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초 록 

최근 들어 한국의 증가하는 추세의 극한강우 사상은 중력으로 인한 지표 이동 위험에 대한 증가된 노출을 

초래하였다. 극한강우로 유발된 토석류는 주거지, 도로 및 그 외 사회기반시설들에 막대한 피해를 

야기시키므로, 이에 대해 예측 정확성 및 신뢰성과 반비례 관계가 있는 여러 분석 스케일에서의 위험도 

평가가 요구된다. 본 연구에서는, 극한강우로 유발된 산사태 위험도 평가를 위한 광역 지역에서부터 국부 

지역에 이르는 스케일에서의 접근법을 제시하였다. 광역 스케일에서는, 산사태 민감도와 ERI 모델을 

개발하여 공간적 및 시간적 확률 요소를 결합함으로써 산사태 위험도 평가가 수행된다. 산사태에 대한 

매우 높은 민감성을 가지고 있는 대상 지역은 토석류로의 전이 여부에 대해 추가로 시험되며, 이어서 

수문학적 평가를 통해 선별된 사면 단위의 국부지역으로 스케일이 전환된다. 국부적인 사면 스케일에서 

토석류 위험도 요소들인 속도와 최종 부피는DAN3D로 명명된 SPH 기반의 유동 모의 모델을 사용하여 

평가된다. 토석류에 대한 예측 모델링은 세 가지 주요 입력 인자인 초기 부피, 유동(rheology) 모델, 연행 

증가율에 대한 데이터베이스 개발을 위한 체계를 구축함으로써 수행되었다. 입력 인자들은 다음과 같은 

방법을 이용하여 추정하였다. 초기 부피는 3-D 수리역학 연계 모델을 이용하여 추정하였고, 유동 모델은 

유효응력 기반의 마찰 유동 모델로 채택되었으며 마찰각의 경우 인공신경망 모델을 이용하여 추정하였다. 

마지막으로, 연행 증가율은 초기 부피와 토심 지도를 이용하여 결정하였다. 제시된 토석류 위험도 평가 

방안은 2011년 7월경 서울에 위치한 우면산에서 발생한 극한강우 재해 사례에 적용되었다. 우면산을 

대상으로 Extreme Learning Machine 기반 하이브리드 모델을 적용한 결과 13 개의 인자가 영향을 미치는 

것으로 판단되었고, 85%와 89%의 높은 성공률 및 예측율을 각각 나타냈다. 지반 요소와 강우 요소를 

고려하는 ERI를 이용하여 시간적 요소를 추정하기 위한 새로운 접근법이 개발되었으며, 이는 DHI를 이용한 

위험도 평가를 위한 하이브리드 모델과 연계되었다. 2011년 7월경 서울에 위치한 우면산에서 발생한 

극한강우 사례에 대한 ERI와 DHI의 적용 결과 DHI의 규준 값을 0.5로 하였을 때, 모든 산사태를예측하였다. 

그러므로, 규준값 0.5는 제시된 평가 체계에서 임계기준으로 사용할 수 있다. 산사태 발생 예상 지역들에서 

토석류로 전이 가능한 영역은 4가지 인자인 사면경사, 종단 곡률, SPI 및 고도를 이용하는 전이규준을 

사용하여 선별되었으며, 각 인자들의 하한 임계값은 24°, -4 to +4, 4.0, 60 m 로 설정되었다.  
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본 전이규준은 유역 분석과 결합되어 우면산에서 총 45개 사면 단위들을 선별하였으며, 토석류 위험도 

예측 평가는 래미안 사면을 대상으로 국부 스케일에서 수행되었다. 3-D 기반의 침투 및 한계평형법 해석을 

수행한 결과 23.5시간 이후 지하수 상승에 의한 불안정(FOS=0.907)을 예측하였으며, 초기부피는 2626.5 

𝑚3로 계산되었다. ANN 기반의 모델은 마찰각을 완전히 유동화된 흐름을 의미하는 0°로 추정하였다. 

추정된 입력인자들을 사용한 토석류 유동 모델링은 최종부피 52642.6 𝑚3, 속도 27 m/s, 그리고 래미안 

아파트 근처에 집중된 약 5m 토사 두께를 예측하였으며, 이는 현장에서 관측 및 기록된 수치들과 

일치하였다. 

핵 심 낱 말  : ELM; ERI; DHI; 산사태 위험도; 극한 강우; 한계 평형법; 토석류 모델링 

 

Abstract 

An increasing trend of extreme rainfall event contribution to annual precipitation during recent times in South Korea has 

resulted in higher exposure to dangerous gravity induced surface processes. Extreme rainfall induced landslides are one 

of the most dangerous gravity-induced surface processes causing severe damage to dwellings, roads and other lifelines 

and therefore requires hazard assessment at different scales with accuracy and reliability being inversely related to the 

scale. In this study, an approach for extreme rainfall induced landslide hazard assessment from large to detailed (site-

specific) scale has been proposed. At large scale, the landslide hazard assessment is conducted by combining the spatial 

and temporal component through development of a landslide susceptibility and ERI model. The areas delineated as highly 

susceptible to landslides under extreme rainfall event are further tested for mobilization into debris flow using a criterion 

and are transitioned to detailed scale using slope units developed through hydrological assessment. The debris flow hazard 

components, velocity and final volume, at detailed slope scale are assessed using a SPH based runout model called DAN-

3D. The predictive modelling of the debris flow was conducted by establishing a framework to develop the database for 

three major input factors: initial volume, rheological model, and growth rate. The input factors were estimated as follows: 

the initial volume was estimated using a 3-D coupled hydro-mechanical model; an effective stress based frictional 

rheological model was adopted and the bulk frictional angle for the same was estimated using a ANN based model; growth 

rate was determined from the initial volume and soil depth map. The proposed hazard assessment scheme was applied to 

Mt. Woomyeon, Seoul for the catastrophic extreme rainfall event in July 2011. 

Application of the ELM based hybrid model to Mt. Woomyeon selected 13 influential factors and gave a high success 

and prediction rate AUC of 85% and 89%, respectively. A new approach to estimate the temporal component was 

developed using ERI explicitly considering soil and rainfall factors and was coupled to the hybrid model for hazard 

assessment using DHI. Application of ERI and DHI to Mt. Woomyeon for July 2011 extreme event indicates DHI of 0.5 

can predict all landslides and thus, 0.5 is used as threshold in the proposed framework. The sifting of debris flows from 

landslides probable regions was performed using the mobilization criterion considering four factors; Slope angle, profile 

curvature, SPI, and elevation with lower threshold values of 24o, -4 to +4, 4.0, and 60 m, respectively. The criterion 

combined with watershed analysis delineated the Mt. Woomyeon into 45 slope units and the predictive debris flow hazard 

assessment is conducted at a site-specific scale on the, Raemein slope unit.  
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The 3-D based seepage and limit equilibrium method analysis predicted instability to occur at 23.5 hrs (FOS=.907) due 

to the progression of ground water table and gave an initial volume of 2626.5 m3. The ANN based model estimated a bulk 

frictional angle of 00 indicating a completely fluidized flow. The debris flow runout modelling using the estimated 

parameters predicted a final volume of 52642.6 m3, a velocity of 27 m/s and about 5 m debris thickness concentrated near 

the Raemian apartment, and is in agreement with that observed in the field.  

Keywords: ELM; ERI; DHI; landslide hazard; extreme rainfall; limit equilibrium method; debris flow modelling 
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Chapter 1. Introduction 

 

“Nature’s imagination is so much greater than man’s, she is never going to let us relax” ~Richard Feynman 

 

1.1 Research background 

Extreme rainfall events in South Korea show an increasing trend in contribution to the annual precipitation (Choi, 2004). 

The annual precipitation during the period of 1973-2005 mainly occurred during summer season and was characterised 

by an increase in the frequency and intensity of extreme precipitation (Jung et al., 2011). Extreme rainfall induced 

landslides are one of the most dangerous gravity-induced surface processes causing severe damage to dwellings, roads 

and other lifelines. Destructive debris flows mobilized from shallow landslides are generally the most common and 

widespread. About 70 % of the Korean peninsula is covered with mountains composed of soils formed from the in situ 

weathering of granite and gneiss. Shallow landslides are typically 1-3 m deep and often occur at boundaries between the 

colluvium and the underlying more solid parent rock (Salciarini et al., 2008). In most parts of Korea, shallow landslides 

are characterized by shallow failure surfaces of 2-3 m depth that develop parallel to the original slope (Kim et al., 2004). 

Due to the mountainous terrain with a shallow layer of colluvium, landslides have proven a hazard across most of the 

country. The socio-economic impact, moreover, has become much higher than before because of the current population 

levels in the hazardous zones.  Hence risk mitigation through structural counter-measures or through alternative cost 

effective means like early warning systems (EWS) are viable especially in areas where slope stabilization is not a solution. 

The United Nations International Strategy for Disaster Reduction defines EWS as “the set of capacities needed to generate 

and disseminate timely and meaningful warning information to enable individuals, communities and organizations 

threatened by a hazard to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss” 

(UNISDR, 2009). There are several other definitions for the EWS given by different researchers (Medina-Cetina and 

Nadim, 2008; Dikau and Weichselgartner, 2005). Irrespective of the definitions, it is generally accepted that EWS work 

towards zero casualty in areas of risk anticipating an imminent collapse, thus, operating as a risk mitigation tool (Intrieri 

et al., 2012). Therefore, any EWS for being considered efficient should comprise of the following qualities: 1) Monitoring 

and data acquisition capability along with maintenance of the devices; 2) Systems incorporating hazard and risk models 

to provide information on potentially hazardous events; 3) Alarm systems based on thresholds, either empirical or 

deterministically derived, can give warning on exceedance monitored using real-time systems; 4) Warning dissemination 

and appropriate response capability.  
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The development of near real-time EWS involves several key elements like meteorological systems, monitoring systems, 

hazard and risk assessment, and distribution of information and response procedures. 

 In designing the EWS, hazard assessment is one of the most vital component needed to identify or locate the areas along 

with the intensity of the event for the warning need to be issued. The warning system can be developed at different scales 

like national, regional or local and for a general or specific landslide types.  The type developed depends on the data 

availability, model complexity and the area under consideration.  

There are several existing statistical, empirical or deterministic models for assessing the hazard due to landslides or debris 

flow at different scales. The accuracy and reliability of the estimation has an inverse relationship with scale i.e., the larger 

the scale of the area under consideration, the lower the accuracy and reliability of the hazard assessment.  Hence, for EWS 

we have applied a scale reduction framework from large (regional/ local) to site specific (watershed/ massif) scale.  Thus, 

the current methods for hazard assessment of debris flow from a prediction perspective are limited by scale. Though 

modelling at site-specific scale can be performed with high reliability but it is difficult to predict which slope is susceptible 

to debris flow when the area under considering is quite large. A simple solution to this problem is to develop a statistical 

debris flow model considering geomorphological and rainfall factors and use the result from the model to delineate the 

potential slopes for site-specific analysis. However, this is difficult owing to the lack of complete debris flow inventory 

and rainfall data causing these events. In Korea, there is well established database for temporal (consisting of all landslide 

types and no clear distinction between them) and spatial information of landslides (clear distinction among the slides and 

debris flows inventories). Hence, though the spatial probability for the debris flow susceptibility can be established but 

creating a temporal database which triggers only the debris flow events is difficult. Hence, there is a need to develop a 

simple and reliable methodology which utilizes the well-defined spatial database at large scale (regional/ local) and the 

incomplete temporal database (in this study incomplete database means there is no information regarding type of landslide) 

identify the triggering areas under extreme rainfall and smoothly transition to a site-specific scale with the objective of 

predictive hazard modelling.  

