Geology of Hong Kong Rock identification, structure, weathering, erosion, superficial deposits GIS Geological Maps e-Memoirs and Sheet Reports Awareness of what is known and what is available - Issues to Consider • Identifying main rocks and superficial deposits • Identifying adverse geological materials and conditions (marble, soft materials, deep weathering, permeable materials etc.) • Understanding varied rock types and materials and complex relationships/structures # HKGS/CEDD Existing geological information sources Geological Maps: scales 1:100K, 1:20K, 1:5K Geological Memoirs 1-6 & SAR-wide memoirs Geological Sheet Reports 1-6 Specialist Geological Study reports Geoguide 2 - Guide to Site Investigation Geoguide 3 - Guide to Rock & Soil Descriptions Note: HKGS = Hong Kong Geological Survey #### Recent Geological Mapping Increasing detail More data (e.g. boreholes) New survey techniques (e.g. geophysics) New analytical techniques (e.g. age dating) Digital data storage and transfer Improved maps (accuracy and precision) with improved distribution of units, and refinements of classification #### 3 main groupings of rocks • Older, localised sedimentary rocks, including marble, mainly in NW/NE New Territories • Extensive volcanic and granitic rocks, some sedimentary rocks • Younger sedimentary rocks, including those offshore # Sedimentary Rocks Grain-size and Compositional Classification, eg • Conglomerate >2 - <60mm • Sandstone >0.06 - <2mm • Siltstone > 0.002 - <0.06mm • Claystone <0.002mm Detrital - Mudstone, siltstone, sandstone, conglomerate, and breccia Chemical and Biological - Limestone and chert Key Older Sedimentary Rocks (c.340Ma) Lok Ma Chau Formation Tai Shek Mo Member - Metasandstone with metaconglomerate Mai Po Member - Metasiltstone with graphite schist • Yuen Long and Ma On Shan Formations Marble (>50% carbonate) + cavity/cavity-infill Pure and Impure (up to 17% impurities) DYKE ROCKS - Classified on basis of composition, grain size, dominant crystals • Feldsparphyric Rhyolite • Quartzphyric Rhyolite • Aplite • Pegmatite • Basalt/Lamprophyre • Can significantly influence local hydrogeology • especially basaltic dykes • have influenced some significant landslides⁵³ ## HONG KONG STRUCTURES • FAULTS normal, thrust, strike-slip • FOLDS • BEDDING • CONTACTS granites, dykes, veins • FOLIATIONS volcanic, metamorphic • LINEATIONS • JOINTS columnar, tectonic, sheeting, stress relief • FRACTURES ## HONG KONG STRUCTURES Importance to engineers • Define areas/zones of contrasting material type (lithology, strength) • Control material weathering grades, rock mass weathering characteristics (PW zones) and rockhead depth and form • Influence hydrogeology • Influence instability etc. Maybe structures more important to the engineer than rock type? - in rock? - in soil? | | ĺ | Classifica
Deco | ation of
mpositi | | | al | |---------------------------|------------------|---|--|--|--|--| | Cescriptive
Term | Grosse
Sumbol | General Characteristics for Granita &
Visionis Rocks & Other Rocks of
Counciled Sheeph in the Erich State | | Additional Typical Characteristic | is for Specific Rock Types | | | | | Edward Justille in the Listin Ziale | Grande | Granadionite | Course Ash Crystol/Little, Bull | Fire Ash West Tulf | | Benjaman
Bart | | drighel solt motor completely destroyed.
