

10/26/2007

CIRIA'S		ressure Diagram for Soft Clay	
(CIRIA, 1990)			
Base condition	Case history	Comment	
Stable (adequate soil strength)	10,15,20,27	Strengths and unit weights are greater than would be expected for a NC clay.	
Firm Clay (stable)		Unit weights are greater than 19kN/m³. All these case histories are in Chicago, USA	
<u> </u>	7, 18, 23, 24, 26	There is no soft clay beneath the excavation (T=0)	
Stable (Stronger stratum at or near base)	2b, 5, 6, 8, 12, 14, 16, 17	D/T < 1 i.e. wall does not extend to the competent stratum	
Soft Clay (stable)	19, 21, 22, 25, 28	D/T 1 but T/H < 0.33, i.e. only small thickness of soft clay beneath the excavation (T/B of between 0.04 and 0.37)	

	(CI	RIA, 1996)
		1
	la	Intermediate (5.3m) dig stage of 11.5m
		deep excavation with sheet pile walls
Soft Clay		driven to rock at 12.5m ($T/B = 0.65$;
(unatable		$D_{e}/T = 1.0$ but $T/H = 1.36$). This
(unstable base)	ļ	shallow dig is assumed to have enhanced
		base stability
	2a	Intermediate (5.8m) dig stage of 11.5m
		excavation with 16.5m long sheet piles
		and rock at 28m depth. $(T/B = 1.5; T/H =$
		1.4)
	1b, 3, 11, 16, 13	Reported as driven to rock for stability
(wall	1	(T/H = 0.41 to 0.72 except 0.13 for
contributes to		AF1b; $T/B = 0.13$ to 0.5)
base stability)		
,	4 and 9	T/H of 2.4 and 0.6 respectively
		T/B of 0.2 and 0.4 respectively

Taking up slack in support system

- Typically around 10% of the design (working) Load (CIRIA, 1996).
- In Singapore, 20 to 50% is commonly used.

is commonly used.

Stiffen the support system

- Higher preload has been used in an attempt to reduce wall deflections and ground settlements.
 The wall may be pushed back under this load.
- · Professor Broms advocated 100%.
- · Singapore Post Centre used 100% preload.
- Most MRT stations along the NEL required a minimum of 50%.
- Some (O'Rourke, 1974) consider little benefit in introducing the additional load.

Avoid excessive preload

- Excessive preload can cause passive failure of the soil behind the wall.
- Large bending moment can be induced in the wall.

37

Preloading of Struts

Unbalanced Horizontal Reactions

- · Sloping ground
- River on one side
- Different ground conditions at opposite sides
- Large surcharge on one side
- · Excavation on adjacent site
- · Unbalanced groundwater level

Strut Removal

- Can increase load by 30% or more
- Should be simulated in analysis

Poor Workmanship

- Over-excavation
- Time delay
- Dissipation of excess pore pressure
- Stress relief

38

Other Factors

Affecting Strut

Forces