Thus, motivation for this research is to develop a framework and related methods for the hazard component of the debris 

flow early warning system through systematic scale reduction and delineation of debris flow events from other landslide 

types due to extreme rainfall. The extreme rainfall induced debris flow hazard can then be combined with vulnerability 

assessment to make the decision on whether or not warning ought to be given in the specific location of the region. The 

proposed framework for the debris flow hazard level assessment is as shown in Fig.1. 
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Fig.1.1: Proposed framework for the debris flow hazard level assessment 
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1.2 Research scope and layout 

Objective of the study is to identify the spatial variability of debris flow with real-time extreme rainfall data and to conduct 

hazard assessment for early warning system in order to send out warning alerts to near-by population against the 

catastrophic event.  Therefore, there is a need to develop a framework for using the real-time rainfall information in a 

particular region (large scale e.g. mountain) and identifying locations on the mountain where the debris flow might occur 

and predict the intensity of the event. 

In order to do that development of new core technologies are needed which can fit in the prediction framework and also, 

development of database establishment methodologies for existing state of the art technologies is a necessity.    

In order to achieve the above, the following work has been done in this thesis: 

1) Proposed a new framework for hazard assessment which, in association with vulnerability assessment, can 

be adopted in EWS. 

2) Developed three new core technologies for the hazard component in the EWS. 

3) Advanced the database establishment technique for DAN-3D at site-specific scale through the use of     3-D 

coupled slope stability analysis and a predictive model for the rheological parameter.  

Thus, the scope of this thesis can be summed up as: “to develop and apply a sequential landslide discernment and scale 

reduction based approach for hazard analysis of debris flow mobilized from shallow landslides under extreme rainfall, to 

be used in a landslide early warning system”. 

The main objective thus has been realized in this research and is as described in the following chapters: 

Chapter 2 proposes a ELM based feedback controlled hybrid model with the objective to create a high performance 

landslide susceptibility model by addressing the issue of feature selection for supervised learning techniques.   

Chapter 3 introduces a novel scheme to consider the temporal component using ERI, which in combination with spatial 

probability model can be used to assess the landslide susceptibility. An index termed DHI is also suggested to describe 

the variation in susceptible zones considering the real-time rainfall condition.   

Chapter 4 presents a transition scheme for scale reduction from large to site-specific using an index based mobilization 

criterion and establishment of slope units through the combination of hydrological assessment and the mobilization 

criterion.  
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Chapter 5 finally focusses on the database estimation methodology for the site-specific debris flow run-out hazard 

assessment. A deterministic analysis using 3D seepage and 3D limit equilibrium analysis is conducted to estimate the 

initial volume that mobilizes into debris flow. The most appropriate rheological model for Korean condition is identified 

and a ANN based model is developed with the objective of predictive modelling. The hazard components comprising of 

final volume and velocity for the mobilized mass are finally calculated using SPH based 3D model called DAN-3D.  

Chapter 6 summaries the conclusion from the study and recommendations for further study. 
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Chapter 2. A feedback-loop-based hybrid algorithm using ELM: 

Methodology for spatial assessment of extreme rainfall induced landslide 

assessment at large scale 

 

 

2.1. Introduction 

Extreme rainfall events in South Korea have exhibited an increasing trend in contribution to the annual precipitation (Choi, 

2004). Annual precipitation during the period 1973 to 2005 primarily occurred during the summer season and was 

characterized by an increase in the frequency and intensity of extreme precipitation (Jung et al., 2011).  Landslides induced 

by extreme rainfall caused by climate change (Kim et al., 2008) are one of the most dangerous gravity–driven surface 

processes causing severe damage to dwellings, roads, and other lifelines. Among such events, destructive debris flows 

mobilized from shallow landslides are generally the most common and widespread. Approximately 70% of the Korean 

peninsula is covered by mountains with shallow soil layers formed from in-situ weathering of granite and gneiss. Shallow 

landslides typically are 1-3 m deep and often occur at boundaries between the colluvium and the underlying more solid 

parent rock (Salciarini et al., 2008). In most parts of Korea, shallow landslides are characterized by failure surfaces 2-3 m 

deep that develop parallel to the original slope (Kim et al., 2004). The socioeconomic impact has become much higher 

than before because of the current population levels in hazardous zones. Hence, risk mitigation through structural 

countermeasures or alternative cost-effective means, such as early warning systems, are viable especially in areas where 

slope stabilization is not a solution. In order for the above solutions to be implemented, landslide susceptibility maps need 

to be developed displaying the zones with varying spatial distributions of landslides according to morphological, 

hydrological, geotechnical, and geological types of conditioning factors. A detailed literature review indicates presence of 

a large number of landslide instability factors. However, consideration of all factors can not only result in overfitting but 

also affect the model generalization (Kotsiantis, 2011) owing to the issue of dimensionality (Hughes, 1968). Hence feature 

selection for dimensionality reduction through identification of relevant features is an imperative process in preparation 

of high quality landslide susceptibility maps. Many of the studies focusing on objective conditioning factor selection for 

optimal landslide susceptibility model design have mainly been conducted using either filtering (e.g., univariate 

correlation statistics, Akaike Information Criterion and genetic algorithms; Ercanoglu and Gokceoglu, 2001; Roth and 

Lange, 2003; Yu et al., 2004; Boutsidis et al., 2009; Kavzoglu et al., 2015), or wrapper techniques through  
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supervised learning algorithms (such as logistic regression, support vector machines, artificial neural network, Random 

Forest, and AdaBoost; Guzzetti et al., 1999; Ermini et al., 2005; Castellanos and Van Westen, 2007; Yao et al., 2008; 

Pradhan et al., 2010; Yeon et al., 2010; Yilmaz, 2010; Marjanovic et al., 2011; Oh and Pradhan, 2011; Sezer et al., 

2011; Althuwaynee et al., 2012; Ballabio and Sterlacchini, 2012; Devkota et al., 2012; Lee et al., 2012; Pourghasemi et 

al., 2012a; 2012b; Zare et al., 2012; Tien Bui et al., 2012; Xu et al., 2012; Zhu et al., 2014, Dou et al., 2015). However, 

both of these methods have the disadvantage of not considering classifier bias and of being computationally expensive. 

This motivated the development of a hybrid model combining both of the above techniques by using filter methods for 

preprocessing (initial screening) and wrapper methods on the created subsets for further fine tuning leading to the final 

optimized factor subset. 

A study by Costanzo et al. (2012) utilized a hybrid framework for susceptibility map development using univariate 

correlation statistics and the matrix method. In this research, the selection of factors and its importance were assessed 

using correlation indices, i.e., the linear and contingency correlation coefficient (R), and Goodman-Kruskal’s gamma (G-

K); and the optimal combinations made using ranking-based progressive addition were chosen according to the matrix 

method. They showed that the best model could be obtained using the parameters identified utilizing the R and G-K 

statistics and therefore concluded that statistical univariate correlation index-based filter models are sufficient to identify 

the optimal factors and to make geologically meaningful susceptibility maps. However, studies (Micheletti et al., 2014; 

Goetz et al., 2015) have shown that the selection of factors and the importance of those factors is a function of the 

nominated supervised learning algorithm, and thus relying only on a filter model will not suffice. Additionally, this hybrid 

approach strongly depends on the quality of input data because of the use of a statistical correlation-based filter model 

and a statistical wrapper model and also lacks a quantitative method to estimate factor importance.   

Hence, the objective of this paper is to address the issue of feature selection for supervised learning techniques by 

providing a simple general framework to create systematic subsets for 2n combinations of factors (where n is number of 

conditioning factors) in pursuit of a high performance landslide susceptibility model by proposing a two-stage approach 

based on a hybrid method through feedback control. Fig. 2.1 shows the general framework of the method implemented to 

develop the susceptibility map. 
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Fig. 2.1. Scheme for ELM-based susceptibility modeling. 

 

2.2 Study Area and Data 

A susceptibility map was developed for Mt. Woomyeon, located in the Seocho district of Seoul, South Korea (Fig. 2.2A). 

The 5,104,162 m2 area under consideration extends between 37 ̊ 27 ̍00 ̎–37 ̊ 28 ̍ 55 ̎ N latitude and 126 ̊ 59 ̍ 02̎ – 127 ̊ 01 

̍41̎ E longitude, with the highest point 293 m above sea level. The average annual precipitation is in the range of 1100 to 

1500 mm. The mountain has moderate to dense vegetation cover, predominately consisting of Mongolian oak trees 

(Quercus mongolica), Dales Acacia (Acacia catechu), Sawthorn oak trees (Quercus Acutissima-Carruth), black birch 

(Betula davurica) and other types of pine trees. A soil profile of the mountain exhibits three main layers: a colluvium 

layer consisting of a poorly sorted sand and gravel mixture in a silty matrix up to 3 m thickness, a dark-brown clay layer 

with a thickness of 0.2 to 0.5 m, and a subsoil of stiff weathered bedrock of low permeability.  

2.2.1 Landslide inventory 

An extreme rainfall event from 26 to 27 July 2011 (470 mm in 16 h) in the Mt. Woomyeon area caused several shallow 

landslides, with many mobilized into debris flows, resulting in 16 casualties and damage to 10 buildings. Rainfall in July  

2011 was significantly higher than the average, with Mt. Woomyeon receiving 55% of its total annual precipitation of 

2039 mm. The maximum hourly rainfall measured at the two rainfall stations, Namhyun and Seocho, were 114 mm/h, 
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with a return period of 120 years, and 87 mm/h, with a return period of 20 years, respectively (Park et al., 2013). Fig.2.2B 

shows the hourly rainfall from both stations. 

Approximately 163 landslide inventory points consisting of debris flows and slides were mapped for Mt. Woomyeon 

using satellite images, high resolution aerial photographs, and field reconnaissance. High-resolution photographs of 25-

cm resolution were procured from the National Geographic Information Institute (NGII), and satellite images were 

obtained from Google Earth and Bing maps. These images were orthorectified via ground control points in ArcGIS 10.1, 

and landslide locations were detected through visual interpretation.  
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Fig. 2.2. (A) Study area: Mt. Woomyeon; (B) Hourly and total rainfall distribution on 25–27 July 2011 at Namhyun and 

Seocho stations (Park et al., 2013). 

2.2.2 Database for landslide explanatory variables 

Based on a detailed literature review, we selected 23 explanatory variables and grouped them into five types, as seen in 

Table 2.1: morphological, hydrological, geotechnical, geological, and forest. To reduce the subjectivity in selection and 

to identify the most significant variables affecting the landslide occurrence, bivariate correlation analysis was conducted, 

a detailed explanation of which is presented in section 2.3. 

Table 2.1: Database characteristics for susceptibility map development in Mt. Woomyeon 

Type Factor Source 
Scale 

(Resolution) 
Organization 

Morphological 

Aspect 

DEM 10 x 10 m NGII 

Elevation 

Slope 

Plan curvature 

Profile curvature 

TRI 

SRR 

SEI 
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Forestry map 1:25000 KFS 

Total curvature 

Topography DEM  NGII 

Hydrological 

Distance from stream 
DEM 10 x 10 m NGII 

TWI 

Drainage 
Forestry map 1:25000 KFS 

Humidity 

STI 
DEM 10 x 10 m NGII 

SPI 

Geotechnical 

Soil depth 

Forestry map 1:25000 KFS 
Soil density 

Soil texture 

Soil type 

Forestry Forest density Forestry map 1:25000 KFS 

Geological 
Geology 

Geology map 1:25000 KFS 
Weathering 

Landslide inventory 

Field investigation report  
Korean Society of 

Civil Engineers 

High resolution images 25 x 25 cm NGII 

Satellite images 
 Bing maps 

 Google Earth 

 

2.2.2.1 Morphological types 

Many studies conducted around the world have shown that landslides are influenced by geomorphological features, such 

as elevation, slope, aspect, profile curvature, plan curvature, total curvature, TRI, SSR, SEI and topography. Elevation has 

been used as a conditioning factor in several studies, and higher values are generally related to higher susceptibility caused 

by variation in rainfall, vegetation, and potential energy availability (Pachauri and Pant, 1992; Ercanoglu et al., 2004). 

