

COMPUTATIONAL GEOTECHNICS COURSE

CONSOLIDATION

Antonio Gens

Technical University of Catalunya, Barcelona

CONSOLIDATION: OUTLINE

- Introduction
- Basic theory of groundwater flow
- Permeability
- Confined and unconfined problems
- Finite element formulation for consolidation
 - Mechanical problem
 - Hydraulic problem
 - Global equations
 - Time step
- Boundary conditions

TYPES OF ANALYSIS

Drained

 Loading/Construction/ excavation: very slow (in relation to the soil permeability)

Undrained

- Loading/Construction/ excavation: very fast (in relation to the soil permeability)
- Intermediate cases: consolidation analysis
 - Both mechanical and hydraulic (flow) problems interact
 - More complex computations: coupled analysis

EXAMPLE

OTHER EXAMPLES

1973 1984

Ekofisk tank

OTHER EXAMPLES

Construction at intermediate rates

Change of hydraulic conditions

BASIC THEORY OF GROUNDWATER FLOW

Darcy's law

$$q = -k \frac{\Delta h}{L} = -k i$$

$$q = -k \frac{\partial h}{\partial y} = -k \frac{\partial \phi}{\partial y}$$

$$h = \phi = y + \frac{p}{\gamma_w}$$

q: flow $h = \phi$: total head

y: vertical coordinate

p: water pressure

BASIC THEORY OF GROUNDWATER FLOW

Permeability often anisotropic

$$q_{x} = -k_{x} \frac{\partial \Phi}{\partial x}$$

$$q_{y} = -k_{y} \frac{\partial \Phi}{\partial y}$$

Equation of continuity for steady state (no sources/sinks in an elementary area)

$$q_y + \frac{\partial q}{\partial y} dy$$

$$\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} = 0$$

Excess pore pressure

p: (active) water pressure

$$p = p_{steady} + p_{excess}$$

 p_{steady} : steady state pore pressure

 p_{excess} : excess pore pressure

PERMEABILITY

Dependence on grain size

Soil	k (cm/s)	
Clean gravel	> 1	
Clean sand (coarse)	1 - 10 ⁻²	
Sand mixture	10 ⁻² - 5x10 ⁻³	
Fine sand	5x10 ⁻² -10 ⁻³	
Silty sand	2x10 ⁻³ -10 ⁻⁴	
Silt	5x10 ⁻³ -10 ⁻⁵	
Clay	10 ⁻⁶ and less	

Harr (1962)

PERMEABILITY

Dependence on void ratio

Soil Identification Code

- 1 Compacted caliche
- 2 Compacted caliche
- 3 Silty sand
- 4 Sandy clay
- 5 Beach sand
- 6 Compacted Boston blue clay
- 7 Vicksburg buckshot clay
- 8 Sandy clay

- 10 Ottawa sand
- 11 Sand-Gaspee Point
- 13 Sand-Scituate
- 14 Sand-Plum Island
- 15 Sand-Fort Peck
- 16 Silt-Boston
- 17 Silt—Boston

- 19 Lean clay
- 20 Sand-Union Falls
- 12 Sand—Franklin Falls 21 Silt—North Carolina
 - 22 Sand from dike
 - 23 Sodium-Boston blue clay
 - 24 Calcium kaolinite
 - 25 Sodium montmorillonite
 - 26-30 Sand (dam filter)

PERMEABILITY

PLAXIS allows consideration of change of permeability with void ratio

$$\log \left\lceil \frac{k}{k_0} \right\rceil = \frac{\Delta e}{c_k}$$

Default value for c_k is 10^{15}

- There may be large contrasts of permeability between different materials in the same problem
 - Too much permeability contrast may cause numerical difficulties
 - The ratio between the highest and lowest permeability value should not exceed 105
 - ❖ To simulate an almost impermeable material (e.g. concrete), a value lower by a factor 1000 is sufficient

