Table 4 - Classification of Rock Material Decomposition Grades | Descriptive Grade | | General Characteristics for Granitic & | Additional Typical Characteristics for Specific Rock Types | | | | | | | | |--------------------------|---|--|--|---|--|---|--|--|--|--| | Term | Symbol | Volcanic Rocks & Other Rocks of
Equivalent Strength in the Fresh State | Granite | Granodiorite | Coarse Ash Crystal/Lithic Tuff | Fine Ash Vitric Tuff | | | | | | Residual
Soil | ΣΙ | Original rock texture completely destroyed
Can be crumbled by hand and finger pressure into
constituent grains | Reddish brown Feldspars completely destroyed Quartz is only remaining primary mineral; usually dull, etched or pitted and reduced in size compared with fresh condition | Dark reddish brown Feldspars completely destroyed Quartz only remaining primary mineral; grains reduced in size compared with fresh condition | Brown or reddish brown
Quartz only remaining primary
mineral | Yellowish brown | | | | | | Completely
Decomposed | ▼ | Original rock texture preserved Can be crumbled by hand and finger pressure into constituent grains Eosily indented by point of geological pick Slakes when immersed in water Completely discoloured compared with fresh rock | Yellowish brown to reddish brown
Feldspars powdery to soft
Hand penetrometer shear strength index
< 250 kPa
Zero rebound from N Schmidt hammer | Yellowish brown to reddish brown
Plagioclase feldspars powdery to soft,
very easily grooved by pin
Orthoclase feldspars gritty, less easily
grooved
Zero rebound from N Schmidt hammer | Brown to reddish brown
Slakes slowly in water
Mafic minerals soft, dull, dark green
to brown, difficult to distinguish | Yellowish brown
Slakes readily in water | | | | | | Highly
Decomposed | Can be broken by hand into smaller pieces Makes a dull sound when struck by geological hammer Not easily indented by point of geological pick Does not slake when immersed in water Completely discoloured compared with fresh rock Yellowish brown to yellowish orange/ brown Feldspars powdery Hand penetrometer shear strength index >>250 kFa Positive N Schmidt rebound value <25 | | Yellowish brown to yellowish orange/
brown
Plagioclase feldspars powdery to gritty
N Schmidt rebound value 15-30 | Yellowish brown
Mafic minerals soft, dull, dark green | Yellowish grey
Surface can be scratched by knife | | | | | | | Moderately
Decomposed | | | Feldspars gritty | Yellowish brown
Plagioclase feldspars party decomposed
to gritty small pieces
N Schmidt rebound value 25-50 | Yellowish grey
Mafic minerals generally not shiny,
soft, black or stained dark brown | White or light grey
Surface cannot be scratched by knife | | | | | | Stightly
Decomposed | σ | Not broken easily by geological hammer
Makes a ringing sound when struck by geological
hammer
Fresh rock colours generally retained but stained near
joint surfaces | Feldspars hard to slightly gritty
Orthoclase feldspars often pink
Biotite slightly stained and dult around
edges
N Schmidt rebound value >45 | Plagioclose feldspars slightly gritty
Biotite and hornblende slightly stained
and dull
N Schmidt rebound value 45-70 | Light grey or greenish grey
Mafic minerals shiny, hard, black,
may be slightly stained and dull
around edges | Grey, light grey or greenish grey
Cloudy appearance | | | | | | Fresh | Makes a ringing sound when struck by geological hammer | | Overall rock colour grey/white
Feldspars hard and shiny
Biotite shiny, not stained
Quartz colourless or grey, glassy | Overall rock colour grey
Feldspars hard and shiny
Biotite and hornblende shiny; not stained
Quartz colourless or grey, glassy
N Schmidt rebound value >60 | Overall rock colour ranges from light