Elevation was positively correlated with landslide occurrence (Table 2.2) and was divided into six classes, with a 

maximum value of 293 m (Fig. 2.3A). Aspect is also considered as an important variable (Carrara et al., 1991; Maharaj 

1993; Jakob, 2000), inducing landslides through exposure of the surface to wind and rainfall. Figure 2.3B shows aspect 

dividing the entire area into nine classes of flat (-1), north (337.5-360 and 0-22.5), northeast (22.5-67.5), east (67.5-112.5),  

southeast (112.5-157.5), south (157.5-202.5), southwest (202.5-247.5), west (247.5-292.5), and northwest (292.5-337.5). 

Slope, defined as steepness of a surface, and its second-order derivative curvature, helps in understanding the 

characteristics of a basin for runoff and erosion processes.  

 

 

 

 



- 12 - 
 

In this study, three types of curvature are considered: (i) profile curvature is defined along the line of maximum slope (Fig. 

3C); (ii) plan curvature is defined along the line of intersection between the surface and XY plan (Moore et al., 1993; Figs. 

2.3D); (iii) total curvature is a general curvature of the surface rather than curvature along some line (Wilson and Gallant, 

2000; Fig. 2.3E). Curvature can affect landslide susceptibility through acceleration or deceleration and through 

convergence or divergence of flow (Kimerling et al., 2011), depending on if it is convex, planar, or concave. In addition, 

steeper slope angles are related to higher shear stress, and Fig.2.3F shows the five classes of the raster, with second class 

(12.95-25.92) and third class (25.92-38.87) occupying 61.76% and 24.72% of the total area, respectively. 

 Morphological indices related to surface roughness, such as the topographic roughness index (TRI) and surface relief 

ratio (SRR), also contribute to landslide susceptibility. Studies have shown that topography inside the landslide is rougher 

and more distinct from that of the smoother unfailed portion of the landscape. Riley (1999) classified TRI values as level, 

nearly level, slightly rugged, intermediately rugged, moderately rugged, highly rugged and extremely rugged. In              Fig. 

2.3G, TRI values in the study area are classified into four classes; slightly rugged, moderately rugged, highly rugged, and 

extremely rugged. The index is given by Eq. (2.1) 

                                                         
1

2 2
ij 00TRI y[ ( x x ) ]                               (2.1) 

where xij is the elevation of each neighbor cell to cell (0,0). 

SRR also gives information regarding the rugosity in addition to the potential energy for mass wasting and is divided into 

five classes in this study, as shown in Fig. 3H. Pike and Wilson (1971) described the equation as 

                                                           
( ) ( )

( ) ( )

z mean z min
SRR

z max z min





                (2.2) 

where z(mean), z(max), and z(min) are the mean, maximum, and minimum elevations, respectively. 

Spatial variability owing to topographic effects can have significant influence on landslide initiation from exposure to 

varying climatic conditions and cause variation in hydrological conditions, such as soil moisture and groundwater flow 

(Park and Lee, 2014). In this study, the topography conditioning factor, which depends on the general slope and drainage 

characteristics of the region, has been divided into five types (Fig. 2.3I): flatland, low hilly areas, piedmont slope, valley  

and alluvial fan, and hilly and mountainous area. The transitions between different regimes, that significantly affect the 

morphology through gravitational stresses; and erosion processes, are primarily influenced by climate, tectonic 

characteristics, rock strength, and the history of the fluvial system (Tarolli and Fontana, 2009).  
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The site exposure index (SEI) rescales the aspect to a north/south axis, and weighs it by steepness of slope, creating a data 

set indicating the coolest to warmest locations (Davies et al., 2010), and thus providing insight into the spatial moisture 

variability. The SEI values were classified into five levels in this study area, with -50.08 and 53.47 respectively indicating 

the coolest and warmest spots, (Fig. 2.3J) and are calculated using the following equation: 

                                                       aspect 180
SEI slope cos ine

180



                                                              (2.3) 

 

2.2.2.2. Hydrological types  

TWI, based on assumptions of uniform soil properties and steady state conditions (Conforti et al., 2014), can be used to 

describe the distribution pattern of moisture for potential infiltration volumes according to five classes (Fig.2.3K), with 

higher values in natural drainage channels and lower values along ridges and alluvial fans. The factor is calculated using 

Eq. (4) (Moore et al., 1991):  

       



 
 
 

sA
TWI ln

tan
                                                                 (2.4) 

where As is the specific catchment areas, and β is the local slope gradient measured in degrees. 

Additionally, the humidity factor provides information regarding the variation of soil wetness across the mountain and is 

extracted from the forestry map. Figure 2.3L shows the mountain is mainly classified into high and low humidity classes. 

SPI, which measures the erosive power of the flow, increases with the surge because of a larger upslope area and slope 

(Florinsky, 2012). Figure 2.3M shows higher erosive values existing along the drainage channels. It is given by (Moore 

et al., 1991)  

                                                                        sSPI A                    (2.5)           

Another index called STI, a dimensionless term, is associated with sedimentation transport capacity, and it is a nonlinear 

function of slope angle and specific catchment area (in turn, affecting the discharge). Areas with high STI values 

correspond to greater susceptibility of the soil to erosive effects of overland flow, thus contribute to landslides. STI values  

of Mt. Woomyeon in Fig.2.3N are divided into five classes, with lower values occurring along ridges and flat areas. The 

equation is given using a combined slope factor, and can be calculated as (Moore and Burch, 1996) 

                                                              
0.6 1.3

sA sin
STI

22.13 0.0896



 
 
 

                           (2.6) 

 

 

 



- 14 - 
 

In the hillslope domain, the presence of a slope close to drainage divides and stream networks (Fig.2.3O) can cause 

instability through erosion or saturation (Gokceoglu and Aksoy, 1996) and, hence, is considered as a hydrological factor. 

The distance from streams in the region was determined using the Euclidean distance tool in ArcGIS 10.1 and classified 

into five classes: < 5, 5-10, 10-15, 15-20, and > 20 m.  

2.2.2.3. Geological types 

Lithology plays a significant role in landslide susceptibility owing to varying characteristics, such as strength, composition, 

and structure (Carrara et al., 1991; Kıncal et al., 2009; Chauhan et al., 2010). Figure 2.3P shows that approximately 73.55% 

of the area is covered by metamorphic rocks, whereas only 22.64% and 3.8% is covered by sedimentary and igneous 

rocks, respectively. The level of weathering, as shown in Fig. 2.3Q, will have an effect on shallow heterogeneities, such 

as fractures and weak zones in a slope (Bachmann et al., 2004), which can affect the susceptibility to landslides. The entire 

study area under consideration is exposed to only two levels of weathering: high weathering is concentrated along the 

ridges and piedmont slope, and moderate high weathering occurs in the valley and alluvial fans. 

 2.2.2.4. Geotechnical types  

The landslide occurrence in Korea mainly is a result of wetting depth progression caused by infiltration of rainfall (Kim 

et al., 2004). The infiltration rate is affected by particle distribution, initial void ratio, and forest density, and can be 

represented using drainage, soil type, soil texture, soil density, soil depth, and forest density factors, as shown in Table 

2.1. 

Drainage, a function of the soil water characteristic curve, indicates the relative ease of water movement through the soil. 

In the current study region, as seen from Fig. 2.3R, it is classified into three classes of moderate, good, and high, with 

increasing landslide probability. Soil type (Fig. 2.3S) and texture (Fig. 2.3T) also affect landslide susceptibility because 

the particle distribution governs the shape of the soil water characteristics curve and hence, the soil hydro-mechanical  

behavior (Lee and Min, 2001). Figures 2.3S and 2.3T show the area to have three soil types: namely, dry brown forest 

soil, slightly brown forest soil, and moderately moist brown forest soil, and three types of soil textures: namely, sandy 

loam, loam and silty loam. Several studies have been conducted to determine the effect of the void ratio or stress history 

on soil water characteristics in terms of influencing the initiation and failure modes of landslides (Iverson, 1997; McKenna 

et al., 2011). 

 Loose, unconsolidated soils mainly evolve into slides or debris flow, because of either high hydraulic conductivity values, 

which allow rapid infiltration of rainfall, or substantial entrainment under high velocity impacts of water streams, called 

the fire-hose effect (Johnson and Rodine, 1984), or both.  
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However, though dense soils may evolve into a slide or debris flow from initial slope instability from a perched water 

table, ground water table rise or surface runoff, the probability in comparison to the former initial stress condition is 

significantly lower. Figure 2.3U shows the study area to be divided into no soil (0.8%), very loose soil (10.11%), loose 

soil (78.35%), and medium density soil (10.76%).  

 2.2.2.5. Forest types 

Forest density characteristics can also influence the spatial variability in landslide susceptibility through root 

reinforcements and reduction of soil erosion owing to surface runoff, or increase the driving stress from the additional 

weight of the trees. The region under study, as shown in Fig. 2.3V, consists of three forest density classes: low (0.8%), 

dense (18.5%), and moderate (80.7%). Soil depth (Fig. 2.3W), resulting from parent material erosion, also plays a 

dominant role in landslide initiation by affecting the water storage capacity and determining if the presence of vegetation 

favors or prevents slope instability (Dietrich et al., 1995). Figure 2.3W shows five classes of soil depth ranging from 0 to 

0.88 m, indicating its spatial variability, which is the lowest at ridges and increases downslope. Additionally, the highest 

soil depth class (0.75-0.88) is mainly observed in the southwest part of the mountain.  
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Fig. 2.3. Landslide conditioning factors: (A) Elevation; (B) Aspect; (C) Profile curvature; (D) Plan curvature; (E) Total 

curvature; (F) Slope; (G) TRI; (H) SRR; (I) Topography; (J) SEI; (K) TWI; (L) Humidity; (M) SPI; (N) STI; (O) Distance 

from stream; (P) Geology; (Q) Weathering; (R) Drainage; (S) Soil type; (T) Soil texture; (U) Soil density; (V) Forest 

density; (W) Soil depth. 

 

2.3 Methodology 

Conditioning factor selection is an important step in determining the best generalized model that can be used for landslide 

susceptibility mapping, and studies have been conducted to evaluate landslide factor selection methods (Santacana et al., 

2013; Costanzo et al., 2012). In this study, we used a filter-based approach to make two groups, i.e., relevant and irrelevant 

groups, and then screened the factors in each group using the feedback loop via ELM. 

2.3.1. Factor selection using filter method  

Filter models have the advantage of not being dependent on the learning method; i.e., there is no relation between the bias 

of the learning algorithm and the bias of the feature selection algorithm (Tang et al., 2014). The group set of ranked factors 

obtained from the filter model based on correlation, distance or consistency is used to identify the best predictor model 

through the forward sequential scheme.  

 The ranking of factors is performed using a bivariate non-parametric correlation analysis called Spearman’s coefficient, 

which evaluates the statistically significant correlation of each factor with the landslide index (LI).  

For ranks ai, bi calculated from raw scores Ai, Bi, of sample size n, the correlation coefficient is calculated as follows: 

(W) 

(V

) 
(U) 
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where di= ai - bi  is the difference between ranks.  

A factor is considered significant only if its significance level is below 0.05 and the coefficient values exist between 1 

(perfectly positive correlation) and -1 (perfectly negative correlation). 

2.3.2 Extreme machine learning  

The ELM was proposed by Huang et al. (2006), and is implemented as a single-layer, feed-forward network (SLFN) 

having N hidden neurons and arbitrarily chosen input weights and hidden layer biases. In this scheme, a better performance 

generalization can be obtained with a learning speed thousands of times faster than traditional learning algorithms, such 

as back propagation (Huang et al., 2006). This method overcomes the difficulty of tuning all parameters in traditional 

learning algorithms, and the problem with gradient descent based methods converging to local minima and iterative steps 

for better performance.  

