N E

E N E E E







 =


  = 


 = 

      (14) 
Using earthquake energy Eeq here, the slope residual 

displacement r can be calculated from Eq. (1) using 

upward energy Eu depending on the impedance ra-

tio and the threshold upward energy for sliding 0uE .  

4 EVALUATION EXAMPLE 

  Fig. 6(a) exemplifies a typical slope profile for con-

ventional Newmark-type slope analysis along a circular 

slip surface, wherein the centroid O of soil block BCD 

slides to O′ of B′ C′ D′. If the sliding displacement is 

not so large (less than a few meters for normal engi-

neering design), the line OO′ may be approximated 

parallel to the line BD with its angle θ. Hence, it may 

be replaced in the energy method by a slide of a soil 

mass (horizontal length L) on an infinitely long slope 

with the angle θ as depicted in Fig. 6(b), wherein the 

mass M and planar slip area 1A L=  are the same (ex-

posed to the same upward wave energy) and the sliding 

soil thickness ( )D M A= . In some cases, the slope 

profile in 6(b) may be directly employed for the analy-

sis rather than replacing the circular slip analysis.   
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Fig. 5. Eeq/Eu/α and Eu/Eu0 relationships numerically 

obtained for various parameters ( =35º.) 

 

 

Fig. 6. Slope failures along circular surface (a) and straight 

surface (b) having the same soil mass and planer area  
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Fig. 4 Earthquake energy or upward acceleration ampli-

tude versus horizontal slope displacement： 

(a) Eq～δ, (b) A1～δ 

 



 

 

  In Fig. 7(a), slope displacements r for an earthquake 

of the magnitude M=6.8 are plotted versus  − for 

varying hypocenter distance R, wherein the earthquake 

energy was calculated by using Eqs. (3) and (4) as 

EIP=796～49.7 kJ/m2 for R=10～40 km. The earth-

quake motion is represented by a harmonic motion of 

equivalent number of cycles Neq=9 according to an em-

pirical relationship (Idriss & Boulanger 2008) consid-

ering M=6.8 and of equivalent frequency f=1.51 Hz 

assuming PGA of M=6.8 earthquake attenuating almost 

inversely proportional to R for R=10～40 km (NIED 

2004). This gives the wave energy beneath the slope per 

cycle (dividing EIP by Neq=9) as Eu/Neq=5.00～0.313 

kJ/m2 for S-wave velocity Vs=200 m/s using Eq. (4).  

By comparing this Eu/Neq -value with the threshold en-

ergy Eu0 in Eq. (13), Eeq for slope displacements can be 

determined by Eq. (14), leading to the evaluation 

of r in Eq. (1) assuming average thickness D=5.0 m 

corresponding to circular slip. In Fig. 7(a), the curves of 

open symbols are originally plotted for 1.0eq uE E  = . 
Then from these, close symbols are replotted depend-

ing on the kinks of 0u uE E at 1.0 and 5.0 as indicated in 

Eq. (14). Thus, co-seismic slope displacement can be 

evaluated by this method seamlessly from nonoccur-

rence ( r =0) to residual displacements (if occurred) 

without needs to design acceleration time histories.  

  In Fig. 7(b), the same displacements r are replotted 

versus R and compared with case history of the 

Kan-etsu highway embankment during 2004 Niigataken 

Chuetsu earthquake (M=6.8) where the damage level 

was classified into A (heavy), B (medium) to C (light) 

in slope sliding or road settlements (Kataoka et al. 

2015). Although the comparison is still very much 

qualitative, the energy-based method seems to be able 

to properly evaluate slope behavior in terms of hypo-

center distance and other pertinent slope parameters.  

5 SUMMARY 

  Energy-based Newmark method has been developed 

based on a series of numerical analyses where New-

mark-type slope model is shaken by SH-wave propaga-

tion underneath. Occurrence/Nonoccurrence of slope 

failures and associated slope displacements can be 

evaluated directly from upward wave energy using per-

tinent slope parameters without using acceleration time 

histories. An example study by this method has indi-

cated qualitative compatibility with embankment failure 

case history during a M6.8 earthquake in Japan. 
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Fig. 7. Example evaluation of embankment slope displacements by M=6.8 earthquake: (a) displacements δr versus φ-θ  

for varying hypocenter distance R, (b) δr versus R compared with case history 
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