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Piled raft foundations have been widely recognized as 
one of the most economical foundation systems.

In piled raft foundations, piles are extensively used to 
reduce the settlement of foundations to an acceptable 
level, rather than to support the weight of superstructures.

The establishment of a seismic design concept for 
piled raft foundations is necessary especially in highly 
seismic areas such as Japan.

Although piled raft foundations have already been 
applied to actual structures in Japan, most seismic 
designs seem to treat piled rafts as rafts alone by ignoring 
the existence of piles.

Background
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Performance of piled raft foundations 
subjected to dynamic loading

Horikoshi, K., Matsumoto, T., Hashizume, Y. and Watanabe, 
T. (2003): Performance of piled raft foundations subjected 
to dynamic loading, Int. Journal of Physical Modelling in
Geotechnics 2: 51-62.
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Pile group model

Laminar box was used.

Piled raft model



Properties of the model pile and the corresponding prototype pile 

Properties Centrifuge model Prototype 
Material Aluminum Concrete 
Diameter 10 mm 500 mm 
Wall thickness 1 mm Solid 
Pile length, Lp 180 mm 9.0 m 
Young’s modulus, Ep 71 GN/m2 41.7GN/m2 
Cross-sectional rigidity, EpAp 2.0×10-3 GN 5.0 GN 
Bending rigidity, EpIp 2.0×10-8GNm2 0.13 GNm2 

 

Properties of Toyoura sand 

Properties Value 

Density of soil particle, ρs（t/m3） 2.661 

Mean grain size, D50（mm） 0.162 

Maximum dry density, ρdmax（t/m3） 1.654 

Minimum dry density, ρdmin（t/m3） 1.349 
 



Experimental cases and their conditions 
Loading direction 

Model Type Vertical loading 
(see Horikoshi et al. 2003)

Horizontal loading 
(see Horikoshi et al. 2003)

Dynamic loading 
(present study) 

Single Pile 
Lp = 250mm 
Ld = 120, 170, 200 mm 
h = 505 mm 

Lp = 250mm 
Ld = 170 mm 
h = 440 mm 

 

Raft (alone) 
B = 80, 120 mm 
Mr = 0.36 kg 
h = 470 mm 

B = 80 mm 
Mr = 4.69 kg 
h = 460 mm 

 

Piled Raft 

Lp = 170 mm 
B = 80 mm, 120 mm 
Mr = 0.90 kg 
h = 470 mm 

Lp = 180 mm 
B = 80 mm 
Mr = 4.69 kg 
h = 460 mm 
Rigid or hinged pile head 
conditions 

Lp = 180 mm 
B = 80 mm 
Mr = 4.69 kg 
h = 320 mm 
Rigid or hinged pile head 
conditions 

Free-standing 
Pile group 

  Lp = 180 mm 
Ld = 170 mm 
B = 80 mm 
Mr = 2.35 kg 
h = 320 mm 
Rigid pile head conditions 

Lp: Pile length, Ld: Embedment length, B: Square raft width, Mr: Mass of raft, h: Soil thickness 
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Universal joint used for hinged pile head connection model



300

250

200

150

100

50

0
0 5 10 15 20 25 30

averaged profile

averaged profile 
from static test

Rigid box

Laminar box

 Cone tip resistance, q
c
 (MN/m2)

D
ep

th
 (m

m
)

Profiles of cone tip resistance

The cone resistances at a deeper soil were much smaller compared with 
those measured in the rigid box used for static loading tests. However the 
qc values at upper soils, which are important in the horizontal resistance of 
the piles, were closer to those observed in the static models.

Penetration rate 1.0 mm/s
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At 50 g, the piles carried 40% and 45% of the total load for the rigid 
connection model and the hinged connection model, respectively, which 
were almost the same as observed in the static models.



Time history of input acceleration
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Acceleration response measured on piled raft model
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The maximum acceleration was a little bit of higher in the 
hinged pile head connection model. 
Attenuation of the acceleration occurred in both models. 
The rate of the attenuation of acceleration was higher  in the 
hinged pile head connection model. 