For a given training set {( , ) | , , 1.... }
n m

i i i ix t x R t R i N     , the learning algorithm is executed in three steps. Initially, 

the input weight wi and bias bi are randomly assigned with the size of the matrix depending on the chosen number of 

hidden neurons and the number of variables. The randomized weight and bias together with a user-selected activation 

function are used to construct a hidden output matrix H, and finally, the output weight is determined as the smallest norm 

least square solution ̂  given by 

                                                               
†ˆ H T                                                                                 (2.8) 

 

where 
†H  is the Moore-Penrose generalized inverse of the hidden layer output matrix: 
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                   (2.9) 

where g(x) is the activation function, and N is the hidden neuron number. 
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2.3.3 Logistic regression    

Logistic regression has been widely used to estimate the relationship between landslide occurrence or non-occurrence and 

a set of conditioning factors (Ayalew and Yamagishi, 2005; Yesilnacar and Topal, 2005; Van Den Eeckhaut et al., 2006). 

This relationship is determined using the log (odds) change of the dichotomous dependent variable, and the resulting 

probability will always lie between 0 and 1. Though no assumption regarding the normal distribution or homoscedasticity 

is needed, a linear relationship is assumed between the log odds and independent variables. This linear combination is 

expressed as  

        0 1 1 2 2 3 3 n nY A A A ...... A                                      (2.10) 

where Y is the logit or log (odds), and (β0,,β1,β2,β3 ….,βn) are the coefficients indicating the influence of independent 

factors (A1, A2,A3,…., A4 ) on the logit Y.  

The coefficients are determined using the maximum likelihood criterion, derived from a probability density function of 

the dependent factor. The critical points of the log likelihood function and its maximization is conducted by taking the 

first and second derivative and solving the resulting non-linear set of equations iteratively. Finally, the probability of the 

landslide occurrence (PLC) in terms of the calculated logit is given by  

                
LC -Y

1
P =

1+e
                 (2.11) 

 

The importance of the factors cannot be directly determined using the coefficients from SPSS because these are 

unstandardized values. Hence, the importance of the factors are calculated as follows: 

                                                                        s ES                                                (2.12) 

where βs is the standardized coefficient, β is the unstandardized coefficient, and SE is the standard error.   

  

2.3.4 Hybrid model algorithm 

The entire process of optimum conditioning factor selection for susceptibility mapping (Fig.2.4) is performed using the 

training dataset. The first stage of the scheme involves filter based screening of the entire twenty-three conditioning factors 

into two groups, i.e., relevant and irrelevant groups, where the factors are sorted according to correlation coefficient values 

in descending order. In the second stage, the hybrid algorithm conducts further factor assortment through two phases: In 

phase one, the backward selection based feedback loop of statistically relevant factors is used, and in phase two, the factor 

subset from phase one and the forward selection based feedback loop of irrelevant factors are used. 
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 In this scheme, phase two, which involves irrelevant factors, is considered because of the following conditions: (1) the 

possibility of omitting indiscernible but relevant features (Kira and Rendell,1992); (2) a feature that appears to be useless 

alone can contribute to significant model performance improvement when considered in combination with others (Guyon 

and Elisseeff, 2003; Xu et al., 2010); (3) the learning algorithm should not depend on biases in the selection of the optimal 

factor subset (Tang et al., 2014). In the initial step, all the factors considered in the relevant group are trained using ELM, 

and its performance is determined by calculating the AUC. In the subsequent steps, each of the lowest ranked factors are 

removed, and the performance of the new model is checked against the model built in the previous step. If the AUC value 

of the new model is higher than that of the previous one, then the new model is adopted, and the factor is removed; 

otherwise the factor is retained, indicating the importance of the factor. This process continues until all the factors in the 

relevant group are tested. Once the selection of best performing landslide conditioning factors are complete in the relevant 

group, phase two of the algorithm is set into motion. In phase two, a detailed study is performed to analyze whether adding 

irrelevant factors will improve the performance of the model. In this stage, the irrelevant factors are added in the forward 

direction, with utmost priority to the top ranked factors.  The difference between the former and the latter phases is based 

the direction of consideration of the factors in the feedback loop for model building and the relative importance ranking 

of the factors.  

Therefore, in this phase, the models are constructed by sequential addition of top-ranked factors and simultaneous 

performance control of the criteria, either the initial AUC (obtained from phase one) or those in previous step (if (AUC) 

previous > (AUC) initial). Consequently, if the performance of the model increases by the addition of the irrelevant factor, it is 

then retained; otherwise, the successively ranked factor is considered. The final susceptibility model selected at the end 

of the second phase is then validated using the testing dataset through the prediction rate curve (Chung and Fabbri, 2003, 

2005; Guzzetti et al., 2005; 2006).  



- 22 - 
 

 

Fig. 2.4. Algorithm for feature selection using the filter and the learning scheme (ELM). 

The connection weight matrices of input neurons to hidden neurons and hidden neurons to output neurons can be used to 

study the relative importance (RI) of the conditioning factors selected at the end of the second phase. The RI is estimated 

using Eq. (2.13) (Garson, 1991) to eliminate the random effect owing to randomly generated assignment to the hidden 

layer by normalizing the input-hidden layer weights. The relative importance is given as    
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                             (2.13) 

where RIi is the relative importance of the input conditioning factors i for the output, n is the number of hidden neurons, 

m is the number of input neurons, WIH is the synaptic weight matrix between the input and hidden layers, and WHO is the 

synaptic weight matrix between the hidden and output layers. 
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2.4 Hybrid Model Implementation 

2.4.1 Preparation of training and validation datasets          

Conditioning factors, such as elevation, aspect, slope, profile curvature, plan curvature, TWI, distance from streams, SPI, 

STI, SEI, SRR, and TRI, were extracted from digital elevation models at 10-m resolution in ArcGIS 10.1. Additionally, 

other explanatory factors, such as soil type, geology, soil depth, soil density, humidity, topography, total  curvature, and 

drainage, were extracted from a forestry map developed by the Korea Forest Service (KFS) at a scale of 1:25,000. The 

study area was divided into 367,856 grid cells considering a 10-m resolution in ArcGIS 10.1, and the dimensions of the 

raster dataset were 664 rows by 554 columns. The landslide inventory primarily consists of two main typologies: (i) flow 

type landslides, which are rapid moving masses through first- and second-order downhill drainages, and (ii) slides, which 

mainly occur on open hill-slopes with short travel distances. The landslide and stable locations were mapped as points in 

single grid cells to avoid issues related to the assumption of independence of factors in multivariate models because of 

spatial autocorrelation and errors from landslide boundary mapping (Van Den Eeckhaut et al., 2009). To avoid the class 

imbalance and sampling bias caused by a large area of negative samples (stable areas) in comparison to positive samples 

(landslide/unstable areas), an equal number of samples in both classes were considered. The negative samples or stable 

points were extracted by creating a buffer zone of 50 m around the landslide-affected area, as seen in Fig.2.5 (Dai and 

Lee, 2002; Yesilnacar and Topal, 2005), and then stable data points outside these buffer zones were selected at random. 

Thus, 163 stable and unstable points were selected respectively, with 87% of the total dataset being used for training and 

13% being used for validation of the trained susceptibility model. The whole mountain was divided into training and 

validation zones, as shown in Fig.2.6, from which the training and testing datasets were extracted (Chung and Fabbri, 

2003). The continuous and discrete conditioning factor datasets, respectively corresponding to the selected landslide and 

non-landslide points, were extracted to a csv format using the spatial analyst tool in ArcGIS 10.1, and normalized between 

-1 and 1 to account for the difference in scales of the conditioning factors.  
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Fig.2.5. Sampling of unstable and stable points. 

 

Fig.2.6. Satellite imagery and overlay with landslide locations (Training and testing dataset). 

 

2.4.2 Selection of the best predictor model 

As discussed in section 2.2, initially 23 conditioning factors assumed to have significant influence on landslide initiation 

were selected from the literature. The correlation analysis was conducted using IBM SPSS Statistics 23, a statistical 

software package with several built-in statistical techniques for analytic processes, from data preparation to exploring 

relationship among variables, trend identification and forecasting.  
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Table 2.2 shows the Spearman’s correlation values and their significance, indicating that only eleven factors, namely, 

elevation, total curvature, soil depth, geology, TRI, distance from stream, STI, SPI, slope, plan curvature, and soil density, 

are considered statistically significant (p<0.05) and, hence, relevant. The selected factors were sorted and ranked from 

high to low based on their correlation coefficient values. Elevation is the most influential conditioning factor, with a 

coefficient of 0.401, followed by total curvature (0.274), and soil depth (-0.214). The negative correlation for the soil 

depth and soil density indicates that areas with shallow soil depth and loose soils are highly susceptible to landslides.  

Table 2.2: Correlation of explanatory variables with landslide index 

Factors 
Mann-Whitney U 

(χ2) 

Sig. 

(2-tailed) 

Correlation 

Coefficient 

Significance 

level 

Elevation 5336.0 0 0.401 0 

Total 

curvature 
6954.5 0 0.274 0 

Soil depth 7515.0 0 -0.214 0 

Geology 8302.0 0.001 0.191 0.001 

TRI 7759.0 0.001 0.190 0.001 

Distance 

from stream 
8003.5 0.003 -0.178 0.003 

STI 8013.0 0.005 0.168 0.005 

SPI 8030.5 0.005 0.167 0.005 

Slope 8209.5 0.011 0.151 0.011 

Plan 

curvature 
8585.0 0.033 0.127 0.033 

Soil density 8837.0 0.043 -0.121 0.043 

TWI 8842.0 0.108 0.091 0.108 

Topography 9326.0 0.321 0.059 0.322 

Aspect 9324.0 0.353 0.055 0.354 

Drainage 9388.5 0.365 -0.054 0.366 

Soil texture 9459.0 0.403 -0.050 0.404 

Soil type 9512.0 0.481 -0.042 0.482 

SRR 9467.0 0.490 0.041 0.431 

Profile 

curvature 
9516.0 0.524 -0.038 0.525 

Forest 

density 
9653.0 0.563 -0.035 0.564 

     

 

 Table 2.2 

(continued) 
  

Factors 
Mann-Whitney U 

(χ2) 

Sig. 

(2-tailed) 

Correlation 

Coefficient 

Significance 

level 

Weathering 9887.5 0.930 0.005 0.330 

SEI 9926.0 0.983 0.001 0.383 
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Once subsets of features were developed using the methodology previously described (section 2.3), extreme learning 

machine is used to construct models. The selection of the best predictor model is performed by considering the AUC 

through plotting the landslide distribution percentage against the landslide susceptibility class of the training data. The 

input used in model development using ELM is the training data, testing data, number of hidden neurons and the type of 

activation function (sigmoid, sine, or hard limit). The selection of the optimal number of hidden neurons was conducted 

by setting up a group of neurons in the range of 5 to 150 and examining the RMSEs of both the training and testing data. 

Figure 2.7 illustrates that the RMSE values for training data decreases with the increasing number of neurons; the RMSE 

of the testing data is initially very close to that the training data, but starts diverging rapidly after 20 (Figs.2.7A to 2.7J) 

and 30 (Figs.2.7K to 2.7L), indicating overfitting. Consequently, the search for an optimal number of neurons was 

conducted between the minimum number of neurons and maximum threshold of 20 or 30, and finally the one with the 

least RMSE for both training and testing data was selected.  
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Fig. 2.7. Variation of RMSE versus number of neurons for training and validation data to select the optimal hidden 

neurons for the groups (Cont.)
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Fig. 2.7. Variation of RMSE versus number of neurons for training and validation data to select the optimal hidden 

neurons for the groups. 