Eas is standard by hard and disgon promote into
continuous galant. | Systems for our
Feducies completely declayed
Systems in may rememble primary
monthly studied and, pathod or paner
and reduced in suits compared with
fourt condition. | Cost redicin brown. Politypers completely deciraged
Cosely only remaining printary
miners; grand reduced in sola
company with fresh condition. | Server or reddon brown
Swarte selv remarking primary
Mohalis | NeStraigh Separa | | Completely
Secondaries | | Original rick farfate preserved. Clin for creation by Stone and Disper particular and Clining Administ by point of geological plus. Clining Administration of worker Company Commission Company with State Lock | Tellmeth trough to reditabl brown
Fundagory providing to soft
sharp provisionales share strength relique
4.355456. Zen skillend from it Schmidt become: | Referent Sover to reliable trust
Plagiciona floragers powers, so boto,
way seeing provided the pin
Orthoclase feditions grows, less every
global
Two sebased from to factories harmon | South to HOSSE Street
Solders Streety in Wilder
World Indianate Self, Bull, April graph
to Seven, difficult to distinguish | Motività Sona
Sona chary et word | | Prophly
Decomposed | = | Can be booken by hone also simple: percent
Makes a dult sound when should be periodical former
mor record percents by point of perception great
Steel set sinks when senerall in water
Companies discovered configured with health took | Vitigents trave to proceed oranger forming predictive predicty waste procedure state procedures when a little orange oran | Militarith brians to patienth states from
Properties featiges proging to getty
in Science observe what IS-30 | Millionia Soft, dult, dark gran | Michell gay
Surface can be scratched by leafe | | Moderately
Decomposed | e | Cornet usually be looken by hand, asply broken by
persognic hannes
wasne a did or sight ringing count when circus by
passigned hydroxy.
Companies unless throughout | Valuable brown
Faithpoint griffy
Suiter Ant Usby
In Schmidt refound value 25 - 65 | Militarium Serves
phopulation Malligant party decomments
for graffy small presen.
In Sciences Indianal value 25-50 | Molecule gate Multi-measure gates of the grant of the grant of the tree trees | Whose is Light grey
touristic connect be scientified by under | | Stightly
Secondarial | | ted former eatile by georgical horizone
Mylers is ringing recent when two my georgical
hardware
fracts colours generally retrieved that product coor-
poed surfaces | removes hard to properly providenced feetness when pole. States sightly shared and dall around within the state of sta | Progresse frequent singless going
Success and humanism singless sources
and shall
be followed reference service 45-70 | Light gray or greened gray
Male tensors plong hard, trace,
may be ploghtly starned and dull
crossed edges | laws, tyle gay or general gray
County appropriate | | Fresh | , | Sed before early by grouped horses:
Bakes a regard sound when street by personal
house, and the second sound by personal
house, and the second sound by the disconarions | County test added gray/white
Publishers had said plony
challe shing had staned
Source delivation or gate, glossy | Cuerti rock copy gity Pedgyers hard and shing Botto and hundreds shing not sessed Suarra electrics or gits, gittly is believed interest or gits. | (boost rock other ranges from lager
gramals grey USM) to grey (JSM,
JYS)
Feetboars have and shings
such meaning shing, have liquis
decres orientees or grey, greatly | Swell rick once block
Miner appropria | | General Bullet | | 100 Red all these general observationalities are applicable
to come without interption the facilities of the
monitorities strong or less trace take 2.1. Retermines
classifications area the most appropriate for such
monitorities facilities 2 application monity for
additional conference application monity for
additional conference application monity for
additional conference or first expenses. | (3) based on Page 1995, remoter &
Status (1987) and experiment with
the 6CO
(a) Equalities of minerals digitisties
to modum and record grants,
may be difficult or represented to
dosess in time-grained grants. | 191 Beard on Intel & Powel 1985s.51 | (6) Based on arpositional soft by
the 600.
(7) IT I have the hard thereshoon
plant blong that formation
(see 1900, maps and matter).
(8) legals consends referred to over
bothe and terretoming. | (8) denot on unpublished work to
the 500 | | Audies, ser Techno | Tests | [NG] State feet' songert almost close to solumition.
