Case studies in Japan

Applications of piled raft foundations to buildings

- 2 cases from TAISEI Corporation
- 10 cases from TAKENAKA Corporation
- 1 case from OBAYASHI Corp. and YASUI KENCHIKU Corp.

Importance of case study

- Load transfer of piled rafts assumed in design is compatible with field performance?
- Influence of construction method on bahaviour of piled rafts?
- Influence of change in ground water table (water pressure at the raft base) on behaviour of piled rafts?

- Confirmation of possibility of piled rafts through field observations.
- Development of new pile construction methods adequate for piled rafts.

Piled raft for low-rise building

TAISEI Corporation

Location: Tsukuba City

Building area: 530 m²

Number of stories: Two above grade

Piled raft for low-rise building

Design process

Pile group in archi-design

Symbol	Direction	Pile section
0	Н	H-250 × 250 × 9 × 14
•	エ	H-250 × 250 × 9 × 14

Combined use of anti-liquefaction soil improvement and piled raft

Design process

sand

SC piles having a length of 43 m

SC piles having a length of 25 m

Location: Tokyo

Number of stories: Three above grade

Building area: 810 m²

Total floor area: 2400 m²

Foundation type: Soil improvement

+ Piled raft

Construction: Nov. 2000 to May 2001

Settlement reducing piles:

SC pile: H-steel + soil cement 45 piles

Soil improvement:

178 sand piles

TAISEI Corporation

Combined use of anti-liquefaction soil improvement and piled raft

Sand piles contribute to preventing liquefaction and increasing the bearing resistance of the raft.

Length of the settlement reducing piles was reduced to 25 m from 43 m.

Study on behavior of ve.rtical load transfer of pile foundations

Dr. Thesis of Tokyo Institute of Technology

Masaaki Kakurai

Tokyo Soil Research Corp.

(formerly Research Institute of Takenaka Corp.)

10 case studies

Case studies of pile raft foundations

Foundations design as pile groups

- 3 cases of ordinary construction method
- 2 cases of reverse construction method

Foundations designed as piled rafts

- 3 cases in Alluvial ground
- 2 cases in Diluvial ground

10 cases in total

Foundations constructed by ordinary construction methods

RC building

High-rise steel building

Twin building of RC structure

Reinforced concrete building

Piles: primarily end-bearing pile (designed as pile group)

Cast-in-situ concrete pile with bell bottom.

 $D_{\rm s} = 2.1 \text{ m (shaft)}, D_{\rm b} = 3.1 \text{ m (base)}$

Monitoring:

Axial forces in a pile (4 levels).

Contact pressure and water pressure at the center point of the raft.

Vertical load, earth pressure and water pressure beneath the raft

Proportions of total vertical load carried by the piles and the raft

Reinforced concrete building

Piles: primarily end-bearing pile

Cast-in-situ concrete pile with bell bottom.

 $D_{\rm s} = 2.1 \text{ m (shaft)}, D_{\rm b} = 3.1 \text{ m (base)}$

Design concept of piled raft can be applied to end-bearing piles, if adequate arrangement and configuration of the piles are selected.

117.43m

27-story above grade
1-story below grade
Building area = 4,127 m²
Total floor area = 34,479 m²

N=10~19

interlayered N=20~60

Lower sand-clav

Piles: 79 piles, primarily end-bearing pile (designed as pile group)

Cast in-situ concrete pile with bell bottom.

 $D_{\rm s}$ = 1.8 m (shaft), $D_{\rm b}$ = 3.1 m (base) 24 piles

 $D_{\rm s} = 1.3 \text{ m (shaft)}, D_{\rm b} = 2.5 \text{ m (base)} 55 \text{ piles}$

measured at various levels in the ground

Loads carried by pile and raft (as for the area around the instrumented pile)

Loads carried by pile and raft (as for the area around the instrumented pile)

Proportions of load carried by pile and raft

Piles: 79 piles, primarily end-bearing pile

Cast in-situ concrete pile with bell bottom.

 $D_{\rm s} = 1.8 \text{ m (shaft)}, D_{\rm b} = 3.1 \text{ m (base) } 24 \text{ piles}$

 $D_{\rm s} = 1.3 \text{ m (shaft)}, D_{\rm b} = 2.5 \text{ m (base)} 55 \text{ piles}$

Design concept of piled raft can be applied to end-bearing piles, if adequate arrangement and configuration of the piles are selected.

Intensive field measurements were carried out over a large part of the foundation area.

Time histories of earth pressures and water pressures

Distributions of earth pressures and water pressures beneath the raft (slab) at 1 year after the final completion

Foundations in reverse construction methods

RC building #1

RC building #2

Reverse construction method

Building:

7-story above grade

2-story below grade

Building area = $5,067 \text{ m}^2$

Total floor area = $28,685 \text{ m}^2$

Foundation:

Raft foundation in design

Ave. press. = 102 kPa

Max. press. = 139 kPa

Pile:

Cast-in-situ concrete piles with D = 1.6 m

Soil pile wall:

Cement mortar with steel pipe pile

Fine sand
Silt
Medium sand
Sandy gravel
Silt
Sandy gravel

Field measurements

Time history of settlements

Time history of pressures for a central area

Piles: 35 % Raft: 65 %

Even though the foundation was designed as the raft foundation, the piles carry a relative large portion of the total pressure.

Field measurements

Kobe earthquake (Hyogoken-Nambu Earthquake) January 17, 1995

Magnitude:

7.2

Maximum acceleration: 833 gal

Number of sacrifices: more than 6000

Number of damaged superstructures: more than 200,000

January 17, 1995

Hyogoken-Nambu Earthquake(1)

January 17, 1995

(神戸大橋ボートターミナル取付部・神戸市)

〈摩耶大橋・神戸市〉

Hyogoken-Nambu Earthquake(2)

Intercurrent Summary

Design concepts

Pile group: Piles carry all the vertical load

Raft alone: Raft carries all the vertical load

Reality

- > Even if buildings are supported by end-bearing piles, 20 to 50% of vertical loads (weights of buildings) are carried by rafts.
- ➤ In reverse construction methods where foundations are designed as rafts alone, 30 to 35% of vertical loads (weights of buildings) are carried by piles.

Design of a foundation as piled raft are is needed to predict behaviour of the foundation correctly.