Horizontal displacement of piled raft during shaking period
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The maximum horizontal displacement was a little bit of higher in 
the hinged pile head connection model. 
Attenuation of the horizontal displacement occurred in both models. 
The rate of the attenuation of displacement was higher  in the 
hinged pile head connection model.
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The settlements of the ground surface in both tests were 
consistent.
Higher relative displacement (penetration of the raft into the 
ground) occurred in the hinged pile head connection model.
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The attenuation of the horizontal displacement was caused 
by the increase in the relative settlement.

The relative settlements clearly correspond to the 
amplitudes of the horizontal displacements.



Horizontal load displacement relationship of piled raft
compared with static test result
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The overall load-displacement behaviour was consistent 
between the static and the dynamic tests, although the loading-
unloading hysteresis curves shifted gradually in the dynamic 
tests due to the occurrence of the residual displacements.



Inclination of piled raft during shaking period
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Clock-wise inclination → Positive

The amplitude of the inclination in each cycle attenuated with 
time as was seen in the horizontal acceleration and the 
displacement responses.



Relationship between inclination and horizontal displacement
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The point at a peak horizontal displacement coincides to the 
point at the peak raft inclination in the rigid pile head 
connection model, whereas both did not coincide in the hinged 
connection model.



0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0
Rigid pile head connection

Pr
op

or
tio

n 
of

 h
or

iz
on

ta
l l

oa
d

ca
rr

ie
d 

by
 4

 p
ile

s

Time (s)
0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0
Hinged pile head connection

Pr
op

ot
io

n 
of

 h
or

iz
on

ta
l l

oa
d

ca
rr

ie
d 

by
 4

 p
ile

s

Time (s)

Proportion of horizontal load carried by 4 piles

Hinged pile head connectionRigid pile head connection

The proportion is higher in the rigid connection model. 
A rapid increase in the load carried by the piles was observed 
in both piled rafts during the initial stage of shaking.
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The results from the dynamic tests and the static loading tests 
were consistent in both piled rafts.
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Since the mass of the raft model was relatively large, inertia 
effects seemed to be much dominant compared with the 
kinematic effects, thus the dynamic responses were similar to 
the static responses.
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The load carried by the piles did not change significantly 
before and after shaking.
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The consistent trend between the dynamic and static loading 
tests is shown.



Proportion of vertical load carried by piles
at different pile positions
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The degree of change in the axial load was more 
significant in the rigid connection model.
The piles in the hinged connection model tended to 
carry more uniform vertical load within the group.
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The change in the proportion of the vertical load carried by the
piles before and after the shaking was still relatively small, 
although the amplitude of the proportion during shaking period 
became larger.
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Piled raft model Pile group model

In the test of a free-standing pile group, the piled raft model 
with the rigid head connection was used by allowing a gap of 
10 mm between the raft base and the soil.



0.0 0.1 0.2 0.3 0.4 0.5 0.6
-300

-200

-100

0

100

200

300
Free-standing pile group

A
cc

el
er

at
io

n 
(m

/s 
2 )

Time (s)

Acceleration response measured 
on free-standing pile group model

0.0 0.1 0.2 0.3 0.4 0.5 0.6
-200
-150
-100
-50

0
50

100
150
200

Rigid pile head connection

A
cc

el
er

at
io

n 
(m

/s 
2 )

Time (s)

Piled raftFree-standing pile group

No attenuation was observed in the response of pile group.
Even though the mass of the raft was about half, the 
acceleration response was much higher in the pile group model.
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The maximum bending moment of the pile in the piled raft was 
significantly reduced to about one fourth of that in the pile 
group, indicating a large contribution of the raft also in 
reducing the bending moments in the pile.



In the piled raft designs, evaluation of the displacement (settlement, 
horizontal displacement, and inclination) and the proportion of the load 
carried by the components are highly important factors. The dynamic 
responses of the above factors were intensively examined in this paper.