Table 2.3 shows the optimal number of neurons contributing to the lowest values of training as well as testing RMSE 

for the two phases. In phase one, the algorithm initially considers all eleven significant factors, and uses ELM to train 

and identify the optimal fifteen hidden neurons that minimize the training and testing error to 0.4308 and 0.4203, 

respectively, and the performance index AUC initial is set to 68.3%. In the next step, the exclusion of the conditioning 

factor of soil density (-0.121, p=0.011) increases both the training RMSE (0.4532) and testing RMSE (0.4436), and 

thus decreases the AUC obtained from the success rate curve to 68%, as seen in Table 2.4. A comparison of new and 

h 
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initial AUC by the feedback loop shows a decrease in performance, prompting the factor to be retained, and the 

performance criterion is not updated. In steps 5 and 10, the exclusion of SPI and soil depth shows a modest increase 

in the performance relative to the preceding steps by 3.56% and 0.25%, respectively, but the performance is still lower 

than that of AUCinitial, leading to the inclusion of the factors. Thus, in phase one, a general trend of performance 

decrease is observed owing to successive removal of relevant factors in all of the 11 steps. Hence, all relevant factors 

are considered during the transition to phase two along with the performance criterion AUC value of 68.3%. 

Additionally, though Group 1 uses only the statistically important variables that are related to the dependent variables, 

it still gives a very low training performance of 68.30%, suggesting the possible contribution of factors classified as 

irrelevant to increasing the model prediction performance. 

In the second phase, low-ranked, statistically non-significant factors are added one by one using a forward search 

scheme.  However, the selection of a model only based on the RMSE value can be misleading, and the same is noted 

for the application of AUC in Table 2.4. It is evident from Table 2.4 that Group 2 and Group 3 in phase two, though 

not showing the lowest training or testing RMSEs, yield the best performances. Similarly, Groups 7, 11 and 12 and 

Groups 6 and 8, with the lowest training and testing RMSEs, respectively, have lower AUC values in comparison to 

Groups 2 and 3. For Group 2, the addition of TWI increases the performance of the model by 9.3%; thus, by retaining 

the parameter, the AUC criterion in the algorithm increased to 77.6%. In the next step, topography is added to the        

Group 3 model and is trained using ELM with a hidden layer of 20 optimal neurons, giving an AUC value of 85%. 

Therefore, the algorithm retains the factor and updates the AUC criterion, yielding the best predictor model, with 

thirteen conditioning factors. A further assessment demonstrates a drastic decrease in the performance, signifying the 

irrelevance of the following factors: aspect, drainage, soil texture, soil type, SSR, profile curvature, forest density, 

humidity, weathering and SEI. Therefore, to develop a susceptibility model for Mt. Woomyeon, the conditioning 

factors in subset Group 3 of the second phase are used. The weight and bias between the hidden and output layers 

obtained after the training of the Group 3 predictor model are shown in Table 2.5.  

Validation of the selected model is performed using the prediction rate curve, which has a high AUC of 0.89, as seen 

in Fig. 2.8A. The figure also shows the success rate curve with a high AUC of 0.85, which along with RMSE was 

concurrently used in the hybrid feedback scheme.  

Many researchers have divided the susceptibility map histogram into different categories based on expert opinions or 

using automated classification systems, such as quantiles, natural breaks, equal intervals and standard deviations 
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(Guzzetti et al., 1999; Lee and Min, 2001; Dai and Lee, 2002; Ayalew and Yamagishi 2005). For a given histogram of 

susceptibility weight, the following classification schemes can be used in ArcGIS 10.1: (i) the equal interval scheme, 

which divides the data into equal classes, with the probability of some classes being zero; (ii) the quantile scheme, 

which distributes an equal number of features to each class, leading to some classes having a wide range of values and 

the same values falling into different classes; (iii) the standard deviation scheme, which creates classes by using the 

standard deviation from mean values under the Gaussian distribution constraint; (iv) the natural breaks scheme, which 

creates classes by grouping similar values and selecting boundaries with large jumps in data values.  

The histogram in Fig. 2.9A shows the distribution of landslide susceptibility values with its mean and standard 

deviation. However, the non-normal distribution of the susceptibility data, tested using the Kolmogorov-Smirnov (K-

S) test, renders only the natural breaks (jenks) as the best scheme for classification. The landslide susceptibility weight 

map illustrated in Fig. 2.9B was reclassified using the jumps in data values at -0.0319, 0.2272 and 0.5004 into four 

hazard classes of low, moderate, high, and very high, as in Fig. 2.9C.  
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Table 2.3: Final number of hidden neurons selected for each group 

 

Group 

Number 

of 

variables 

Activation function 
Optimal number 

of neurons 
Training RMSE Testing RMSE 

PHASE1      

1 11 Sigmoid 15 0.4308 0.4203 

2 10 Sigmoid 10 0.4532 0.4436 

3 10 Sigmoid 10 0.4985 0.4936 

4 10 Sigmoid 15 0.4863 0.4789 

5 10 Sigmoid 15 0.4798 0.4769 

6 10 Sigmoid 20 0.4621 0.4532 

7 10 Sigmoid 20 0.4652 0.4551 

8 10 Sigmoid 20 0.4852 0.4462 

9 10 Sigmoid 15 0.4513 0.4510 

10 10 Sigmoid 20 0.4766 0.4701 

11 10 Sigmoid 20 0.4666 0.4585 

12 10 Sigmoid 20 0.5239 0.4965 

      

PHASE2      

1 11 Sigmoid 15 0.4308 0.4203 

2 12 Sigmoid 20 0.4251 0.4100 

3 13 Sigmoid 20 0.4286 0.4210 

4 14 Sigmoid 14 0.4414 0.4278 

5 14 Sigmoid 20 0.4292 0.4131 

6 14 Sigmoid 20 0.4272 0.3896 

7 14 Sigmoid 14 0.4244 0.4291 

8 14 Sigmoid 15 0.4276 0.4043 

9 14 Sigmoid 15 0.4458 0.4747 

10 14 Sigmoid 20 0.4278 0.4355 

11 14 Sigmoid 30 0.4170 0.4521 

12 14 Sigmoid 30 0.4222 0.4476 

13 14 Sigmoid 30 0.5901 0.4877 
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Table 2.4: Algorithm phase and selection of optimal conditioning factors 

   Phase Group Variables 
Removed/ 

added 

Training 

model based 

AUC (%) 

1st phase Group 1 All(significant)  68.30 

Backward  

Elimination 

scheme 

Group 2 Soil density No 68.00 

 Group 3 Plan curvature No 62.00 

 Group 4 Slope No 61.80 

 Group 5 SPI No 64.00 

 Group 6 STI No 63.50 

 Group 7 Distance from stream  No 61.30 

 Group 8 TRI No 61.54 

 Group 9 Geology No 60.85 

 Group 10 Soil depth No 61.00 

 Group 11 Total curvature No 60.96 

 Group 12 Elevation No 60.12 

2nd phase Group 1 All (significant)  68.30 

Forward 

search scheme 
Group 2 TWI Yes 77.60 

 Group 3 Topography Yes 85.00 

 Group 4 Aspect No 53.37 

 Group 5 Drainage No 49.78 

 Group 6 Soil texture No 55.68 

 Group 7 Soil type No 52.56 

 Group 8 SRR No 56.37 

 Group 9 Profile curvature No 54.26 

 Group 10 Forest density No 59.65 

 Group 11 Humidity No 53.20 

 Group 12 Weathering No 56.05 

 Group 13 SEI No 51.00 

 

Table 2.5: ELM output weights and bias  

Weight 0.5584 -0.2714 0.0241 -0.7014 1.2635 0.6771 -0.434 -0.3253 -1.032 -0.4348 0.6661 

Bias 0.4517 0.6098 0.0594 0.3158 0.7727 0.6964 0.1253 0.1301 0.0923 0.0078 0.4231 

            

Weight  0.8303 -1.2799 1.8021 -2.4232 0.3641 -0.0329 -1.6116 1.89 0.796 

Bias 0.6555 0.7229 0.5312 0.1088 0.6317 0.1265 0.1343 0.0985 0.142 
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Fig. 2.8. Final landslide susceptibility model: (A) Success rate and prediction rate curve; (B) Relative importance of 

the final conditioning factors.           
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Fig. 2.9. Landslide susceptibility of Mt. Woomyeon: (A) Histogram; (B) Landslide susceptibility weight; (C) 

Landslide susceptibility levels. 

2.5 Discussion 

In this study, high values of AUC for the success and prediction rate curves point towards the high predictability of 

the developed susceptibility model. The susceptibility map predicts the following percentage of areas in each 

susceptibility class, as shown in Fig. 2.10: low (19.3%), moderate (29.2%), high (30.9%), and very high (20.6%).  

The percentages of training and testing data distributed in the susceptibility classes of the model are also shown in Fig. 

2.10. Approximately 98.68% of the total training landslides were distributed among the very high (70.92%) and high 

(27.66%) susceptibility classes, whereas only 1.42% fell within the moderate class. However, 86.36% of the total 

testing landslide data were classified within the very high susceptibility class, and the remaining 13.64% were grouped 

into the high susceptibility class.  

Using a two stage-hybrid model algorithm, thirteen factors, namely, soil density, plan curvature, slope, SPI, STI, 

distance from stream, TRI, geology, soil depth, total curvature, elevation, TWI, and topography, were selected as the 

most relevant factors in the study area. Adoption of this method helped in identification of the significant factors, 

some of which were initially classified as irrelevant for developing an optimized susceptibility map. The susceptibility 

model, consisting of eleven conditioning factors with high correlation values at the end of phase one, gave a low 

success rate curve AUC of 68.3%; in other words, there were conditioning factors that might have been unaccounted 

(C) 
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for in the model, and misclassified into the irrelevant subset. Thus, in the second phase, the addition of TWI and 

topography, with correlation values less than 0.1 (significance level, p >0.05), increased the success rate of the 

susceptibility map by 24.5%. In GIS-based landslide susceptibility research, the selection of conditioning factors 

depends on the correlation with landslide occurrence, study area representation, spatial variation and relevance (no 

double consequence effect in the final result) (Yalsin, 2008). Table 2.2 shows the chi-square values and their 

significance calculated using the Mann-Whitney U test for analyzing if a significant difference exists between the 

landslide and non-landslide sets of the landslide conditioning factors. The test suggests that a significant difference 

exists between the median of the sets for the following factors: elevation, total curvature, soil depth, geology, TRI, 

distance from stream, STI, SPI, slope, plan curvature, and soil density. The test result in Table 2 also shows no 

difference between the medians of the landslide and non-landslide sets for all of the factors in the irrelevant group 

because of insignificant chi-square values, and hence, these factors are not significantly correlated to the LI. The 

landslide susceptibility conditioning factors of aspect, profile curvature, SSR, SEI, drainage, humidity, soil texture, 

soil type, weathering, and forest density were classified as irrelevant and removed in the hybrid scheme because the 

factors as shown in Table 2.2 exhibited non-significant Chi-square values, suggesting that no median difference exists 

between the landslide and non-landslide sets, and they are correlated to the relevant conditioning factors. However, 

the irrelevant group contributes two factors, TWI and topography, to the final susceptibility model, with RIs of 8.3% 

and 1.3%, respectively. This behavior can be attributed to the fact that both topography and TWI are correlated to 

other relevant factors used in the final model. This unconditional independence yet conditional dependence between 

the explanatory and dependent factors can be explained using the suppression concept (MacKinnon et al., 2010). The 

two irrelevant factors, though not significantly related to the target, act as suppressors to increase the predictability of 

the overall model because their correlations to other relevant factors are statistically significant. The relevant 

hydrological factors used in the model, i.e., SPI and STI, are primarily related to the erosive effects of streams or the 

sediment transportation capability of a channel and are not used to assess the spatial variability of the moisture pattern 

influencing infiltration. The presence of a higher proportion of landslides in convex (31.21%) and parallel (46.81%) 

types of curvatures strongly implies that the matric suction reduction because of infiltration or an increase in 

groundwater table are likely reasons for these observed instabilities in addition to the erosion caused by runoff. The 

field monitoring of the matric suction adjacent to debris flow gullies shows a rapid decrease of suction in the colluvium 

during rainfall events, especially at a shallow depth of 30 cm, and slightly delayed effect at a depth of 1.3 m, indicating 
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favorable conditions for slope failure at shallow depths (Korean Society of Civil Engineers, 2012). Another 

phenomenon resulting in slope instability and thus, debris flow mobilization, is the influence of groundwater table 

variation, typically controlled by the topographic characteristics of the region. A field investigation after a debris flow 

event showed the exfiltration of groundwater from the bedrock underlying the initiated zone (Jeong et al., 2015), 

implying the effect of the groundwater table in the failure of the above colluvium layer and its liquefaction under rapid 

undrained conditions. Though, it can be argued that relevant factors statistically correlated to TWI or topography can 

also be used to indirectly consider these effects, the success rate curve AUC for the susceptibility model considering 

only relevant factors at the end of phase one suggests otherwise (Table 2.4). Hence, TWI and topography, which can 

be used to assess the spatial distribution pattern of moisture caused by rainfall, are thus considered analogous to the 

volume of water likely to infiltrate, and the groundwater table variation, respectively, and therefore, are assimilated 

with the hydro-morphological characteristics controlling the landslide initiating phenomenon in the region.  