greenish grey (JSM) to grey (JSM,
JYT)
Feldspars hard and shiny
Mafic minerals shiny, hard, black
Quartz colourless or grey, glassy | Overall rock colour black
Glassy appearance | | | | | | General Notes | | Not all these general characteristics are applicable to rocks whose strength in the fresh state is moderately strong or less (see Table 2). Alternative classifications may be more appropriate for such materia | (3) Based on Moye (1955), Hencher & Martin (1982) and unpublished work by the GCO. (4) Assessments of minerals applicable to medium and coarse-grained granite; may be difficult or impossible to assess in fine-grained granites. | (5) Based on Irfan & Powell (1965a,b). | (6) Based on unpublished work by the GCO. (7) JYT = Yim Tin Tsai Formation JSM = Shing Mun Formation (see HKGS maps and memoirs). (8) Mafic minerals referred to are biotite and hornblende. | (9) Based on unpublished work by
the GCO. | | | | | | Notes on Index | Tests | (10) Slake test: samples already close to saturation (11) Feldspar alteration test: Hard = cannot be cut by fragments in fingers; Soft = easily grooved by pir (12) N Schmidt hammer test: rebound values are for l impacts, ignoring unusually low readings. (13) Hand penetrometer test: press instrument head sl (14) Test results in general may be affected by si | knife or grooved by pin; Gritty=can be
1, can be moulded very easily to clay in
nommer held perpendicular to rock face: ta
couly and smoothly into sample, take an av | cut by knife or grooved by pin with
fingers.
ke initial 'seating' blows to ensure goo
erage of ten values and divide by two | d contact and record average value t | from a minimum of five consecutive | | | | | Table 5 - Classification of Solid Rocks and Superficial Deposits in Hong Kong | Superficial
Deposits * | | Grain | | Solid Rocks * | | | | | | | | | | |---------------------------|--------------------------|---------------------|------------------------------|------------------------------------|-----------------------------|-----------------------|-------------------|--------------|---|--------------------------|-------------|----------------------|----------------------------| | | | Size
(mm) | Sedimentary
Rocks | | Pyroclastic
Rocks | lgneous
Rocks | | | | | | Metamorphic
Rocks | | | | Grain
Size
Term | | Detrital
Rocks | Chemical &
Biochemical
Rocks | Breccia | Grain
Size
Term | Ac
(mu
qua | | Intermediate
(some
quartz) | Bas
(little
no qua | or | Foliated | Non-
Foliate | | Boulders | | | Conglomerate | · w | Pyroclastic Br | | ÷. | | | <u> </u> | | | | | Cobbles | | — 200 —
— 60 — | | Evaporites | Pyroc | | Pegmatite | | | | | | | | | Coarse | 20 | Sedimentary
Breccia | 1 | | | | | | | | | a | | Gravel | Medium | <u> </u> | / Ego | Dolomite, | Lapilli Tuff | Coarse-grained | ⊢ | Granodiorite | Monzonite
Syenite | | | |)
CCic | | | Fine | 2 | | 100 | | Medium-grained | | | | * 0 | | | Bre | | Sand | Coarse
Medium
Fine | 0.6
0.2
0.0 6 | Sandstone | and | Coarse Ash Tuff | Fine-grained | Grai
Aplite | Granoc | וו אַ ע | # Gabbro | hyre | Schist | Fault Breccia
Quartzite | | Silt | | | Siltstone e | Limestone | | | | te | · | 坦 | Lamprophyre | Mylonite | | | Clay | | - 0.002 | Claystone Claystone | Chert | Fine Ash Tuff | | Rhyolite | Dacite | Quartz Latite
Quartz Trachyt
Trachyandesite
Andesite | #
Basalt | | Phyllite My | | | Legend ; | | | | | | | | | | | | | | | t | Engineering
be broken | soils c | omprise super
y hand into | rficial deposi
constituent | its and any solid
grains | rock which has | weath | nered | to the condit | tion wh | ere | it can | | | * 6 | | | ite in Allen | | | | | | | | | | | Table 10 - Classification of Rock Mass Weathering Zones | De | Zone Zone