(TII) freeliges otherwise feet fleet indirect be sail by
freeligest a frequent, but i reply generate to get
(SII) in Schrödel feetings feet related worse see freelige
(TII) many previously and property of the company
(TII) many previously and property indirectly benefit of
(TII) feet results in general rate of utilizate by in | bride or graced by per Striffy can be
to con be moving very explicit to class in
some help perpendicular to ruck face to
they and beautify the someth face on the | tingers
to milital "seating" three to result go
mage of the unique and displicitly has | of assistant and record memory name | ton a motion of the consective | | | - | | | | epos | | | | | - // | 9 | _ | |---------------------|--------------------------|-----------------------|-------------------|------------------------------------|----------------------|----------------------------------|-----------|--------------|---|----------|-------------------------|---------------| | Super
Depo | | Grain
Size
(mm) | Sedim
Roc | | Pyroclastic
Rocks | Solid Re | I | gnes
Rock | | | Metan | norph | | | | | Detrital
Rocks | Chemical &
Dischemical
Rocks | # 2 | | Acie | , | intermediate | Basis | Feliated | No
Folia | | Boulders
Cabbles | | - 200 - | Conglomentit | fvaporites | Pyroclastic Breccia | | Pegmotite | | | | | | | Grevel | Medium
Fine | - 20
- 6 | Sedimentory | Delemite, Eve | Lapitti Tuff | Coarse-grained
Medium-grained | | orite | enite | • g | | eccia | | Send | Coarse
Medium
Fine | 0.6 | Sondstone | 8 | Coarse Ash Tuff | Fine - grained | Granite | Ordnodios | Quartz Measo
Quartz Syeni | 6-abbro | Schist | Fault Breccia | | Sitt | | 0.002 | Siltstone | Limestone | Fine Ash Tuff | | Rhysülte | Docine | Latite
Trechyte
indesite | . # | Lamprophyre
Mytaelte | | | Clay | 1 | | Claystone | Det. | | | Rhy | å | Quartz Latite
Quartz Trechyl
Trachyandesite
Andesite | . Bossit | 1 | | | Classification of | De | Zone
scription | Zone
Symbol | Zone Characteristics | |-------------------|-----------|-------------------|----------------|--| | Rock Mass | R | lesiduol
Soil | RS | Residual soil derived from insitu weathering;
mass structure and material texture / fabric
completely destroyed : 100% soil | | Weathering Zones | Rock | 0/30 %
Rock | Pw
0/30 | Less than 30 % rack Soil retains eriginal mass structure and material texture / fabric ii. e. approlite.) Risk content deep not affect share behaviour of mass, but relict describinghas in soil may do so Risk content may be significant for investigation and construction. | | | Weathered | 30/50%
Rock | PW
30/50 | 30 % to 50 % rock Both rock content and relict discontinuities may offect shear behaviour of mass | | | Partiolly | 50/90%
Rock | PW
50/90 | 50 % to 90 % rack
Interlocked structure | | | | 90/100%
Rock | PW
90/100 | Greater than \$0 % rock Small amount of the material converted to soil along discontinuities | | | Um | weothered
Rock | ŲW | 100 % rock May show slight discolaration along discontinuities | | No. of Concession, Name of Street, or other Desires, ot | | Soil (| Broups (1) | | | Subgr | oups ar | id Labi | oratory Identification | |--|--|---|--|-------------------------|------------|---|-------------------------------------|---|--| | British Soil | secon | alified b
dary con
action wh | d SAND may be
y an additional
stituent for coarse
ere appropriate
able 15) | Group
Symb
(2)(3) | ot i | Subgroup
Symbol
(2) | Fines
(% less
than
0-06mm) | Liquid
Limit
(%) | Name | | Classification | | coorse
it size
m) } | Stightly sitty or
cloyey GRAVEL | 6 G | | GW
GPu GPg | 0 - 5 | | Well-graded GRAVEL