 

Fig. 2.10. Area percentage of susceptibility classes. 
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Fig. 2.11. Landslides on Mt. Woomyeon: (A) Landslide scarp; (B) Debris flow gully (entrainment); (C) Ground 

water table underlying the removed colluvium; (D) Deposition zone (Korean Geotechnical Society, 2011). 

 

Figure 2.8B shows the relative importance (RI) of the thirteen factors with respect to landslide susceptibility in the 

Woomyeon area calculated using equation (2.12).  

The chart suggests that the most important topographic control is elevation with an RI of 21.24% followed by SPI, 

soil density, and slope, with RIs of 10.53%, 10.36% and 10.19%, respectively, indicating that the areas with 

geomorphological characteristics of large upslope areas and steep slopes at high altitude covered by loose, colluvium 

have significantly high probability for landslide (debris flows/slides) occurrence under heavy rainfall. The hourly and 

cumulative rainfall, shown in Fig.2.2B, was measured at the meteorological stations located at 87.1 m a.s.l and 35.5 

m a.s.l, respectively (Park et al., 2013), indicating that the actual rainfall was most likely higher from the development 

of convective systems caused by the orographic effect (Park and Lee, 2007). This orographic effect results in localized 

torrential rainfall, thereby controlling the spatial distribution of landslides. Elevation, with the highest RI in 

comparison to the other relevant factors, can also capture the localization effect in the rainfall distribution. The 

landslide susceptibility map in Fig. 2.9C therefore illustrates the considerable number of slopes closer to the peak of 

the mountain in all directions that are classified as high and very high susceptible zones. Additionally, the classification 
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of grid cells in the drainage channels and valleys as highly susceptible to landslides can be ascribed to the selection of 

four influential hydrological parameters, SPI, distance from stream, STI and TWI. These hydrological factors can 

primarily be used to identify the grid cells with predisposition to erosion risk, either at the channel head or along 

streams, with those at higher elevations having higher susceptibility to flow type landslides owing to intensified inertial 

and kinematic stresses. This result is consistent with that observed in the field after the 2011 event (Fig. 2.11B), 

wherein intense entrainment was observed in the channels under high erosion energy, instigating the debris flows. In 

comparison, a higher percentage of slopes in the southwestern, northwestern and far northeastern areas of the mountain 

show low to moderate susceptibility, which under the effect of heavy rainfall can be reach high or very high 

susceptibility levels with increased instability. 

The wrapper method utilizing the logistic regression was conducted for the selection of landslide conditioning factors, 

providing an optimized susceptibility map for comparison with the hybrid model. This analysis was performed using 

the same training and testing datasets in IBM SPSS Statistics 23 through binary logistic regression with the factor 

selection based on maximum changes in the likelihood ratio. The reliability test for the selected model with a set of 

fifteen conditioning parameters was performed using the Omnibus and Hosmer and Lemeshow goodness-of-fit 

statistics test by calculating the Chi-square value and its significance (Table 2.6B). The Omnibus test gives the model 

Chi-square value of 138.588, with a significance of < 0.05, suggesting that the relationship between the dependent 

variable and the subset of conditioning factors is significant.  The Hosmer and Lemeshow goodness-of-fit statistic, a 

measure of the correspondence between the actual and predicted values of the dependent factors, gives a Chi-square 

value of 10.077 and a significance of 0.260.  Thus, a goodness-of-fit statistic with a value > 0.05 indicates a close 

correspondence between the predicted landslide susceptibility weight and the actual landslide susceptibility weight, 

i.e., a good model fit.  Additionally, a check for numerical problems in the model was conducted by checking if the 

standard error (S.E.) was > 2 or had unusually large B coefficients. Table 2.6A shows that all the conditioning factors 

have S.E. < 2, and no inherent numerical errors in the model existed.  

Using the coefficient values of the fifteen factors, a landslide susceptibility map was developed, as shown in Fig. 

2.12A, and the validation was performed using the AUC of the success rate and prediction rate curves. Figure 2.12B 

demonstrates the success and prediction rate curves and the corresponding AUC values. Although a classification 

accuracy of 79.4% is obtained, considering 0.50 as the cutoff, the success rate curve gives an AUC of only 69.19%, 

and an even lower AUC value of 56.19% for the prediction rate curve. The backward conditional feature selection 
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method selected six factors, namely, forest density, humidity, profile curvature, SEI, soil texture, and weathering, all 

of which are deemed as irrelevant using the hybrid algorithm implemented in this study. Though the same dataset was 

used in both methods, different subsets of conditioning factors were selected, indicating the importance of the factor 

selection methodology in terms of the predictive quality of a susceptibility map. Thus, a hybrid scheme using a filter 

and wrapper model as a coupled system, similar to the method implemented in this study, helps in objective selection 

of conditioning factors, leading to superior landslide susceptibility determination.  

 

Table 2.6: (a) Coefficients of the selected landslide susceptibility model using logistic regression in SPSS 

Coefficients B Standard error Coefficients B Standard error 

Total curvature -0.947 0.385 
Profile 

curvature 
0.020 0.012 

Soil density -1.798 0.485 SEI 0.019 0.010 

Distance from 

stream 
-0.390 0.129 Slope 0.030 0.018 

Elevation 0.017 0.004 Soil texture 0.969 0.831 

Forest density 0.957 0.675 STI -0.009 0.016 

Geology 1.528 0.616 Topography -0.777 0.524 

Humidity 2.138 0.714 Weathering -3.731 1.225 

Plan curvature 0.031 0.014 Constant 1.343 2.777 

 

 

 

 

(b) Test for factor significance and goodness-of-fit  

Type χ2 
Significance 

level 

Omnibus test 138.588 .000 

Hosmer and 

Lemeshow test 
10.077 .260 
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Fig. 2.12. (A) Logistic regression-based susceptibility map; (B) Validation curve for the logistic regression-based 

susceptibility map. 
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2.6 Conclusions  

Many previous studies have focused on either using different supervised learning schemes with a fixed set of factors 

and selecting the best performance model or using filter models to generate a subset of relevant factors. When using 

the same dataset for creating a landslide susceptibility model through different learning algorithms or filter models, 

diverse factors will be selected each time, as observed from the comparison of the hybrid and logistic regression 

models, thereby indicating the importance of the methodology under consideration. In addition, it is shown in this 

study that only using the set of relevant factors selected through initial screening does not always provide the best 

susceptibility model, and the selection of factor subsets to train among 2n number of subset combinations (more than 

eight million combinations considering twenty-three factors) or choosing to train all the possible combinations is not 

economically or computationally efficient. This research is an attempt to shed light on the determination of the best 

subset of factors from numerous possible combinations using an objective general hybrid framework.  A two-stage 

hybrid algorithm was devised to select the optimal subset by first implementing a filter approach, using the Spearman’s 

correlation, for the initial partitioning into relevant and irrelevant factors. The feedback-controlled scheme is further 

developed in two phases, the first of which is conducted to check for redundancy among the relevant subsets through 

backward substitution, and the latter is conducted through a forward search scheme, effectively screening for relevant 

features among the initially categorized irrelevant factors. The results showed that thirteen factors, namely, soil density, 

plan curvature, slope, SPI, STI, distance from stream, TRI, geology, soil depth, total curvature, elevation, TWI, and 

topography, are the most relevant factors for Mt. Woomyeon. TWI and topography, though considered irrelevant, were 

used in the model as suppressors, and can explain the effect of infiltration and groundwater table characteristics 

inducing slope instabilities, which may mobilize debris flows. The landslide susceptibility map developed using the 

hybrid model in comparison to that developed by the wrapper model gave the best performance, using a lower number 

of factors with a success rate and prediction rate AUC of 85% and 89%, respectively. The implemented scheme 

therefore provides a systematic approach to rank and select the relevant conditioning factor subsets, and the resulting 

high performing landslide susceptibility map can be used for hazard assessment by linking it with the temporal 

probability. 
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Chapter 3. Extreme rainfall index and Dynamic hazard index: Approach 

for temporal and hazard assessment for extreme rainfall 

induced landslide at large scale 

 

 

3.1 Introduction 

Extreme rainfall events have become an increasing component of the annual precipitation in South Korea (Choi, 2004). 

The annual precipitation during the period of 1973–2005 mainly occurred during summer (monsoon season) and was 

characterised by an increase in the frequency and intensity of extreme precipitation (Jung et al., 2011). Extreme-

rainfall-induced landslides are one of the most dangerous gravity-induced surface processes, and they cause severe 

damage to dwellings, roads, and other lifelines. Destructive debris flows mobilized from shallow landslides are 

generally the most common and widespread. About 70% of the Korean peninsula is covered with mountains with soils 

formed from in situ weathering of granite and gneiss. Shallow landslides are typically 1–3 m deep and often occur at 

boundaries between the colluvium and the solid underlying parent rock (Salciarini et al., 2008). In most parts of Korea, 

shallow landslides are characterized by shallow failure surfaces of 2–3 m depth that develop parallel to the original 

slope (Kim et al., 2004). Due to the mountainous terrain with a shallow layer of colluvium and increased annual 

precipitation, landslides have proven a hazard across most of the country. The socio-economic impact, moreover, has 

become much higher than before because of the increased population levels in the hazardous zones. Hence, there is a 

pressing need for risk mitigation through structural counter-measures, or through alternative cost-effective means like 

early warning systems, especially in areas where slope stabilization is not possible. The implementation of an early 

warning system over a large area requires a landslide hazard technique able to distinguish landslide and non-landslide 

areas when they are subjected to extreme rainfall. Moreover, they must use parameters that are easy to obtain, and that 

also allow quantification of the uncertainties involved.  

Assessment of landslide hazard is usually stated as the probability of a landslide in a specified period of time and in a 

given area (Varnes, 1984; Van Westen et al., 2006). Thus the estimation of hazard usually needs a spatial probability 

definition of “where” it occurs using predisposition factors, and a temporal probability definition for “when” or how 

frequently it occurs, considering the trigger factors. While predisposition or preparatory factors are assumed not to 

evolve with time, but to be spatially variable, the trigger factors can vary both temporally and spatially. However, due 

to the difficulty in capturing the spatial variability of the trigger factor, rainfall in this case, owing to the low resolution 
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of the rain gauge grid (too few locations), only its temporal variability is considered. In the literature, temporal 

probability was estimated by considering the annual probability of rainfall events that would exceed the rainfall 

threshold known to cause landslides. The regional variability of the thresholds was also considered during preparation 

of a different threshold for each region. Thus, the effect of soil properties on surface water infiltration behavior was 

considered implicitly. However, it is difficult to obtain sufficient spatially distributed landslide occurrence data in each 

region to establish the thresholds. While the use of a physically based approach in identifying the critical rainfall 

through infiltration models are the most desirable, the difficulty in estimating a large number of soil parameters, and 

their validation, makes this approach impractical for real, large-scale applications. Therefore, a simple statistical model 

called “Extreme Rainfall Index” (hereafter, ERI) was developed to overcome the above mentioned difficulties through 

explicit consideration of soil properties, storage capacity, and permeability; along with the rainfall parameters, for the 

assessment of temporal probability. The index which gives the temporal probability can thus be further combined with 

the spatial probability for hazard assessment. Thus, the resulting hazard, which evolves with temporal variation leading 

to spatial distribution of landslides, is quantified using an index termed the Dynamic Hazard Index (DHI). This index 

in conjunction with real-time rainfall data could be used in an early warning system on a regional scale.  