Description Symbol | | Zone Characteristics | | | | | | |------------------------|---------------------------------|--------------|---|--|--|--|--|--| | R | Residual
Soil RS | | Residual soil derived from insitu weathering; mass structure and material texture/fabric completely destroyed: 100% soil | | | | | | | Rock | 0/30 %
Rock | PW
0/30 | Less than 30 % rock Soil retains original mass structure and material texture / fabric (i.e. saprolite) Rock content does not affect shear behaviour of mass, but relict discontinuities in soil may do so Rock content may be significant for investigation and construction | | | | | | | Partially Weathered Ro | 30/50%
Rock | PW
30/50 | 30 % to 50 % rock Both rock content and relict discontinuities may affect shear behaviour of mass | | | | | | | Partial | 50/90%
Rock | PW
50/90 | 50 % to 90 % rock Interlocked structure | | | | | | | | 90 / 100 %
Rock | PW
90/100 | Greater than 90 % rock Small amount of the material converted to soil along discontinuities | | | | | | | Unv | veathered
Rock | UW | 100 % rock May show slight discolouration along discontinuities | | | | | | | Danis | . Call Tona | Particle | W1 11 W W | Particle Composite Sail Types (Compositees & Co | | Strength actness & Consistency) | | Structure and | Weathering | _ |-----------------------------|-----------------------|----------------|--|---|---|--|-------------------------------------|--|---|--|--|--|--|--|-----------|--|--|--|--|--|--|--|--|--|--|----------------|--|---|------------|--|------------| | | Soil Type | Size
(mm) | visual identification | Shape and
Plasticity | (Mixtures of Basic So | | Strength
Term | Field Test | Structural Field Identification | | Quantitative Scales | | Colour | odrse | BOULDERS | | Only seen complete in pits or exposures. | Particle
Shape | with course soils | | | | Loose By inspection of voids | | Homo -
geneous | Deposit consists
essentially of one | Scale of Bedding Spacing | | Lightness | | | | | | | | | | | | | | | | | | Very Coarse
Soils | COBBLES | 200 | Often difficult to recover from boreholes. | <u>Form</u>
Equidimensional | | | Dense | and particle packing | geneous | type. | Term | Mean
Spacing
(mm) | Light
Dark | Coarse | Easity visible to naked eye; particle
shape can be described; grading can | Flat
Elongate
Flat and | Slightly silty GRAVEL Inter- Alternat | Alternating layers of
varying types or with
bands or lenses of | Very thickly-
bedded
Thickly- | > 2000 | Chroma | , | | 20 | be described. Well-graded: wide range of grain sizes, | elongate
Angularity | Slightly clayey SAND
 | | | | or Inter-
laminated) | other materials.
Quantitative scale
for bedding spacing | bedded
Medium- | 200 - 600 | Pinkish
Reddish
Yellowish | sizes | GRAVELS | Medium | well distributed. Poorly-graded: not well
graded. (May be uniform; size of most
particles lies between narrow limits; | Angular
Subangular | - clayey SAND | 5 - 15 | | | | may be used. | Thinly-
bedded | 60 - 200 | Orangish
Brownish
Greenish | Soils
Id gravel | | Fine 6 | or gap-graded: an intermediate size of particle is markedly under- represented.) | Subrounded
Rounded | Very silty GRAVEL | 15 - 35 | Loose | Can be excavated with spade; 50mm wooden peg | Hetero –
geneous | A mixture of types. | Very thinly-
bedded | 20 - 60 | Bluish
Purplish | Coarse Sc
% sand and | | 2 | Visible to naked eye; very little or no | Surface Texture
Smooth | Very clayey SAND | so he | <u> </u> | can be easily driven. | | | laminatea | 6 - 20 | Greyish | Coar
% san | | Coarse | cohesion when dry; grading can be described. | Rough