Poorly-graded/Uniform/Cap-graded GRAVEL | | Systems for | | ELS
F of | Silty GRAVEL
clayey GRAVEL | | - м
- с | GWM GPM
GWC GPC | 5 - 15 | | Well-graded / Poorly-graded sitty GRAVEL
Well-graded / Poorly-graded clayey GRAVEL | | Engineering | Coarse Soils
than 35% of the material
s finer than 0.06mm) | GRAN
(more than 50
material is of
(coerser tha | Very sitty GRAVEL
Very cloyey GRAVEL | GF G | | GML, etc
GCL
GC1
GCH
GCV
GCE | 15 - 35 | | Very sitty GRAVEL: subdivide as for GC
Very clayey GRAVEL (clay of law,
intermediate,
high,
very high,
extremely high plasticity) | | Purposes | Coars
in 35%
iner the | orse | Slightly silty or
cloyey SAND | s s | | SW
SPu SPg | 0 - 5 | | We II-graded SAND
Poorly-graded/Uniform/Gap-graded SAND | | | less the | IDS
% of coarse
f sand size
2 mm) | Silty SAND
Cloyey SAND | s-F 5 | | SWM SPM
SWC SPC | 5 - 15 | | Well-graded/Poorly-graded silty SAND
Well-graded/Poorly-graded clayoy SAND | | | , | SANDS
(more than 50% of
moterial is of sa
(Tiner than 2 mr | Very sitty SAND
Very clayey SAND | SF SI | : | SML, etc
SCL
SCI
SCH
SCV
SCE | 15 - 35 | | Very sitty SAND: subdivide as for SC
Very slayey SAND: clay of law,
intermediate,
high,
very high,
extremely high plasticity! | | | Soils
of the material
0.06 mm) | and CLAYS
end CLAYS | Grovelly SILY (4)
Grovelly CLAY (4) | FG CI | 3 | MLG, etc
CLG
CIG
CHG
CVG
CEG | | < 35
35 - 50
50 - 70
70 - 90
> 90 | Gravetty SILT : subdivide as for CG
Gravetty CLAY of low,
intermediate,
high,
very high,
extremely high ploaticity) | | | 58.5
th
58.5 | Gravelly
SILTS an
135% - 65 | Sandy SILT (4)
Sandy CLAY (4) | FS C | | MLS, etc
CLS, etc | | | Sandy SILT : subdivide as far CG
Sandy CLAY : subdivide as far CG | | | | SILTS and
CLAYS
(B5% - 100%
fines) | | F C | | ML, etc
CL
CI
CH
CV
CE | | < 35
35 - 50
50 - 70
70 - 90
> 90 | SILT: subdivide as for C
CLAY (of low,
intermediate,
high,
very high,
extremely high plasticity) | | | Organ | ic Soils | Descriptive Letter 10
any group or sub-g | | | | | | ted to be a significant constituent.
ic SILT of high plasticity. | | | Р | leat | Pt Peat soils consi | ist pred | omi | nantly of p | lant remai | ns which | may be fibrous or amorphous. | Development of the geological model with focus on the key factors contributing to the failure of large cut slopes in Hong Kong The role of discontinuities in the stability of weathered rock slopes (including saprolite) # The Geological Model for Slope Engineering Engineering geology is the application of the science of geology to ground engineering. It involves the formation of geological models that are specifically targeted towards the needs of the engineering project. The geological model in slope and landslide studies is targeted towards facilitating geotechnical risk assessments, slope designs and investigations into the causes of landslides. | | orms are : | Illuex (LI I) lo | r these | |------------------------|--|------------------|----------------| | ramore | Rainstorm | LPI | | | | 19 April 2008 | 2.0 | | | =11 | 7 June 2008 | 12.3 | | | | 13 June 2008 | 1.4 | | | | 25 June 2008 | 1.7 | | | | 10 July 2008 | 1.0 | | | its poten
rainstorr | depicts the relative seve
tial to cause landslides.
n in late July 1994, whi
et to be 10. | For comparison, | the LPI of the | #### Summary Annual rainfall ~28% above mean and so far 761 landslides reported Monthly rainfall in June and hourly rainfall recorded on 7 June at HKO's principal raingauge broke the records since 1884 5 rainstorms triggered the issue of the Landslip Warnings The most severe rainstorm on 7 June 2008 caused >300 reported landslides and > 1,500 landslides on natural hillsides