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SWELLING in tunnels usually exhibits 
invert heave and associated abutment 
movements. This can be sudden, i.e. 
during construction, or it can be long 
lasting.  
The consequences of such movements 
range from problems associated with 
broken drainage channels to destruction 
of initial and final supports as well as 
deformation of the railway or highway 
roadbeds impeding traffic.  
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The SWELLING mechanism is a 
combination of physico-chemical reaction 
involving water and stress-relief. Stress 
changes “usually” have a significant 
effect. One can distinguish three typical 
mechanisms:
“Mechanical” swelling
“Osmotic” swelling
“Intercrystalline” swelling.  
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“Mechanical swelling” occurs in most 
clays, silty clays, clayey silts and 
corresponding rocks. It is inverse of 
consolidation or, otherwise expressed, it 
is caused by the dissipation of negative 
excess pore pressures.
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“Osmotic swelling” occurs in clays or 
clayey (arigllaceous) rocks. It is related 
to the double layer effect, i.e. the large 
difference in concentration between ions 
electrostatically held close to the clay 
particle surfaces and the ions in the pore 
water further away. 
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“Intercrystalline swelling” occurs in 
smectite and mixed layer clays, in 
anhydrite and in pirite and marcasite. 
The specifics of the mechanism differ 
depending on the material (ground) 
involved. In smectite and mixed layer 
clays, intercrystalline swelling is caused 
by the hydration of the exchangeable 
cations., 

“Intercrystalline swelling” occurs in 
smectite and mixed layer clays, in 
anhydrite and in pirite and marcasite. 
The specifics of the mechanism differ 
depending on the material (ground) 
involved. In smectite and mixed layer 
clays, intercrystalline swelling is caused 
by the hydration of the exchangeable 
cations., 

INTERCRYSTALLINE SWELLINGINTERCRYSTALLINE SWELLINGINTERCRYSTALLINE SWELLING



SWELLING AND SQUEEZINGSWELLING AND SQUEEZINGSWELLING AND SQUEEZING

DeterminantRelatively relevantMaterial properties

ShearVolumetricStrains

RelevantNecessaryWater

Relatively relevantDeterminantMinerals

TriggeringRelevantStress state

Several diametersFew metres around 
the tunnel

Interested zone

May last for years
May last or resume 

with reshaping of the 
tunnel contour

Initially high and 
decreasing with time
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water does not re-
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system
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- Rate
- Period

Yielding of the rock 
mass with time-

dependent 
deformations

Volume increase due 
to water adsorption 

in soils with 
expandable minerals

Cause

SqueezingSwelling

Type of behaviour
Factor

Geotechnical CharacterisationGeotechnicalGeotechnical CharacterisationCharacterisation

From the physical point of view, swelling materials are 
characterised in the same manner as ordinary 
geomaterials. Tests are performed in order to 
determine: mineralogical composition, petrographic
characteristics [I.S.R.M., 1978], total and dry density, 
natural water content, grain specific volume [I.S.R.M., 
1979]. 
Other important parameters are Atterberg limits, grain 
size distribution, carbonate content and mineralogical 
contents by X-ray diffraction. 
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According to the I.S.R.M. recommendations, the 
procedure for testing argillaceous swelling rocks 
containing clay and anhydrite is divided into 
four steps:
• Sampling, storage and preparation of the 
samples
• Determining the axial swelling stress
• Determining the axial and radial free swelling 
strain 
• Determining the axial swelling stress versus the 
axial swelling strain (modified Huder-Amberg test)