3.2 Study area and database development 

The ERI was developed using data obtained from Gangwon Province, which is located in middle-eastern part of the 

Korean peninsula. It covers an area of 20,569 km2 (37°02′ – 38°37′ N and 127°05′ – 129°22′ E). The Taebaek 

Mountains, which occupy a high percentage of the area, have gentle slopes on their east side, but steep slopes on their 

west side. While the eastern regions receive annual rainfall of 2058 mm, the western regions receive about 1690 mm. 

Elevations greater than 500 m above sea level occur in about 51.1% of the total area. The major geological features in 

this province are Archean to Proterozoic age metamorphic rocks, and foliated granite from the Jurassic age.  

Another study area, the Deokjeok-ri Creek located in the northeastern part of Korea (Inje County, Gangwon Province) 

was selected for development of the susceptibility and hazard map. The study area (38°04′07″ – 38°05′42″ N and 

128°11′11″ – 128°18′00″ E) is surrounded by steep mountains and occupies 33.4 km2. The area was subjected to 

extreme rainfall in July 2006 (Fig.2.13), resulting in numerous landslides and debris flows that resulted in the deaths 

of 17 people. The geology in the area consists of gneisses from the Precambrian era and granites from the Mesozoic 

era (Pradhan and Kim, 2014).  
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Fig. 3.1. Study area for ERI estimation and rainfall gauge distribution (Gangwon Province). 

 

 

Fig. 3.2. Study area for spatial assessment (Gangwon Province). 
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3.2.1 Database for temporal assessment 

3.2.1.1 Database for ERI model development 

The database for the temporal assessment model was developed using landslide data from Gangwon Province. The 

temporal landslide, and corresponding geotechnical soil data, were obtained from literature review of case studies in 

journals and reports. A total of 132 cases for both landslides and non-landslides were collected and 10% of the total 

data was used for validation of the model. The landslide inventory for Gangwon Province covered the interval 1995–

2013. For the study area, the hourly rainfall data were collected from rainfall gauges in the landslide occurrence area. 

The automated rainfall gauges were installed and operated by the Korean Meteorological Center, with rainfall data 

after 2006 available for free from the organization website (http://www.kma.go.kr), and the data before 2006 

purchased from the organization. Figure 3.1 shows the location of rainfall gauges throughout Gangwon Province.  

 

 

Fig. 3.3. Continuous rainfall resulting in landslides during 1995-2013 in Gangwon 
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Fig. 3.4: Average monthly rainfall during 1990-2012 in Gangwon 

 

Most of the landslides occurred between July and August during or after continuous rainfall greater than 150 mm (Fig. 

3.3). This is evident from Fig. 3.4, which shows the highest average monthly rainfall in July and August for the years 

1990–2012.  

Different rainfall factors, like daily rainfall, maximum hourly intensity, continuous rainfall or antecedent rainfall have 

been considered by researchers. The selection of rainfall factor type for temporal assessment prior to the landslide 

hazard estimation, depended on the availability of rainfall data and on the influential failure mechanism being 

considered. Although landslide initiation in Korea is mainly the result of wetting-depth progression due to infiltration 

of rainfall (Kim et al., 2004), there is also evidence of other contributing mechanisms like the rise of groundwater, or 

erosion due to surface runoff. In this work, the model for landslide temporal evaluation considered rainfall factors 

including maximum hourly intensity, continuous rainfall, and antecedent rainfall (the prior 3, 5, 10, 15, 20, 25, and 30 

days).  
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Fig. 3.5: Continuous rainfall versus maximum hourly intensity for landslide events 

 

Figure 3.5 plots the maximum hourly intensity versus the continuous rainfall for the landslide and non-landslide events 

in Gangwon Province. As shown in the figure, the continuous rainfall factor can discriminate between non-landslide 

and landslide-causing rainfall, unlike the intensity factor, which lacks sufficient delineation ability and thus leading to 

the drop of the latter as an independent factor for the temporal assessment. Another rainfall factor, the antecedent 

rainfall, plays an important role in triggering landslides by decreasing soil suction and influencing the ground water 

levels (Guzzetti et al., 2007). Studies conducted by Govi et al. (1985), Kim et al. (1991), Crozier (1999), De Vita 

(2000), Chleborad (2003), Heyerdahl et al. (2003), Aleotti (2004), Cardinali et al. (2006), and Tien Bui et al. (2013) 

suggested the significance of 60 days, 3 days, 10 days, 1 to 19 days, 18 days, 4 days, 7 10 and 15 days, 3-month or 4-

month and 15 days, respectively. This difference in number of days selected can be attributed to the regional variability 

of geotechnical, climatic, and morphological characteristics along with the incompleteness of the landslide inventory 

(Tien Bui et al., 2013; Guzzetti et al., 2007). In order to determine the appropriate number of days among the six 

antecedent rainfall intervals mentioned earlier, correlation analysis using Pearson’s correlation analysis in IBM SPSS 

statistics 23 was carried out among the landslide and non-landslide events, as shown in Table 3.1 (Zezere et al., 2005). 

From the analysis, it was observed that the antecedent rainfall over 10 and 15 days had the highest correlation values 

(0.856 and 0.855, respectively). However, using each of the six antecedent rainfall factors for model development 
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through logistic regression indicated that only 5 and 20 days prior rainfall gave a reliable model (standard error < ±2). 

Therefore, the final ERI model used the antecedent rainfall of 20 days since it provided the higher classification 

accuracy (better than 5 days).  

Table 3.1: Correlation analysis for antecedent factors  

Antecedent rainfall 

types 
ERI 

3 days 0.581** 

5 days 0.790** 

10 days 0.815** 

15 days 0.812** 

20 days 0.694** 

25 days 0.796** 

30 days 0.772** 

 

It has been shown through experiments that development of the in-situ pore pressure due to infiltration is affected by 

the rainfall, soil, and morphological characteristics (Lim et al., 1996). The infiltration mechanism is controlled by the 

hydraulic properties, such as soil water characteristic curve (SWCC) and hydraulic conductivity (Cho and Lee, 2002). 

The SWCC expressing the relationship between the volumetric water content and matric suction is non-unique and 

varies spatially due to its dependence on the pore size and stress history (Fredlund and Xing, 1994). Storage capacity 

indicates the water content availability after the infiltrated water volume drains under the effect of gravity. The factor 

is determined by: 

                                                                   c cS F d                                                                               (3.1) 

where Sc is the storage capacity (mm), Fc is the field capacity defined as the volumetric water content at a matric 

suction of 30 kPa (mm3/mm3), and d is the soil depth (mm). 

In areas of high storage capacity, the antecedent rainfall will have a significant effect due to the presence of substantial 

infiltrated water, which drains slowly relative to a soil with lower storage capacity. Thus, the existence of a greater 

amount of water provides a favorable condition for landslide initiation with a lower increase in the supply of additional 

water by future rainfall. The storage capacity of a soil is influenced by the SWCC and soil depth. 

Meanwhile, the saturated hydraulic conductivity is an important factor influencing infiltration, and thus the stability 

of a slope. The saturated hydraulic conductivity, defined as the ease with which water passes through a medium, varies 

depending on the soil type and stress history (McKenna et al., 2011). Loose, unconsolidated soils mainly evolve into 
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slides or debris flows due to either high hydraulic conductivity that allows rapid infiltration of rainfall, or substantial 

entrainment under high velocity impacts of water streams called ‘the fire-hose effect’ (Johnson and Rodine, 1984), or 

both. However, although dense soils may evolve into slides or debris flows from initial slope instability due to a 

perched water table, to rise in the ground water table, or to surface runoff, the probability is significantly lower, in 

comparison to the former initial stress condition. Thus, the factors storage capacity and hydraulic conductivity were 

selected to incorporate the spatial variability of infiltration characteristics during an extreme rainfall event, on a 

regional scale.  

 

3.2.1.2 Database development method for ERI application for landslide hazard estimation in 

Deokjeok-ri 

As the first step to estimate the ERI for a given rainfall condition, the region under consideration could be divided 

using geological units obtained from a geology map, and any existing relationship between geology and the soil texture 

could be used. However, for this research the soil-type information in the study area was available. The soil properties 

used to calculate the ERI was estimated as follows:  

(i) Soil depth: The data for soil depth in the region was obtained from the National Academy of Agriculture 

Sciences and is as shown in Fig. 3.7. The soil depth in the area is shown to vary.  

(ii) Volumetric water content at −30 kPa: The volumetric water content at matric suction of 30 kPa was 

estimated by determining the SWCC using an ANN model developed for Korean soils using density, 

void ratio, and porosity, to develop the database (Lee et al., 2003). 

(iii) Permeability: Database development for permeability was done using a multivariate regression model 

developed for Korean soils using void ratio, sand percentage, and clay percentage as input parameters 

(Seok et al., 2015). 

(iv) Continuous and antecedent rainfall for the extreme rainfall event on July 2006 was obtained from the 

Korean Meteorological Center.  

The described process is shown in Fig. 3.6 using a flow chart. 
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Fig.3.6: General framework and database development method for ERI 

 

3.2.2 Database for landslide susceptibility model 

Based on a detailed literature review, we selected 11 explanatory variables and grouped them into three types, as seen 

in Table 3.2; i.e., morphological, hydrological, and forestry. 

The factors such as elevation, aspect, slope, total curvature, Topographic Wetness Index (TWI), Stream Power Index 

(SPI), Sediment Transportation Index (STI), internal relief (IR), distance to drainage, and drainage density were 

extracted from digital elevation models (DEM) at 10 m resolution in ArcGIS 10.1. The explanatory factor for forest 

type considered in this study was extracted from a forestry map (1:25,000) developed by Korea Forest Service. The 

study area was divided into 558,080 grid cells with 10 m resolution in ArcGIS 10.1, and the dimension of the raster 

dataset was 545 rows by 1024 columns. The landslide and stable locations were mapped as points in single grid cells 

to avoid issues related to the assumption of the independence of factors in multivariate models due to spatial 

autocorrelation, and of errors due to landslide boundary mapping (Van Den Eeckhaut et al., 2009). To avoid the class 

imbalance and sampling bias caused by a large area of negative samples (stable areas) in comparison to the positive 

samples (landslide/unstable areas), an equal number of samples in both classes were considered. Thus, 748 unstable 
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and stable points were selected, with 90% of the total dataset used for training and 10% used for validation of the 

trained susceptibility model. Because there were many cells with stable areas, several sets of non-landslide points 

were made and the best model was selected considering the ROC value. 

Table 3.2: Database for susceptibility map development in Deokjeok-ri Creek (Pradhan and Kim, 2014) 

Factor type Conditioning factors Scale Source 

Morphological 

 

1:10000 

 

 

Slope  

NGII 

Curvature  

Aspect 

Elevation 

Internal relief 

Hydrological 

 

1:10000 TWI 

Distance to drainage 

SPI 

1:10000 STI 

Drainage density 

Forestry Forest type 1:25000 Korea Forest Service 

 

3.2.2.1 Morphological type 

Many studies conducted over the world have shown that landslides are influenced by geomorphological features such 

as elevation, slope, aspect, total curvature, and internal relief. Elevation has been used as a conditioning factor in 

several studies and usually higher values are related to higher susceptibility due to variation in rainfall, vegetation, 

and potential energy (Pachauri and Pant, 1992; Ercanoglu et al., 2004). The factor was divided into six classes with 

maximum value of 1225 m (Fig.3.7a). Aspect is also considered an important variable (Carrara et al., 1991; Maharaj, 

1993; Jakob, 2000) because induction of landslides can be affected by exposure of the surface to wind and rainfall. 