Glassy | subdivided to give additional secondary constituent where applicable (Table 15). For composite types described as: | | Dense | Requires pick for excavation; 50mm wooden peg hard to drive. | | | Thinly-
laminated | < 6 | Pink | over 65 | | 0.6 | Well-graded: wide range of grain sizes. | Honeycombed
Pitted | | | | | | | Scale of Spacing of Other
Discontinuities | ۱ ٥٨ | SANDS | Medium 0.0 | Poorly-graded: not well graded. (May
be uniform: size of most particles lies
between narrow limits; or gap-graded: | Striated | | | | | | | Term | Mean
Spacing
(mm) | Red
Yellow
Orange
Brown | 0.2
Fine | an intermediate size of particle is markedly under-represented.) | · | | | | | | Extremely widely-spaced | > 6000 | Green
Blue | 4 | 0.06 | | | Scale of Secondary Constituents | | ļ | | | | Very widely-
spaced | 2000 - 6000 | Purple
White | Coarse
0.02 | Only coarse silt barely visible to naked eye; exhibits little plasticity and marked | Plasticity | with Fine Soils | % of | Very
soft | Exudes between fingers when squeezed in hand. | Fissured | Breaks into polyhedral
fragments along | Widely-
spaced | 600 - 2000 | Grey
Black | Sizes | SILTS | Medium | dilatancy; slightly granular or sitky to
the touch. Disintegrates in water; | Non - plastic | Term | Gravel or
Sand | | Moulded by light finger | | fissures. Quantitative scale for spacing of discontinuities may be used. | Medium-
spaced | 200 - 500 | Non-uniform
Distribution | - | | 0.006
Fine | lumps dry quickly; possess cohesion but can be powdered easily between fingers. | or low
plasticity | Slightly gravelly SILT
or
Slightly sandy CLAY | < 35 | Soft | pressure. | | | Closely-
spaced | 60 - 200 | Spotted
Mottled | fine Soils
silt and clay | —— □
Σ | 0.002 | Dry lumps can be broken but not powdered between fingers; they also | | - gravelly SILT or | 35 - 65 | Firm | Can be moulded by strong finger pressure. | intact | No fissures . | Very closely-
spaced
Extremely | 20 - 60 | Dappled
Streaked
Striped | Fine
35% sitt | | | disintegrate under water but more slowly
than silt; smooth to the touch; exhibits
plasticity but no dilatancy; sticks to | | - sandy CLAY Full explanation of the secondary constituents | | Stiff | Cannot be moulded by fingers. Can be indented | Homo -
geneous | Deposit consists essentially of one type. | closely-spaced Discontinuities | over 3 | CLAYS | | fingers and dries slowly; shrinks appreciably on drying, usually showing | Intermediate
plasticity
(Lean clay) | Composite Soils is given
Tables 15 and 16. | | | by thumb. | Inter-
stratified | Alternating layers of varying types. | For full descri | | Select one
value of
lightness, | cracks. Intermediate and high plasticity clays show these properties to a moderate and high degree, respectively. | | | | Very
stiff | Can be indented by thumb nail. | (Interbedded
or Inter-
laminated) | Ided Interval scale for r- thickness of layers | use methods and terms
given in Section 2.4.3 | | chroma and hue
as required,
qualified by | S) | ORGANIC | | Contains substantial amounts of organic | High
plasticity
(Fat clay) | Fibres already | | , | Weathering | | a term for | | ic Soils | CLAY, SILT
or SAND | Varies | vegetable matter. Often has noticeable smell and changes colour on oxidation. | | | | Compact | compressed together. | =:. | | In coarse soil | where evident
s : describe | distribution
where
appropriate. | Organic | PEATS | Varies | Predominantly plant remains; usually dark brown or black in colour, often with distinctive smell: low bulk density. | | | | Spongy | Very compressible and open structure. Can be moulded in hand, | Fibrous
Amorphous | Plant remains recognizable and retain some strength. | overall discolouration of
