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ABSTRACT 

 
The Angkor ruins, a World Heritage in Cambodia, contains many masonry structures in danger of collapse due to 

geotechnical problems, such as uneven settlement of the foundation. In order to select suitable restoration methods, 

stability evaluation considering the interaction between the masonry stones and the foundation ground is required. In 

particular, the bearing capacity characteristics of the foundation which consists of man-made soil mound and 

masonry stones, so-called ‘platform’, should be reflected in the restoration design. In the past studies, the failure 

mechanisms of the platform structure have been investigated with the numerical analysis. However, a practical 

design method applicable in the actual restoration projects has not been established yet. In the this paper, a simplified 

model to estimate the ultimate bearing capacity of the platform structure is proposed based on the limit equilibrium 

method and the failure mechanism revealed in the past study. Though the implementation of the proposed method is 

quite simple, the estimated bearing capacity agrees quantitatively with the results of the detailed numerical analysis. 
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1 INTRODUCTION 

The Angkor ruins, a World Heritage in Cambodia, 

includes many masonry structures in danger of collapse 

due to geotechnical problems, such as uneven 

settlement of the foundation ground (see Photo 1). In 

order to select suitable restoration methods, stability 

evaluation considering the mechanical interaction 

between the masonry stones (discontinua) and the 

foundation ground (continuum) is required (JSA 2005). 

Particularly, the bearing capacity characteristics of the 

foundation which consists of man-made soil mound and 

masonry stones (Fig. 1), so-called ‘platform’, should be 

reflected in the design. For this purpose, Hashimoto et 

al. (2017) performed a numerical simulation of the 

bearing capacity problem of the platform structure with 

a discontinuum based method and revealed its failure 

mechanisms. However, any practical design method 

applicable in the actual restoration projects has not been 

established. 

Therefore, in this study, a simple analytical model to 

estimate the bearing capacity of the platform is newly 

formulated based on the limit equilibrium method 

incorporating the failure mechanisms revealed in the 

past study. The implementation procedure of the 

proposed method is explained for a sample problem, 

and its validity is examined by comparing with the 

results of the detailed numerical analysis. 
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Photo 1. A damaged structure in Angkor ruins (after JSA 2005). 
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Fig. 1. Definition of platform structure (weight of upper structure 

is sustained by stones and man-made mound). 
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Fig. 2. Results of the loading analysis of the platform structure: 

(a) distribution of the horizontal displacement and   
(b) distribution of the deviator strain (after Hashimoto et 

al. 2017). 

 

2 DEFINITION OF MASONRY PLATFORM 

AND ITS STRUCTURAL PARAMETERS 

As mentioned above, in this study, the masonry 

platforms constructed by stacking the stones of equal 

size with a constant overlapping width, as shown in Fig. 

1 are focused on. In the figure, B is the stone width, h is 

the stone thickness, l is the overlapping width between 

the stacked stones, and n is the number of layers. When 

B is fixed, every structural conditions can be expressed 

using the following three parameters: the aspect ratio of 

the stones h/B, the ratio of the overlapping width to the 

stone width l/B, and the number of steps n. Hereafter, 

l/B is called ‘overlapping rate’. 

3 FAILURE MECHANICSMS OF THE 

MASONRY PLATFORM 

In the previous study, regarding the deformation of 

the platform as the mechanical interaction problem of 

soil (continuum) and masonry stones (discontinua), the 

authors (Hashimoto et al. 2017) performed the loading 

analysis of the masonry platform structure using a 

discontinuum-based numerical method, NMM-DDA 

(Miki et al. 2010). In the analysis, the stones were 

modeled as elastic body. The soil mound was assumed 

to be a von Mises elasto-perfectly plastic material, 

considering the fact that the uniaxial compressive 

strength estimated from the cone penetration test is the 

only available strength property in usual restoration 

projects of the Angkor. Coulomb’s friction law was 

assumed on the material interfaces. 

Fig. 2 shows the distributions of the horizontal 

displacement and the deviator strain after the downward 

loading on the top stone of the platform. From the  
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Fig. 3. Failure mechanism assumed in the simplified model for 

the bearing capacity estimation of the platform. 

 

horizontal displacement distribution, the discontinuities 

of the displacement, which means sliding, between the 

stones were observed. On the other hand, the deviator 

strain distribution showed that the circular slip line was 

induced in the ground. Considering these results, it was 

concluded that the masonry platform shows composite 

failure mechanisms of the sliding between the stones 

and the shear failure in the ground under vertical 

loading condition. This means that the bearing capacity 

of the platform was mobilized by both of the shear 

resistance in the ground and the friction strength along 

the stone interface. 

4 DERIVATION OF LIMIT EQUILIBRIUM 

EQUATION FOR THE MASONRY PLATFORMS 

Based on the complex failure mechanisms described 

in the last chapter, the limit equilibrium equation for the 

bearing capacity estimation is derived. Now, for a 

platform with n layers of the stones, a failure 

mechanism consisting of a sliding beneath the i-th stone 

from the top and a connected circular slip in the ground 

is assumed as shown in Fig. 3. The stones and the 

ground are modeled as a rigid body and a rigid-plastic 

material with von Mises failure criterion, respectively. 