Predicting the performance of tunnel in 
swelling (and squeezing) conditions requires 
the knowledge of:
- Natural stress state
- Stress changes
- Ground water conditions
- Material properties (as in any geotechnical 
problem).
Experiments in which the time dependent 
and near failure behaviour can be accurately 
determined are necessary.
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Tunnels in swelling ground can be designed 
by preventing access of groundwater to the 
swelling ground, an unralistic option in most 
instances, and by either allowing the swell 
deformation to take place or by preventing it; 
combinations which allow some deformation 
to take place as well as providing some 
resistance are possible, as already discussed 
in lecture 3.
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Modelling and Design of Tunnels in swelling 
ground conditions lead to a number of models 
which have been proposed by different 
Authors to describe swelling and squeezing 
(i.e. creep) behaviour. Some of these models 
are listed below. Only the simplified models 
by Grob and Wittke will be discussed in this 
lecture. 
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The swelling strain  is a function of the vertical stress. Kq is the swelling 
strain parameter and describes the slope of a straight line (linear 
regression of the experimental data obtained from the Huder-Amberg
tests in an oedometer) on the plane. It is the stress at which the swelling 
strain is equal to zero.

GrobGrob (1972)(1972)

The swelling strain law was written as follows, based on oedometer
tests:
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where:  I1,σ = first stress invariant in situ
I1,σo = first stress invariant following excavation
ν = Poisson’s ratio

WittkeWittke (1976(1976--2000)2000)

A three-dimensional generalisation of Grob’s swelling law was done
under certain assumptions and simplifications by Wittke and Rißler
(1976) by introducing the first invariant of the strain tensor:
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Additional models have been developed by the following Authors:

GyselGysel (1987(1987--2001)2001)

EinsteinEinstein, , AristorenasAristorenas, , BellwaldBellwald (1988(1988--2000)2000)

AnagnostouAnagnostou (1991(1991--1995)1995)

Gens and Gens and AlonsoAlonso (1991(1991--2008)2008)

FollowingFollowing the the studiesstudies byby BellwaldBellwald (1990) and (1990) and 
AristorenasAristorenas (1992) a new (1992) a new approachapproach waswas proposedproposed. . 
Two main differences are put forward by this method Two main differences are put forward by this method 
((BarlaBarla M., 2008): M., 2008): 

1.1. the experimental evaluation of swelling parameters the experimental evaluation of swelling parameters 
is due to is due to triaxialtriaxial test results in order to overcome the test results in order to overcome the 
limitations of the limitations of the oedometeroedometer testtest

2.2. the condition whether swelling occurs or not is the condition whether swelling occurs or not is 
related to the excess pore pressure experienced in related to the excess pore pressure experienced in 
the ground around the tunnel during excavationthe ground around the tunnel during excavation



The The triaxialtriaxial
swelling testswelling test

• Set up of the specimen (dry setting)

• Flushing, Saturation & Consolidation

• Undrained shearing 

• Drained swelling/consolidation
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Raticosa Tunnel

1.1. Physical propertiesPhysical properties

2.2. Mineralogical contentsMineralogical contents

3.3. OedometerOedometer tests tests 

(conventional and (conventional and 

HuderHuder--AmbergAmberg tests on tests on 

natural and natural and 

reconstituted materials)reconstituted materials)

4.4. TriaxialTriaxial tests in closely tests in closely 

controlled stresscontrolled stress--path path 

conditionsconditions

CubicCubic samplessamples LaboratoryLaboratory SamplesSamples

TESTING PROGRAMME

CHARACTERISATION OF CLAYCHARACTERISATION OF CLAY--SHALESSHALES



PHYSICAL PROPERTIES
According to the Plasticity Chart, the CAccording to the Plasticity Chart, the C--S can be classified as S can be classified as ““inorganic inorganic 

clays of low to average plasticityclays of low to average plasticity””..

Index properties vary in a wide range, which underlines the greaIndex properties vary in a wide range, which underlines the great t 

heterogeneity of the material, both at the sample and at the rocheterogeneity of the material, both at the sample and at the rock mass k mass 

scale.scale.