soil and degree of
decomposition of gravel | | See Table 3. | 0 | | distinctive smett; low bulk density. | | | | Plastic | and smears fingers. | - not prious | norphous No recognizable plant remains. | | and larger fragments | Table 12 - Soil Strength in Terms of Compactness and Consistency | Soil Type | Descriptive Term for Compactness/Relative Density | SPT N Values
(Blows/300mm penetration) | | | | |-------------------------|---|---|--|--|--| | | Very loose | 0 - 4 | | | | | | Loose | 4 - 10 | | | | | Sands
and
Gravels | Medium dense | 10 - 30 | | | | | | Dense | 30 - 50 | | | | | | Very dense | > 50 | | | | | | | | | | | | Soil Type | Descriptive Term for Consistency | Undrained Shear Strength (kPa) | | | | | Soil Type | Descriptive Term for Consistency Very soft | (| | | | | | | (kPa) | | | | | Silts
and | Very soft | (kPa)
< 20 | | | | | Silts | Very soft
Soft | (kPa)
< 20
20 - 40 | | | | Table 13 - Particle Form | Descriptive Term | Illustration | | |-------------------|--------------|--| | Equidimensional | | | | Flat | | | | Elongate | (3, mm) | | | Flat and Elongate | | | Table 14 - Particle Angularity | Descriptive Term | Illustration | | | | | | | |------------------|--------------|--|--|--|--|--|--| | Angular | | The state of s | | | | | | | Subangular | | | | | | | | | Subrounded | | | | | | | | | Rounded | | | | | | | | Table 19 - Names and Descriptive Letters for Grading and Plasticity Characteristics | Soil
Compo-
nents | Terms | Descriptive Name | Letter | |-------------------------|--------------------|---|--------| | S | Main terms | GRAVEL | G | | Components | | SAND | S | | Comp | Qualifying | Well-graded | w | | Se | terms | Poorly-graded | Р | | Coarse | | Uniform | Pu | | ပ | | Gap-graded | Pg | | | Main terms | FINE SOIL , FINES may be differentiated into M or C | F | | | | SILT (M-SOIL) * plots below A-line of plasticity chart of Figure 8 (of restricted plastic range) | М | | Fine Components | | CLAY plots above A - line (fully plastic) | С | | රි | Qualifying | Low plasticity | L | | ine | terms | Intermediate plasticity | ŀ | | ш. | | High plasticity | н | | | | Very high plasticity | ٧ | | | | Extremely high plasticity | E | | | | Upper plasticity range * incorporating groups I, H, V and E | U | | nic
ents | Main term | PEAT | Pt | | Organic
Components | Qualifying
term | Organic
may be suffixed to any group | 0 | ## Legend: - * See Note 5 in Table 20 - This term is a useful guide when it is not possible or not required to designate the range of liquid limit more closely, e.g. during the rapid description of soils Table 20 - British Soil Classification System for Engineering Purposes | | Soil (| Groups (1) | | | St | ubgr | oups ar | d Labo | oratory Identification | |--|---|--|--------|--------------------|---|------|-------------------------------------|---|---| | GRAVEL and SAND may be
qualified by an additional
secondary constituent for coarse
fraction where appropriate
(Table 15) | | | Syr | oup
nbol
(3) | Subg
Sym | ibol | Fines
(% less
than
0.06mm) | Liquid
Limit
(%) | Name | | | coarse
el size
im)) | Slightly silty or clayey GRAVEL | G | GW
GP | GW
GPu | GPg | 0 - 5 | | Well-graded GRAVEL
Poorly-graded/Uniform/Gap-graded GRAVEL | | | FLS
% of carel
f gravel
an 2 mm | Silty GRAVEL
clayey GRAVEL | G-F | G-M
G-C | GWM
GWC | | 5 - 15 | | Well-graded/Poorly-graded silty GRAVEL Well-graded/Poorly-graded clayey GRAVEL | | Coarse Soils
than 35% of the material
s finer than 0.06 mm) | GRAVELS
(more than 50% of coc
material is of gravel s
(coarser than 2 mm) | Very silty GRAVEL
Very clayey GRAVEL | GF | GM
GC | GML,
GCL
GCI
GCH
GCV