TYPES OF FLOW PROBLEMS

Confined flow

Unconfined flow

Domain defined

Domain undefined

TRANSITION SATURATED/UNSATURATED

$$q_{x} = -K^{r} k_{x} \frac{\partial \phi}{\partial x}$$

$$q_{y} = -K^{r} k_{y} \frac{\partial \phi}{\partial y}$$

$$q_{y} = -K^{r} k_{y} \frac{\partial \phi}{\partial y}$$

$$K^r = 1$$
 saturated zone

$$K^r = 10^{-4}$$
 unsaturated zone

$$K^r = 10^{-4h/h_k}$$
 $\log(K^r) = -\frac{4h}{h_k}$

$$h_k = 0.7 \text{m} \text{ (PLAXIS)}$$

FINITE ELEMENT FORMULATION FOR CONSOLIDATION (1)

Effective stresses

$$\underline{\sigma} = \underline{\sigma'} + \underline{m} (p_{steady} + p_{excess})$$

$$\underline{\sigma} = (\sigma_{xx} \sigma_{yy} \sigma_{zz} \sigma_{xy} \sigma_{yz} \sigma_{zx})^T \text{ and: } \underline{m} = (1 \ 1 \ 1 \ 0 \ 0 \ 0)^T$$

Constitutive law

$$\underline{\dot{\sigma}}' = \underline{\underline{M}} \, \underline{\dot{\varepsilon}}$$

$$\underline{\varepsilon} = \left(\varepsilon_{xx} \ \varepsilon_{yy} \ \varepsilon_{zz} \ \gamma_{xy} \ \gamma_{yz} \ \gamma_{zx} \right)^T$$

Discretization

$$\underline{u} = \underline{\underline{N}} \underline{v}$$

$$\underline{p} = \underline{\underline{N}} \, \underline{p}_{\underline{n}}$$

$$\underline{\varepsilon} = \underline{\underline{B}} \underline{v}$$

- In terms of excess pore pressure
- same shape functions for displacements and pore pressures

FINITE ELEMENT FORMULATION FOR CONSOLIDATION (2)

Mechanical problem: equilibrium equation

$$\int \underline{\underline{B}}^{T} \left(d\underline{\sigma} \right) dV = \int \underline{\underline{N}}^{T} d\underline{f} dV + \int \underline{\underline{N}}^{T} d\underline{t} ds + \underline{r}_{0}$$

$$\underline{r}_0 = \int \underline{\underline{N}}^T \underline{f}_0 dV + \int \underline{\underline{N}}^T \underline{t}_0 ds - \int \underline{\underline{B}}^T \underline{\sigma}_0 dV$$

$$\underline{\underline{K}} d\underline{v} + \underline{\underline{L}} d\underline{p}_n = d\underline{f}_n$$

$$\underline{K} = \int \underline{\underline{B}}^T \underline{M} \underline{B} dV$$
 Stiffness matrix

$$\underline{\underline{L}} = \int \underline{\underline{B}}^T \underline{m} \underline{\underline{N}} dV$$
 Coupling matrix

$$d \underline{\underline{f}}_n = \int \underline{\underline{N}}^T d\underline{\underline{f}} dV + \int \underline{\underline{N}}^T d\underline{\underline{t}} ds$$
 Incremental load vector

FINITE ELEMENT FORMULATION FOR CONSOLIDATION (3)

Hydraulic (flow) problem: continuity equation

$$\nabla^{T} \underline{R} \nabla p / \gamma_{w} + \underline{m}^{T} \left(\frac{\partial \underline{\varepsilon}}{\partial t} \right) - \frac{n}{K_{w}} \frac{\partial p}{\partial t} = 0 \qquad \underline{\underline{R}} = \begin{bmatrix} k_{x} & 0 \\ 0 & k_{y} \end{bmatrix}$$

$$- \underline{\underline{H}} \underline{p}_n + \underline{\underline{L}}^T \frac{d\underline{v}}{dt} - \underline{\underline{S}} \frac{d\underline{p}_n}{dt} = \underline{q}$$

$$\underline{\underline{H}} = \int (\nabla \underline{\underline{N}})^T \underline{\underline{R}} \nabla \underline{\underline{N}} / \gamma_w dV \quad \text{Flow matrix}$$

$$\underline{\underline{L}} = \int \underline{\underline{B}}^T \underline{m} \underline{\underline{N}} dV$$
 Coupling matrix

$$\underline{\underline{S}} = \int \frac{n}{K_{m}} \underline{\underline{N}}^{T} \underline{\underline{N}} dV$$
 Water compressibility matrix