Site 
Cubic 

sample
Depth 

[m] 
wn 

[%] 
γu 

[kN/m3] 
Gs 
[-] 

e 
[-] 

LL 
[%] 

LP 
[%] 

PI 
[%]

CaCO3

[%] 
Raticosa 4 22 11.5 22.9 2.72 0.301 40 22 18 10 

Soil 
Calcite 

[%] 
Quartz 

[%] 
Clay minerals 

[%] 
Albite 
[%] 

Raticosa (cubic sample 4) 10 35 45 10 

Soil 
Smectite 

[%] 
Illite 
[%] 

Illite-Smectite 
[%] 

Chlorite 
[%] 

Kaolinite
[%] 

Raticosa (cubic sample 4) 5 25÷50 10÷20 40÷50 - 

Low water content, Low Low water content, Low AtterbergAtterberg limits, Large amount of limits, Large amount of 
clay minerals,  Presence of swelling mineralsclay minerals,  Presence of swelling minerals

XX--RAY DIFFRACTION ANALYSESRAY DIFFRACTION ANALYSES

A B C

0 25 50 75 100

Carbonate content [%]

100

75

50

25

0

Q
uartz

[%
]

100

75

50

25

0

C
la

y
m

in
er

al
s

[%
]

A B C

A:highswellingpotential
B:averageswellingpotential
C:lowswellingpotential

Osteria clay shale
Raticosa clay shale
Sparvo clay shale
S. Donato clay shale
Varicolori clay shale
Terravecchia claystone
Caneva stiff clay
Opalinus shale
Lias Alpha shale
French marls



0

5

10

15

20

25

0.001 0.01 0.1 1 10

Axial stress [MPa]

S
w

el
lin

g
st

ra
in

[%
]

S. Donato tunnel
Raticosa tunnel
Osteria access adit
Sparvo tunnel

K [%]
S. Donato 2.9÷6.6
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HUDERHUDER--AMBERG SWELLING TESTSAMBERG SWELLING TESTS

The SRTA (Soft Rock Triaxial Apparatus) The SRTA (Soft Rock Triaxial Apparatus) 

•• Axial strains: external (Axial strains: external (LVDTsLVDTs) and ) and 

local (local (LDTsLDTs) measurement) measurement

•• Radial strains: local measurement Radial strains: local measurement 

(inductive proximity transducers)(inductive proximity transducers)

•• Cell pressure: 2 MPaCell pressure: 2 MPa

•• Pore pressure: 1 MPaPore pressure: 1 MPa

•• Load cell:50 Load cell:50 kNkN, inside the , inside the 

confinement cellconfinement cell

•• Volume gaugeVolume gauge

•• MultiMulti--point conditioning system is point conditioning system is 

used for data acquisitionused for data acquisition

•• Complete remote control systemComplete remote control system
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Soft Rock Triaxial
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PPHASES:
1. Flushing
2. Saturation
3. Consolidation

OST3 RTC1 RTC2 RTC3 RTC4 RTC5

4. Stress-path

5. Creep
6. Consolidation/ 
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DEVIATOR DEVIATOR –– AXIAL STRAINAXIAL STRAIN

The CCTCS exhibit a ductile stressThe CCTCS exhibit a ductile stress--strain behaviour, strain behaviour, 
with axial failure strain reaching about 5%with axial failure strain reaching about 5%

Vertical strain rate:
0.01÷0.001 %/min
Saturation degree:
0.75÷0.88 %
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TRIAXIAL TESTS: STRESSTRIAXIAL TESTS: STRESS--PATHPATH

The ESP initially bends to the left (excess pore pressure The ESP initially bends to the left (excess pore pressure 
> 0). Then a negative excess pore pressure is produced > 0). Then a negative excess pore pressure is produced 
when approaching failure (development of mechanical when approaching failure (development of mechanical 
swelling).swelling).
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The peak and residual strength envelopes from direct The peak and residual strength envelopes from direct 
shear tests lie well within the range of shear strength shear tests lie well within the range of shear strength 

values resulting from values resulting from triaxialtriaxial teststests
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CAEST3

CAEST4

EXPLORATORY ADIT
(located 340 m ahead of the 

cross section shown)
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Swelling triaxial tests
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Wittke approach
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