GEOTECHNICAL ENGINEERING

March 2019: Special Issue in Unsaturated Soils – Testing, Modelling and Applications

Edited by: Eng-Choon Leong & Hossam Abuel-Naga

TABLE OF CONTENTS

<u>List of Papers</u> <u>Page</u>

- 1: Water Retention Characteristics of Swelling Clays By Kannan R. Iyer and D. N. Singh
- 2: Water Retention and Unsaturated Hydraulic Behaviors of a Biochar-modified Silt By Abraham C.F. Chiu, B. Qiao and Y. Xiao
- 3: Investigation of a Nonisothermal Apparent Thermal Conductivity Function for Unsaturated Sand By R.A. Samarakoon, and J.S. McCartney
- 4: Simple Approach to Monitor Soil Moisture Dynamic in Vapour Equilibrium Cell By Y. Lu, Z. Shang, Hossam Abuel-Naga
- 5: A Classification Tree Guide to Soil-water Characteristic Curve Test for Soils with Bimodal Grain-size Distribution By L. Zou and E.C. Leong
- 6: Back Pressure Saturation Effects on the Mechanical Behaviour of a Quasi-Saturated Compacted Residual Soil By G.G. Carnero-Guzman and F.A.M. Marinho
- 7: Induced and Inherent Anisotropies of Saturated and Unsaturated Soil Shear Properties By H. Toyota, B. N. Le and S. Takada
- 8: Modeling of Unsaturated Soil Aided by Probability and Statistics By R. Kitamura and K. Sako
- 9: Elastoplastic Modelling of Hydro-mechanical Behaviour of Unsaturated Soils By J.R. Zhang, D.A. Sun and W.J. Sun
- 10: Interpretation of Desiccation Soil Cracking in the Framework of Unsaturated Soil Mechanics By H. Al-Dakheeli and R. Bulut
- 11: Field Response of an Instrumented Dyke subjected to Rainfall By A. Jotisankasa, S. Pramusandi, S. Nishimura and S. Chaiprakaikeow
- 12: Simplified Shear Deformation Method for Analysis of Mechanical Behavior of Pile Foundations in Expansive Soils By Y. Liu and S.K. Vanapalli
- 13: Validation of Foundation Design Method on Expansive Soils By K.C. Chao and J.D. Nelson

GEOTECHNICAL ENGINEERING

June 2019: Issue on Buried Pipelines

Edited by: Dr Jey Jeyapalan

TABLE OF CONTENTS

<u>List of Papers</u>		Page
1:	Long-term Deformation Monitoring of CERN Concrete-lined Tunnels using Distributed Fibre-optic Sensing By V. Di Murro, L. Pelecanos, K. Soga, C. Kechavarzi, R.F. Morton, L. Scibile	1-7
2:	Distributed Brillouin Sensing for Geotechnical Infrastructure: Capabilities and Challenges By N. Noether and S. von der Mark	8-12
3:	State-of-the Art of Geotechnical Monitoring with Geodetic Techniques By W. Lienhart	13-20
4:	Performance Assessment and Failure Prediction of Corroded Cast Iron Pipes By P. Rajeev and D. Robert	21-27
5:	Comparative Study of Distributed Sensors for Strain Monitoring of Pipelines <i>By B. Glisic</i>	28-35
6:	Instrumented Laterally Loaded Pile Test Using Distributed Fibre Optic Sensors By H. Mohamad, B.P. Tee, M.F. Chong, K.A. Ang, A.S.A. Rashid and R.A. Abdullah	36-42
7:	Distributed Fibre Optic Sensing for Monitoring Reinforced Concrete Piles By C. Kechavarzi, L. Pelecanos, N. de Battista and K. Soga	43-51
8:	State-of-the Art Knowledge on Upheaval Buckling of Buried Pipelines By Indrasenan Thusyanthan and Dilan Robert	52-59
9:	Cost Effective Free Span Rectification for Offshore Pipelines By Indrasenan Thusyanthan	60-63
10:	Distributed Optical Fiber Sensors for Strain and Deformation Monitoring of Pipelines and Penstocks By D. Inaudi	64-70
11:	A Methodology for Identification of Pipe Failure Hotspots By Ravin N Deo, Chunshun Zhang, Jian Ji, Suranji Rathnayaka, Benjamin Shannon, Jayantha K Kodikara	71-76
12:	ADYTrack: Development of a Railroad Trackbed Model and Parametric Study of Track Modulus By Asif Arshid, Ying Huang, and Denver Tolliver	77-84

13:	Leakage- induced Pipeline Stressing and its Potential Detection by Distributed Fiber Optic Sensing By A. Klar, A., Linker, R. and Herrmann, S.	85-90
14:	Smart Geosynthetics based on Distributed Fiber-optic Sensors in Geotechnical Engineering By A. Wosniok and K. Krebber	91-95
15:	Loss of Flexibility in Geosynthetics Subjected to Chemical Exposure: Experiments, Constitutive Models and Computations and Estimates for Contaminant Leakage <i>By A. P.S. Selvadurai</i>	96-100
16:	Monitoring of Buried Pipeline using Distributed Fibre Optic Technologies: Combined Acoustic-Temperature-Strain sensing By C. Prohasky, R. Vivekanantham, P.Rajeev, H. Bao, and S. Roy	107-112
17.	Benefits of Standards for Fiber-optic Sensors in Soil-structure Interaction By W. R. Habel and J. K. Jeyapalan	113-124
18.	Rational Methods of Steel Pipe Design Accounting for Poor Native Soils and Soil Migration By J. K. Jeyapalan, G. Leonhardt, P. Rajeev, and A. M. Britto	125-130
19.	Technical Challenges and Solutions for Super-Long Mountainous Tunnels at Great Depth By Yan Jinxiu	131-135
20.	Risk Analysis and Countermeasure Study of Shield Tunnelling in Karst Stratum of China by By Zhong Changping, Zhu Weibin, Huang Weiran, Zhu Siran and Xu Minghui	136-140

Cover Photograph

- 1. Benefits of standards for fiber-optic sensors in soil-structure interaction *By W. R. Habel and J. K. Jeyapalan*
- 2. Long-term Deformation Monitoring of CERN Concrete-lined Tunnels using Distributed Fibre-optic Sensing By V. Di Murro, L. Pelecanos, K. Soga, C. Kechavarzi, R.F. Morton, L. Scibile
- 3. State-of-the Art of Geotechnical Monitoring with Geodetic Techniques *By W. Lienhart*
- 4. State-of-the Art Knowledge on Upheaval Buckling of Buried Pipelines *By N. I. Thusyanthan and D. Robert*
- 5. Distributed Optical Fiber Sensors for Strain and Deformation Monitoring of Pipelines and Penstocks *By D. Inaudi*
- 6. Smart Geosynthetics based on Distributed Fiber Optic Sensors in Geotechnical Engineering By A. Wosniok and K. Krebber
- 7. Leakage-Induced Pipeline Stressing and its Potential Detection by Distributed Fiber Optic Sensing By A. Klar, R. Linker and S. Herrmann
- 8. Loss of flexibility in geosynthetics subjected to chemical exposure: Experiments, constitutive models and computations and estimates for contaminant leakage *By A. P.S. Selvadurai*