GCE | etc | 15 - 35 | | Very silty GRAVEL: subdivide as for GC Very clayey GRAVEL (clay of low, intermediate, high, very high, extremely high plasticity) | | Coarse
in 35 %
iner tha | oarse
size
} | Slightly silty or clayey SAND | s | SW
SP | SW
SPu | SPg | 0 - 5 | | Well-graded SAND
Poorly-graded/Uniform/Gap-graded SAND | | (less tho | 105
% of cc
of sand
2 mm) | Silty SAND
Clayey SAND | S-F | S-M
S-C | SWM
SWC | | 5 - 15 | | Well-graded/Poorly-graded silty SAND
Well-graded/Poorly-graded clayey SAND | |) | SANDS
(more than 50% of coarse
material is of sand size
(finer than 2 mm)) | Very silty SAND
Very clayey SAND | SF | SM
SC | SML,
SCI
SCI
SCH
SCV
SCE | etc | 15 - 35 | | Very silty SAND: subdivide as for SC Very clayey SAND (clay of low, intermediate, high, very high, extremely high plasticity) | | Soils
s of the material
n 0.05 mm) | lly or sandy
and CLAYS
-65% fines) | Gravelly SILT ⁽⁴⁾
Gravelly CLAY ⁽⁴⁾ | FG | MG
CG | MLG,
CLG
CIG
CHG
CVG
CEG | etc | | < 35
35 - 50
50 - 70
70 - 90
> 90 | Gravelly SILT: subdivide as for CG Gravelly CLAY (of low, intermediate, high, very high, extremely high plasticity) | | ine Soi
35% of
than 0. | Gravelly
SILTS ar
(35% - 69 | Sandy SILT ⁽⁴⁾
Sandy CLAY ⁽⁴⁾ | FS | MS
CS | MLS,
CLS, | | | | Sandy SILT : subdivide as for CG
Sandy CLAY : subdivide as for CG | | Fine S
(more than 35% o
is finer than | SILTS and
CLAYS
(65%-100%
fines) | SILT (M-soil)
CLAY (5) (6) (7) | F | M
C | ML,
CL
CH
CV
CE | etc | | < 35
35 - 50
50 - 70
70 - 90
> 90 | SILT : subdivide as for C CLAY { of low, intermediate, high, very high, extremely high plasticity) | | Organ | ic Soils | Descriptive letter 'C
any group or sub-g | | | | _ | | | ted to be a significant constituent.
ic SILT of high plasticity. | | Р | P eat | Pt Peat soils cons | ist pr | edom | inantly | yofp | olant remaii | ns which | may be fibrous or amorphous. | Notes : - (1) The name of the soil group should always be given when describing soils, supplemented, if required, by the group symbol, although for some applications (e.g. diagrams) it may be convenient to use the group symbol alone. - (2) The group symbol or sub-group symbol should be placed in brackets if laboratory methods have not been used for identification, e.g. (GC). - (3) The designation FINE SOIL or FINES, F may be used in place of SILT, M, or CLAY, C, when it is not possible or not required to distinguish between them. - (4) Gravelly if more than 50 % of coarse material is of gravel size. Sandy if more than 50 % of coarse material is of sand size. - (5) SILT (M-soil), M is material that plots below the A-line, and has a restricted plastic range in relation to its liquid limit, and relatively low cohesion. Fine soils of this type include clean silt-sized materials and rock flour, micaceous and diatomaceous soils, pumice, and volcanic soils, and soils containing halloysite. The alternative term 'M-soil' avoids confusion with materials of predominantly silt size, which form only a part of the group. Organic soils also usually plot below the A-line on the plasticity chart, when they are designated ORGANIC SILT, MO. - [6] CLAY, C is material that plots above the A-line, and is fully plastic in relation to its liquid limit. - (7) SILT and CLAY may be qualified as slightly sandy, or slightly gravelly, or both, where appropriate (Table 15). Figure 4 - Schematic Illustration of Fracture Logging Terms Figure 5 - Mass Weathering Profiles and Zonal Weathering Classification of a Mass Exposure Figure 8 - Plasticity Chart for Classification of Fine Soils and the Finer Part of Composite Soils Figure 9 - Grading Chart for Soils with Grading Curves of Selected Soil Types