The forces acting on the sliding domain, including the 

stones, are defined as the ultimate load P, the shear 

resistance force of the soil along the slip circle, the 

normal reaction force Fi
s and the friction force fi

s from 

the ground beneath the i-th stone, and the normal 

reaction force Fi
m and the friction force fi

m from the 

masonry stone beneath the i-th stone. Considering the 

equilibrium of the rotational moment by these forces 

around the center of the slip circle O(xO, yO), the 

following equation can be derived: 
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where R is the radius of the slip circle, and  is the 

central angle of the arc. Since the vertical load acting 

on each stone is transmitted from upper layers partially 

distributing to the ground, Fi
s and Fi

m are assumed as 
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respectively. Here, ri is the load distribution rate of the 

load acting on the i-th stone onto the (i+1)-th stone (see, 

Fig. 4a). Although ri would depend on the difference of 

the stiffness between the stones and the ground, in this 

study, ri is assumed equal to the overlapping rate l/B 

(Fig. 4b). Thus, Eq. (2) is rewritten as follows: 
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Additionally, the friction force along the bottom of the 

sliding stone should have reached the friction strength, 

fi
s and fi

m are represented as following equations 

assuming Coulomb’s friction law. 
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where fms and fmm are the friction angle of the stone-soil 

and the stone-stone interfaces, respectively. After 

substituting Eqs. (3) and (4) into Eq. (1), the ultimate 

load will be derived as follows by solving the limit 

equilibrium equation for P. 
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As shown above, the bearing capacity formula for the 

masonry platform structures has been proposed based 

on the limit equilibrium method. However, to estimate 

the ultimate bearing capacity using Eqs. (5) and (6), the 

parameters i, xO, yO, R and θ, which locates the slip 

circle, must be determined. The determination method 

of these parameters are described in the next chapter. 
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Fig. 4. Load distribution rate: (a) the definition of ri and         

(b) the expression of ri with the overlapping rate l/B. 

 

5 DETERMINATION SCHEME OF FAILURE 

POSITION AND ULTIMATE LOAD 

In general, when a structure reaches failure state, the 

failure mechanisms that show the minimum ultimate 

load will appear. Hence, to estimate the bearing 

capacity of the masonry platforms with Eqs. (5) and (6), 

the parameter set that minimizes the left hand side of 

Eq. (5) should be found. As described above, there are 

five parameters i, xO, yO, R and θ that locate the failure 

line of the platform. However, in fact, R and θ are the 

dependent variables that will be automatically 

determined if i, xO, and yO are fixed. In addition, 

considering the fact that the center of the slip circle 

must be located on the perpendicular bisector of the line 

segment connecting the endpoints of the arc (line AB in 

Fig. 3), xO and yO can be parameterized with the 

distance d between the point C (midpoint of AB) and 

the point O (also see Fig. 3) as follows. 
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Consequently, R and θ are parameterized with i and d 

as following equations. 
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Since Eq. (6) is the function of i and d considering Eqs. 

(7) and (8), finally, Eq. (5) can also be parameterized 

with i and d. Therefore, by seeking the parameter set (i, 
d) that minimizes Eq. (5), the ultimate bearing capacity 

of the masonry platforms can be obtained. The 

important feature of this scheme is that the possible 

values of i are limited to the integers from 2 to n. Thus, 

after determining d that minimizes Eq. (5) for each i, 
the true ultimate load can be easily estimated by finding 

i value showing the minimum value of P. 
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Fig. 5. d-P relationship and the minimum P (cross mark) 

estimated with Eq. (5): (a) i = 2, (b) i = 3 and (c) i = 4. 

 

Table 1. Minimum value of P and corresponding d for each 

layers. 

i d [m] Minimum value of P [kN] 

2 0.265 33.64 

3 1.106 29.26 

4 1.794 32.77 

6 VALIDATION OF THE PROPOSED METHOD 

In this chapter, an implementation example of the 

proposed method is introduced below. Hereafter, a 

platform with the following conditions is assumed: B = 

1.0 m, h/B = 0.40, l/B = 0.50, n = 4, the cohesion c = 10 

kPa, and the surface friction angle ms = mm = 30°. 

Firstly, the relationship between d and P represented 

by Eq. (5)-(10) is calculated for i = 2, 3, 4 (without the 

top stone), as shown in Fig. 5. The cross marks in the 

figures show the minimum values of P for each i listed 

in Table 1. The table shows that the ultimate load 

estimated by Eq. (5) is minimized when i = 3 and d = 

1.106 m. Therefore, the platform assumed here is 

predicted to fail at the third layer from the top, and the 

ultimate bearing capacity is estimated to be 29.26 kN. 

As shown above, the proposed method enables simple 

and definite predictions of the bearing capacity and the 

failure mechanisms of the platform structures. 

To check the validation of the proposed method, the 

estimated ultimate bearing capacity is compared with 

the computed results with the numerical method by 
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Fig. 6. Comparison of the ultimate bearing capacity estimated 

with the numerical simulation and the proposed method. 

 

Hashimoto et al. (2017). Fig. 6 shows the computed 

load-displacement curve of the numerical analysis, and 

the ultimate load estimated with the simplified method 

is also indicated. As shown in the figure, the results by 

the simplified method quantitatively agrees with the 

bearing capacity by the numerical method, and the 

proposed method is successfully validated. 

7 CONCLUSION 

In this study, for the rational conservation of the 

Angkor monuments, a simple analytical model to 

estimate the ultimate bearing capacity of the foundation 

so-called ‘platform’ was proposed. The proposed 

method is constructed in a completely novel approach 

that incorporates the complex mechanisms of the 

ground failure and the sliding between stones. 

The validity of the proposed method was examined 

comparing with the detailed numerical simulation. The 

predicted ultimate bearing capacity with the proposed 

method agreed quantitatively with that computed with 

the detailed numerical method, regardless of the simple 

implementation procedures. Although the further 

validation study for other structural and ground 

conditions is required, the proposed method would be 

quite useful in the practical restoration design process. 
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