As was also shown in the static modeling by the authors, the dynamic 
tests also indicate that the proportion of the horizontal load carried by 
each component is highly non-linear, and dependent on the horizontal 
displacement of the piled raft system. The evaluation of horizontal 
displacement is therefore important in the seismic design of piled rafts.

The change in the vertical load sharing between the piles and the raft 
base was relatively small compared with the horizontal load, even when 
the piled rafts were subjected to relatively strong input motion.

Conclusion (1)



As far as the model conditions in the present study are concerned, the 
rigid pile head connection gave higher horizontal stiffness than the hinged 
pile head connection. The acceleration response and the inclination of the 
model were also smaller in the rigid pile head connection model.

The proportion of the horizontal load carried by the piles was smaller in 
the hinged pile head connection model, indicating the role of piles in the 
horizontal resistance of the piled raft was smaller in the hinged connection 
model.

The contact of raft base with the soil surface played highly important roles 
in reducing horizontal acceleration, inclination, and bending moments of 
the piles.

Conclusion (2)



Influence of the height of the gravity centre of the 
superstructure on the dynamic behaviour of the whole 
structure consisting of the superstructure and the piled 
raft foundation during shaking.

Focus

Influence of superstructure on behaviour of Influence of superstructure on behaviour of 
model piled rafts in sand under shaking testsmodel piled rafts in sand under shaking tests

Matsumoto, T., Fukumura, K., Kitiyodom, P., Oki, A. and Horikoshi, K. 
(2004): Experimental and analytical study on behaviour of model piled 
rafts in sand subjected to horizontal and moment loading, Int. Journal of 
Physical Modelling in Geotechnics 4(3): 1-19.

Matsumoto, T., Fukumura, K., Oki, A. and Horikoshi, K. (2004): Shaking 
table tests on model piled rafts in sand considering influence of 
superstructures, Int. Journal of Physical Modelling in Geotechnics 4(3): 
20-37.

1 g field
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Test set-up for shaking table test on combined 
model of superstructure and piled raft



(a) model raft                                                   (b) model pile
Figure 2. Model piled raft.

(a) side view                                     (b) top view
Figure 3. Model superstructure.
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Geometrical and mechanical properties of the model pile
 

 Model Prototype (λ=50) 
Outer diameter, ro (mm) 10 500 
Wall thickness, tw (mm) 1 50 
Length, L (mm) 170 8500 
Cross section area, A (mm2) 28.3 70685.8 
Young's modulus, Ep (GPa) 67.1 3354 
Poisson's ratio, νp 0.345 0.345 
Longitudinal rigidity, EpA (GN) 1.90×10-3 33.53 
Bending rigidity, EpI (GNm2) 19.4×10-8 0.859 
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Superstructure models
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Model ground: dry Toyoura sand，Dr = 95 %
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Test set-up for static horizontal load test
Horizontal load was applied to the gravity centre 
level of the superstructure in the static load test.
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Confining pressure, p0 (kPa)

 
Density at test ρt  1.635 t/m3 
Relative density at test Dr  95 % 
Internal friction angle φ'  44 deg. 
Mean grain size D50  0.162 mm 
Density of soil particle ρs  2.661 t/m3 
Maximum density ρdmax  1.654 t/m3 
Minimum density ρdmin  1.349 t/m3 

 

( )0 0/ nG G p p=

n =0.5 , p0=100 kPa,   G0=29163 kPa    

 
Items prototype /  

model 
Length (Size) λ  
Density 1 
Stress λ  
Strain 1 2λ  
Time 3 4λ  
Frequency 3 41 / λ  
Displacement 3 2λ  
Velocity 3 4λ  
Acceleration 1 
Bending rigidity of pile 7 2λ  
Longitudinal rigidity of pile 3 2λ  
 

Similarity for model tests at 
1-g field (Iai, 1989) 



 
Test  
name 

Height of gravity 
centre from G.L. 