FINITE ELEMENT FORMULATION FOR CONSOLIDATION (4)

Global system of equations

$$\begin{bmatrix} \underline{\underline{K}} & \underline{\underline{L}} \\ \underline{\underline{L}}^T & -\underline{\underline{S}} \end{bmatrix} \begin{bmatrix} \underline{\frac{d \, \underline{v}}{d \, t}} \\ \underline{\frac{d \, \underline{p}_n}{d \, t}} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & \underline{\underline{H}} \end{bmatrix} \begin{bmatrix} \underline{\underline{v}} \\ \underline{\underline{p}_n} \end{bmatrix} + \begin{bmatrix} \underline{\frac{d \, \underline{f}_n}{d \, t}} \\ \underline{\underline{q}_n} \end{bmatrix}$$

Step-by-step integration procedure

$$\begin{bmatrix} \underline{\underline{K}} & \underline{\underline{L}} \\ \underline{\underline{L}}^T & -\underline{\underline{S}}^* \end{bmatrix} \begin{bmatrix} \underline{\Delta}\underline{\underline{v}} \\ \underline{\Delta}\underline{\underline{p}}_n \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & \Delta t & \underline{\underline{H}} \end{bmatrix} \begin{bmatrix} \underline{\underline{v}}_0 \\ \underline{\underline{p}}_{n0} \end{bmatrix} + \begin{bmatrix} \underline{\Delta}\underline{\underline{f}}_n \\ \underline{\Delta t} & \underline{\underline{q}}_n^* \end{bmatrix}$$

$$\underline{\underline{S}}^* = \alpha \ \Delta t \ \underline{\underline{H}} + \underline{\underline{S}} \qquad \underline{\underline{q}}_n^* = \underline{\underline{q}}_{n0} + \alpha \ \Delta \underline{\underline{q}}_n$$

 $0 < \alpha < 1$; Generally, $\alpha = 1$ (fully implicit)

FINITE ELEMENT FORMULATION FOR CONSOLIDATION (5)

- Time step
 - Automatic time stepping is required
 - Critical time step

$$\Delta t_{critical} = \frac{H^2 \gamma_w (1 - 2\nu)(1 + \nu)}{80 \ k_v E(1 - \nu)}$$
 (15-node triangles)

$$\Delta t_{critical} = \frac{H^2 \gamma_w (1 - 2\nu)(1 + \nu)}{40 \ k_v E(1 - \nu)}$$
 (6-node triangles)

- Consolidation analysis
 - Prescribed time
 - Maximum excess pore pressure

BOUNDARY CONDITIONS

- Flow boundary conditions
 - Prescribed groundwater head
 - Closed flow boundary
 - Closed consolidation boundaries

BOUNDARY CONDITIONS

BOUNDARY CONDITIONS

Sources and sinks

Infiltration

Potts & Zdravkovic (1999)

Barcelona breakwater: stages (1)

Barcelona breakwater stages (2)

Caisson construction

Consolidation

Storm loading

Initial pore pressures

Groundwater head

Pore pressures after placing the bench

Excess pore pressures during consolidation

Displacements during construction and consolidation

Caisson construction

Excess pore pressures during consolidation (caisson)

Failure (factor of safety)

Factors of safety

After construction FS=1.06

After 30 days FS=1.60

End of consolidation F=1.74

Incremental shear strains

Horizontal storm load

After consolidation, horizontal pressure = 178.2 kPa

Quay failure 1-01-2007