Type of 
loading 

Proportion of vertical 
load carried by piles 
before load test (%) 

DRL Low (49.3mm) Dynamic 72.6 
DRM Middle (123.4mm) Dynamic 73.4 
SRL Low (49.3mm) Static 79.6 
SRM Middle (123.4mm) Static 78.5 
 

Test name and test conditions

Low gravity centre model

Middle gravity centre model



Transfer function of horizontal acceleration
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Proportions of horizontal load carried by piles 
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The proportion carried by the piles concentrated in a range 
from 70 to 80 % in DRL and 40 to 70 % in DRM.
Obviously the horizontal load proportion decreased with the 
increase in height of centre of gravity.
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Although the vertical load proportion carried by the piles 
fluctuated, it almost returned to the initial value in all the tests. 
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The raft base resistance was effectively mobilised during both 
dynamic and static loading tests.
Contribution of the raft base resistance increased as the height
of gravity of the superstructure increased.
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The relationship from the static load test was 
reasonably similar to that in the shaking table test.
The inclination of the raft at a given horizontal 
displacement tended to increase with increase in 
the height of centre of gravity.
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A large part of the vertical load is carried by piles 
when the piles are the front piles at that moment.
This phenomenon is prominent in the middle 
gravity centre model. 
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A large part of the shear forces is carried by 
piles when the piles are the front piles at that 
moment.
This phenomenon is prominent in the middle 
gravity centre model. 
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The results from the shaking table tests were 
comparable with those from the static horizontal 
load tests.
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Conclusions from shaking tests of piled raft models with rigid 
superstructures having different heights of gravity centre 

The resonant frequency is decreased as the height of the 
gravity centre of the superstructure is increased.

At a low input frequency, the behaviour of the model piled raft 
having a superstructure of low gravity centre under seismic 
loading is similar to the behaviour of the model piled raft 
subjected to static horizontal loading.

Even if the horizontal response accelerations of the gravity 
centres of the superstructures are the same, the inclination 
of the raft, the shear forces and the bending moments of the 
piles increase as the height of the gravity centre of the 
superstructure increases. 

Consideration of the height of the gravity centre of a 
superstructure in seismic design of piled raft foundation is 
important.



Contents
A series of shaking tests of model piled rafts with 
flexible superstructures on them were carried out, in 
order to investigate the influence of the flexibility of 
superstructure on the whole structure consisted of the 
superstructure and the substructure. 

Influence of flexibility of superstructure on the Influence of flexibility of superstructure on the 
behaviour of piled rafts in dry sand during shaking behaviour of piled rafts in dry sand during shaking 

table testtable test



Shaking table test of piled raft with flexible superstructure 

Model ground: dry Toyoura sand,
Dr = 90 %
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Piled raft model
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Flexible superstructure model

Material: brass

Wall thickness(mm) 1.0 2.0

Mass(kg) 21.2 21.6
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Static horizontal load test of the superstructure alone
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Shaking tests of the superstructure alone
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 Thin wall 
model 

(W.T. = 1 
mm) 

Thick wall 
model 

(W.T. = 2 mm) 

Wall thickness 
(mm) 1.0 2.0 
Total mass (kg) 21.2 21.6 
Horizontal stiffness 
of each layer (kN/m) 2.05×10 1.48×102 
Young's modulus of 
wall material (kPa) 9.35×107 8.43×107 
Primary resonant 
frequency (Hz)  5.3 14.2 
Secondary resonant 
frequency (Hz) 13.9 40.6 
Damping ratio 0.0032 0.0104 
 

Properties of the model superstructures
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Primary natural frequency of the whole structure set in the 
ground was less than 4 Hz which was smaller than that of 
the superstructure alone.



Test results Dynamic motionsDynamic motions

at input frequency near the primary 
frequency of the superstructure 

at input frequency near the secondary 
frequency of the superstructure 
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At f = 6 Hz, there is no phase shift between each level of the 
superstructure (primary vibration mode occurs). In contrast at f = 37.6 
Hz. phase shift occurs between each level of the superstructure 
(secondary vibration mode occurs).

Proportion of vertical load 
carried by piles  (f = 6 Hz）

Proportion of vertical load 
carried by piles  (f = 37.6 Hz）



Proportions of vertical load carried by the piles before and after 
shaking almost do no change, although the proportion oscillate largely 
for f = 6 Hz.
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Although the total load at f = 37.6 Hz reduces to 1/5 of that at f = 6 Hz, 
the overturning moment at f = 37.6 Hz is about half of that at f = 6 Hz.

Horizontal loads
(f = 6 Hz)

Overturning moment
(f = 6 Hz)

Shear forces at pile head 
and tip （f =  6 Hz)

Horizontal loads
(f = 37.6 Hz)

Overturning moment
(f = 6 Hz)

Shear forces at pile head 
and tip （f = 37.6 Hz)



Responses of the superstructure such as horizontal 
accelerations and rocking motions become largest 
when input acceleration frequency is close to the 
primary resonant frequency of the superstructure. 

Total horizontal load acting on the superstructure 
becomes small, even though relatively large 
horizontal accelerations are generated on each floor, 
due to secondary vibration mode of the superstructure. 

Main findings

Vibration mode of the superstructure has a great influence 
on behaviour of the foundation structure.

Within the test conditions, piled raft foundation is effective 
foundation system against earthquakes, because the 
shear resistance at the raft base is effectively mobilised
during shaking. 
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Approximate analyses of the shaking test



Similitude for 1-g test（Iai, 1989）

Length Disp.
Density 1 Velocity
Stress Accel. 1
Strain λ 1/2 Bending

rigidity
λ 7/2

Time λ 3/4 Longitudinal
rigidity

λ 3/2

Frequency

λ 3 2λ
3 4λ

λ

3 41/ λ

Analytical conditions (Foundation structure)

Model was scaled up to prototype model with λ = 50 in 
the analysis.

All the results from now will be shown in prototype scale.



Length 8.5 m 
Outer 

diameter 
0.5 m 

Pile 
Young’s 
modulus 

279.8 GN/m2 
(as solid pile compatible with EpI) 

Width 4 m 
Poisson’s 

ratio 
0.16 

Breadth 4 m 
Young’s 
modulus 

70.6 GN/m2Raft 

Thickness 1 m (substantially rigid) 

Thickness 15 m 
Poisson’s 

ratio 
0.3 

Friction 
angle 

45 deg. Density 1.63 t/m3 Soil 

Multi-layer ground 

Analytical conditions (Foundation structure)
Model was scaled up to prototype model with λ = 50 in 
the analysis.



Ground: 20 layer ground with the shear modulus, G, 
increasing with depth

( )0.529.2 / 0.1    G p= p: confining pressure

Analytical conditions (Ground)

The shear modulus, G, is estimated from

based on the results of tri-axial test of the sand.

(MPa)
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Static analysis with external loads at time 
instants 3 and 7 acting on the raft simultaneously. 

Analytical conditions (External loads)

f = 6 Hz (primary vibration mode occurred)
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f = 37.6 Hz (secondary vibration mode occurred)



Analysis results

Shear force in pile 1
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At  time instant  7, 
pile 1: leading (front pile)
pile 2: following (rear) pile

f = 6 Hz (primary vibration mode)

Shear force in pile 2

At  time instant  3, 
pile 1: following (rear) pile
pile 2: leading (front pile)
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Bending moments in pile 1

8.00 8.05 8.10 8.15
-20

-10

0

10

20

9

8
76

5

4
32

1

H
or

iz
on

ta
l l

oa
d 

(M
N

)

Time (s)

Analysis results f = 6 Hz (primary vibration mode)

Bending moments in pile 2
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Analysis results f = 37.6 Hz (secondary vibration mode)
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Analysis could not simulate 
the measurements well

Analysis results f = 37.6 Hz (secondary vibration mode)

Shear force in pile 1
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Analysis results

Bending moments in pile 1

f = 37.6 Hz (secondary vibration mode)

Bending moments in pile 2



(f =6 Hz: primary vibration mode of 
the superstructure)

Distribution of ground movements

When the superstructure exhibits the primary vibration mode, 
the ground also behaves in a primary vibration mode.

When the superstructure exhibits the secondary vibration 
mode, the ground also behaves in a secondary vibration mode.

Kinematic effect should be taken into account in the analysis.

( f =37.6 Hz: secondary vibration 
mode of the superstructure)
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Analysis results with kinematic effect

The calculated results with 
kinematic effect are closer to 
the measured values.



DDYNAMIC ANALYSIS METHODS OF PILED RAFTYNAMIC ANALYSIS METHODS OF PILED RAFT
Comparative analyses of pile foundations 

subjected to earthquake

Simplified 3-dimensional dynamic analysis methods of piled raft 

Three dimensional FEM modelling of piled raft subjected to 
earthquake

Analytical methods

Foundation types analysed

Single pile, pile group and piled raft

Raft and piles are modelled by solid elements
Raft and piles are modelled by plate elements and beam 
elements
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DDYNAMIC ANALYSIS METHODS OF PILED RAFTYNAMIC ANALYSIS METHODS OF PILED RAFT

Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Plate-beam-spring-mass modelling 
of a piled raft 

Raft：Plate elements with masses
Piles：Beam elements with masses
Soil：Springs at raft and pile nodes
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Hybrid modelling of 
the pile and the soil
(two horizontal soil 
resistance models)
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DDYNAMIC ANALYSIS METHODS OF PILED RAFTYNAMIC ANALYSIS METHODS OF PILED RAFT

Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Plate-beam-spring-mass modelling 
of a piled raft 

Raft：Plate elements with masses
Piles：Beam elements with masses
Soil：Springs at raft and pile nodes

{ } { } { } { }p p pK w M w F P⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦

[ ]{ } [ ]{ } { } { }r r rK w M w F P+ = −

(1)

(2)

Equilibrium of forces for the piles 
and the raft:

[Kp] = Pile stiffness matrix
[Kr] = Raft stiffness matrix
[Mp] = Pile mass matrix
[Mr] = Raft mass matrix
{w} = Displacement vector
{Fp} = External force vector acting on 

the piles, 
{Fr}  = External force vector acting 

on the raft
{P} = Internal force vector. 
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DDYNAMIC ANALYSIS METHODS OF PILED RAFTYNAMIC ANALYSIS METHODS OF PILED RAFT

Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Hybrid modelling of 
the pile and the soil
(two horizontal soil 
resistance models)

Parameters of soil resistance at pile nodes 
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s s
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Shaft resistance

Spring

Damping

(Novak et al  1978)
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Spring
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(Deeks & Randolphl  1995)
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DDYNAMIC ANALYSIS METHODS OF PILED RAFTYNAMIC ANALYSIS METHODS OF PILED RAFT

Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Hybrid modelling of 
the pile and the soil
(two horizontal soil 
resistance models)

Parameters of soil resistance at raft nodes

Shaft resistance

(8)

(9)

(Richart, Hall & Woods 1970)
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[ ]{ } [ ]{ } [ ]{ } { }s s sK w C w M w P+ + = (10)

Expression of soil resistance in matrix form:
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Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Plate-beam-spring-mass modelling 
of a piled raft 

{ } { } { } { }p p pK w M w F P⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦

[ ]{ } [ ]{ } { } { }r r rK w M w F P+ = −

(1)

Equilibrium of forces for the piles 
and the raft:

(2)

[ ]{ } [ ]{ } [ ]{ } { }s s sK w C w M w P+ + = (10)

Soil resistance:

[ ]{ } [ ]{ } [ ]{ } { }K w C w M w F+ + =

[K] = [Kp] + [Kr] + [Ks]
[C] =  [Cs]
[M] = [Mp] + [Mr] + [Ms]
{F} = {Fp} + {Fr}. 

(11)

Governing equation for 
the whole system:
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Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Plate-beam-spring-mass 
modelling of a piled raft 

[ ]{ } [ ]{ } [ ]{ } { }K w C w M w F+ + =

Governing equation for 
the whole system:

(11)

{ } [ ]{ } [ ]{ }s 0 s 0F K w C w= +

In the case of the pile foundation 
subjected to earthquake load, the 
induced external force vector {F} 
can be calculated by

(12)

{w0} = the free field ground movements 
= the free filed velocities 

induced by an earthquake 
{ }0w
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Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Plate-beam-spring-mass 
modelling of a piled raft 

[ ]{ } [ ]{ } [ ]{ } { }K w C w M w F+ + = (11)

Governing equation for the 
whole system:

{ } [ ]{ } [ ]{ }s 0 s 0F K w C w= +

Forces at nodes induced by 
an earthquake:

(12)

Equations (11) and (12) are 
converted to incremental forms.

Newmark β - method is used to 
solve these equations.
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Simplified 3-dimensional dynamic analysis method of piled raftSimplified 3-dimensional dynamic analysis method of piled raft

Plate-beam-spring-mass 
modelling of a piled raft 

[ ]{ } [ ]{ } [ ]{ } { }K w C w M w F+ + =

Governing equation for the 
whole system:

Note:
Dynamic interactions between the 
soil springs are not taken into 
account in the present DPRAB.
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Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Plate-beam-spring-mass 
modelling of a piled raft 

[ ]{ } [ ]{ } [ ]{ } { }K w C w M w F+ + = (11)

Governing equation for the 
whole system:

{ } [ ]{ } [ ]{ }s 0 s 0F K w C w= +

Forces at nodes induced by 
an earthquake:

(12)
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Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Simplified 3-dimensional dynamic analysis method of piled raft
(Kitiyodom, Sonoda & Matsumoto 2005)

Δz1

Input acceleration 

Seismic bedrock 

Input 
dynamic 
external 
forces 

Pile node 

Analytical model of the free field ground 

 G1, ρ1, c1 

 G n-2, ρ n-2, c n-2 
 G n-1 , ρn-1, cn-1 
 Gn , ρn, cn 

Raft node 

Free field 
ground 
movements 

Raft 

Pile 

Raft 

 G2, ρ2, c2 
 G3, ρ3, c3 

Δz 2

Δz 3

Δz n-2

Δz n-1

Δz n

Soil column 

Analysis procedure used in D-PRAB 

1. Calculate changes with time 
of free-field ground 
movements and velocities

{ } [ ]{ } [ ]{ }s 0 s 0F K w C w= + (12)

2 . Calculate changes with 
time of forces at nodes 
induced by an earthquake

3. Solve the governing equation

[ ]{ } [ ]{ } [ ]{ } { }K w C w M w F+ + = (11)

Displacements, velocities and 
accelerations at raft and pile nodes
Bending moments of raft
Axial forces, shear forces and 
bending moments of piles
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D-PRABD-PRAB Calculation of free-field ground movementsCalculation of free-field ground movements

Lumped mass-spring-dashpot model 
(after Idriss & Seed 1968)

 

Mi-1 

M1 

Mn 

M2 

Cn 

Kn 

Ci-1 

Ki-1 

Ci 

Ki 

C1 

K1 

Δz

Mi 

Mi+1 

gu

[ ]{ } [ ]{ } [ ]{ } [ ]{ }m m m m gK u C u M u M u+ + = −

[Mm] = the soil mass matrix
[Cm] = soil damping matrix
[Km] = soil stiffness matrix
{u} = vector of the relative displacements 

between each layer. 

Governing equation:

Horizontal free field ground movement 
vector {u0} : 

{ } { } { }0 gu u u= +

{ug} = the input seismic displacement.
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COMPARATIVE ANALYSESCOMPARATIVE ANALYSES Analytical conditionsAnalytical conditions
 

Input acceleration 

L =20m

4 m

4 m

2 m

50 m

2 m

1 m

d =0.5 m

+−

pile 2 pile 1 

 

L =20m

Input acceleration 

1 m

2 m 

50 m 

2 m

d =0.5 m 

+−

Material properties used in analyses
        Property                       Value 

Soil: 
Young’s modulus   5.96×104 kPa 
Poisson’s ratio    0.49 
Density    2 ton/m3 
Shear wave velocity   100 m/s 
Pile: 
Young’s modulus   3.84×107 kPa 
Poisson’s ratio   0.16 
Density    2.4 ton/m3 

Longitudinal wave velocity  4000 m/s 
Shear wave velocity   2626 m/s 
Length    20 m 
Diameter    0.5 m 
Unit squared raft (pile cap): 
Young’s modulus   3.84×107 kPa 
Poisson’s ratio   0.16 
Density    2.4 ton/m3 

Width    2 m 
Thickness    1 m 

Problems analysed 

(a) Capped 
single pile 

(b) Pile group & 
piled raft 
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COMPARATIVE ANALYSESCOMPARATIVE ANALYSES FEM modellingFEM modelling

   

Symmetric 
plane 

50 m

50 m

25 m

Whole model (Plane symmetric) Two types of modelling
of raft and piles 

Solid elements Plate and beam 
elements
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Input accelerationsInput accelerations
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α = 2.2; β = 0.375; γ = 8.0; f = 0.5 and f =1.0 Hz.

COMPARATIVE ANALYSESCOMPARATIVE ANALYSES
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Results of free field ground motion analysisResults of free field ground motion analysisANALYSIS RESULTSANALYSIS RESULTS
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H = thickness of the ground 
= 50 m

Vs = shear wave velocity 
= 100 ms

Natural frequency of the 
ground, fn: 
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Analysis results of single pileAnalysis results of single pileANALYSIS RESULTSANALYSIS RESULTS
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Analysis results of single pileAnalysis results of single pileANALYSIS RESULTSANALYSIS RESULTS
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Analysis results of pile group and piled raft for f = 1 HzAnalysis results of pile group and piled raft for f = 1 HzANALYSIS RESULTSANALYSIS RESULTS
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Horizontal acceleration 
and displacement at pile 
head in the piled raft were 
very close to those in pile 
group.
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ANALYSIS RESULTSANALYSIS RESULTS
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ANALYSIS RESULTSANALYSIS RESULTS
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ANALYSIS RESULTSANALYSIS RESULTS
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SUMMARYSUMMARY

From the comparative analyses using the various solutions,

1) Horizontal accelerations and displacements of the single 
pile, the pile group and the piled raft calculated using the 
various methods are almost the same.

2) FEMB and D-PRAB tend to underestimate the vertical 
displacements of the pile compared to FEMS that is 
regarded as the most rigorous approach, although the 
vertical displacements are very small compared to the 
horizontal displacement.
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SUMMARY (Cont'd)SUMMARY (Cont'd)

From the comparison of the foundations calculated using FEMS,

3) Lateral displacements of the single pile, the pile group 
and the piled raft are almost the same for an 
earthquake.

4) Rocking motion of the piled raft is smaller than that of 
the pile group. The axial forces of the pile in the piled 
raft are much smaller than those in the pile group. 

The above findings are valid for the cases that strains 
induced in the soil are small enough where the soil 
exhibits only elastic response and that effect of a 
superstructure does not exist 
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SUMMARY (Cont'd)SUMMARY (Cont'd)

Following improvements are recommended for the simplified 
method D-PRAB:

1) Incorporation of dynamic interactions between the soil 
springs though the soil, in order to obtain more reliable 
vertical responses of the foundation.

2) Modelling of the superstructure for the analysis of a total 
structure composed of a superstructure and a 
substructure including piles.