Fig.3.7b shows aspect dividing the entire area into nine classes of flat (−1), north (337.5–360 and 0–22.5), northeast 

(22.5–67.5), east (67.5–112.5), southeast (112.5–157.5), south (157.5–202.5), southwest (202.5–247.5), west (247.5–

292.5), and northwest (292.5–337.5). Slope, defined as steepness of a surface, and its second-order derivative 

curvature, helps in understanding the characteristics of a basin for runoff and erosion processes. Curvature (convex, 

planar, or concave), by its effects on acceleration/deceleration and convergence/divergence of flow, can affect the 

susceptibility of a location to landslides (Kimerling et al., 2011). Thus, this study considers total curvature, which is a 
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general curvature of the surface rather than curvature along a line (Wilson and Gallant, 2000) (Fig. 3.7c). On the other 

hand, steeper slope angles are related to higher shear stress and Fig.3.7d shows the five classes of the raster, with third 

class (25–35) and fourth class (35–45), occupying 32.8 and 30.6% of the total area, respectively. 

IR also contributes to the landslide susceptibility and gives information regarding the potential energy for mass 

wasting. The factor was divided into four classes in this study as shown in Fig.3.7e. The conditioning factor can be 

calculated as 

                                                                max min

1

j

IR Z Z
m

                                          (3.2) 

where Zmax, Zmin and m are the maximum elevation, minimum elevation, and number of pixels in the catchment, 

respectively. 

3.2.2.2 Hydrological  

TWI defined based on assumptions of uniform soil properties and steady state condition (Conforti et al., 2014) can be 

used to describe the distribution pattern of moisture for potential infiltration volumes using three classes (Fig.3.7f) 

with higher values in natural drainage channels and the lowest values along the ridge and alluvial fans. The 

hydrological factor is calculated using Eq. 3.3 (Moore et al., 1991).  

                                                                  


 
  

 

A
sTWI ln

tan
       (3.3) 

where As is the specific catchment area and β is the local slope gradient measured in degrees. 

SPI, measuring the erosive power of the flow, increases with the surge in amount of water due to larger upslope area 

and slope (Florinsky, 2012). Fig. 3.7g shows higher erosive values existing along the drainage channels. It is given by 

(Moore et al., 1991), as  

                                                                        SPI A
s

                            (3.4)      

Another index called STI, a dimensionless term, is associated with sedimentation transport capacity and it is a 

nonlinear function of slope angle and specific catchment area (in turn affecting the discharge). Areas with high STI 

values correspond to greater susceptibility of the soil to erosive effects of overland flow, and thus contribute to 

landslides. STI values for Deokjeok-ri Creek shown in Fig. 3.7h are divided into four classes with lower values existing 

along ridges and flat areas. The equation is given using a combined slope factor and can be calculated as (Moore and 

Burch, 1986) 
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0.6 1.3A sinsSTI
22.13 0.0896




   
       

                                      (3.5) 

In the hill slope domain, the presence of a slope close to drainage divides and stream networks (Fig. 3.7i) can cause 

instability through erosion or saturation (Gokceoglu and Aksoy, 1996); hence, hill slope was considered a hydrological 

factor. The distance to drainage in the region was determined using the Euclidean distance tool in ArcGIS 10.1, and 

classified into five ranges (< 25 m, 25–50 m, 50–75 m, 75–100 m, and > 100 m). The susceptibility is also affected by 

the drainage density or streams, which can positively contribute to surface erosion (Pradhan and Kim, 2014). Figure 

3.7j shows the drainage density in four classes (< 5 m/m2, 5–10 m/m2, 10–15 m/m2, and > 15 m/m2). 

3.2.2.3 Forestry 

The characteristics of forest could also influence the spatial variability in landslide susceptibility through root 

reinforcements, reduction of soil erosion due to surface runoff, or increase in the driving stress from the additional 

weight of trees. The region under study is shown in Fig. 3.7k, and consists of six types of forests: cultivated (0.8%), 

Japanese larch (18.5%), Japanese red pine, Korean pine, Mongolian pine, and soil deposit (80.7%).  

  

  

(d) 

(f) (e) 

(c) 

(b) (a) 
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Fig.3.7: Landslide conditioning factors: (a) Elevation; (b) Aspect; (c) Total curvature; (d) Slope; (e) IR; (f) TWI;      (g) 

SPI; (h) STI; (i) Distance to drainage; (j) Drainage density; (k) Forest type ( Pradhan and Kim, 2014) 

 

 

(g) (h) 

(i) (j) 

(k) 
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3.3. Methodology  

3.3.1 Temporal assessment using ERI 

The proposed index to estimate a probability is assumed to be valid under the following two conditions. First is that, 

considering the principle of uniformitarianism, factors that triggered landslides in the past will also trigger landslides 

in the future, given the same conditions. Second, is that all landslides are considered as independent events. 

In this study, it was our intention to find a method to incorporate the rainfall effect in the identification of landslide 

hazard regions for the first stage in an early warning system. While the spatial probability is used to identify regions 

with high potential or likelihood for failure characterized by a given set of parameters, it does not represent the 

probability that a landslide may occur by the rainfall. Hence, ERI has been defined and used to estimate the probability 

of landslide occurrence under an extreme rainfall condition. 

In contrast to estimation of spatial probability, there has been less research into rainfall incorporation as an independent 

variable giving a probabilistic estimate. Most common approach has been through calculation of temporal frequency 

of landslide events (Keaton et al., 1988; Lips and Wieczorek, 1990; Coe et al., 2000; Crovelli, 2000; Guzzetti et al., 

2002; Jaiswal and van Westen, 2009; Ghosh et al., 2012). Most of these models attempt to predict “when” a landslide 

will occur by establishing the probability that landslide occurrence would exceed a rainfall threshold, because they 

are imperfect predictors of landslides (Chleborad, 2006). The incompleteness of landslide inventory prevents the direct 

calculation of temporal probability. Thus instead, a link between the landslide occurrence day and the rainfall is used 

to establish this probability. While some researchers used discriminant analysis to classify the landslide-causing 

rainfall (Ghosh et al., 2012) others used daily and antecedent rainfall in a bivariate linear relationship (Chleborad et 

al., 2006; Jaiswal and Van Westen, 2009). In the following methods, the temporal probability is obtained by using a 

Poisson’s distribution model during a period ‘t’ as shown below: 

                                                     
t/

[ ( ) 1] 1 [ ( ) 0] 1
L L

p N t p N t e


                                                              (3.6) 

where, [ ( ) 1]Lp N t   is the exceedence probability of one or more landslides during a time t and μ is the mean 

recurrence interval.  

Furthermore, researchers have developed I-D rainfall thresholds using logistic regression and a Bayesian approach. 

These thresholds using statistical approaches are objective and reproducible, while being able to quantify the 

uncertainties related to the quality of the rainfall data. However, none of these studies have considered the soil 
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properties in calculating the temporal probability, due to the difficulty in its estimation. Moreover, uncertainties will 

always remain in the prediction of landslide occurrence only using rainfall inventory, because there is no acceptable 

limit on the size of inventory to be collected or surety regarding the completeness of the inventory. Moreover, when 

using real-time rainfall data to assess the variation of hazard areas, the above stated methods are not warranted. Thus, 

in this study a probabilistic index was used to estimate the hazard related to varying rainfall, through consideration of 

soil properties that were estimated by a novel approach of database development for these soil properties.  

In this study a logistic regression model is used to estimate the conditional probability that the rainfall of a particular 

return period, for given soil characteristics in a region, could initiate a landslide. The logistic equation can be expressed 

as:  

                                                               
1

e

e

P(L | R,S )
log f(S,R) e

P(L | R,S )

 
  

 
                                                             (3.7) 

where Le is the landslide occurrence and, R and S are the rainfall and other spatial factors. 

  0 1 2

0 1 21
e

exp( R S )
P( L | R,S)

exp( R S )

  

  

   


    
           (3.8) 

where ( β0, ,β1 ,β2) are the coefficients indicating the influence of independent factors on the probability of landslide 

occurrence. 

3.3.2 Spatial assessment of landslides 

Logistic regression has been widely used to estimate the relationship between landslide occurrence or non-occurrence, 

and a set of conditioning factors (Ayalew and Yamagishi, 2005; Yesilnacar and Topal, 2005; Van Den Eeckhaut et al., 

2006). This relationship is determined using change in the log (odds) of the dichotomous dependent variable, and the 

resulting probability will always lie between ‘0’ and ‘1’. Although no assumption regarding normal distribution or 

homoscedasticity is needed, a linear relationship is assumed between the log odds and independent variables. This 

linear combination is expressed as  

                 0 1 1 2 2 3 3 n nY A A A ...... A                     (3.9) 

where Y is the logit or log (odds) , and ( β0, ,β1 ,β2 ,β3 ….,βn) are the coefficients indicating the influence of independent 

factors (A1, A2 ,A3 ,…., A4 ) on the logit Y.  
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The coefficients are determined using the maximum likelihood criterion, derived from the probability density function 

of the dependent factor. The critical points of the log likelihood function and its maximization are determined by 

taking the first and second derivative, and then solving the resulting non-linear set of equations iteratively. Finally, the 

probability of the landslide occurrence (PLC), in terms of the calculated logit, is given by  

             LC -Y

1
P =

1+e
           (3.10)  

3.4. Results and Discussion 

3.4.1 Extreme Rainfall Index 

The logistic regression analysis was performed on the training dataset using IBM SPSS Statistics 23. Table 3.3a shows 

the model descriptive values obtained from the logistic analysis. The reliability test for the selected model was 

performed using the Omnibus and Hosmer and Lemeshow goodness-of-fit statistics tests by calculating a Chi-square 

value and its significance (Table 3.3b). The Omnibus test gives the model Chi-square value of 103.095 with a 

significance of < 0.05, suggesting that the relationship between the dependent and the subset of conditioning factors 

is not by chance. The Hosmer and Lemeshow goodness-of-fit statistic, a measure of the correspondence between 

actual and predicted values of the dependent factors, gives a Chi-square value of 4.622 and a significance of 0.797. 

Thus, a significance of > 0.05 for this goodness-of-fit statistic indicates a close correspondence between the predicted 

landslide susceptibility weight and the actual landslide susceptibility weights, and therefore, a good model fit. Also, a 

check for numerical problems in the model was conducted by checking if the standard error (S.E.) was > ±2 or if there 

were unusually large, odd ratio coefficients. Table 3.3a shows that all the conditioning factors had S.E. < ± 2; thus 

there were no inherent numerical errors in the model. Finally, the ERI is expressed as, 

 

                         
20

20

xp(.02 .008 .002 .002 4.209)

1 xp(.02 .008 .002 .002 4.209)

s

s

E CR AR SC K
ERI

E CR AR SC K

       


        
                           (3.11) 

 

where CR is the continuous rainfall (mm), AR20 is the 20-day antecedent rainfall (mm), SC is the storage capacity 

(mm), and Ks is the permeability (mm/hr). 

The classification accuracy of the selected model calculated by the statistical software was 88.8%, considering a cut-

off value at 0.5.  
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However, the possibility of attaining different accuracy values over various cut-off values motivated the need to 

identify an optimal cut-off value either using methods such as cost benefit or Youden’s index; or by using ranking and 

lift-chart-based analysis. For evaluating the accuracy of both the training and testing datasets in this study, we used 

lift analysis, wherein the true positive values (landslide occurrence) were assigned to 10 bins with value between ‘0’ 

and ‘1’. Thus, instead of actually assessing if a certain ERI value is above or below an optimal threshold, the lift 

analysis method assigns a probability indicating the likelihood in which the predicted value belongs to the true positive 

class (Youden, 1950; Miha and Curk, 2006). Figure 8 shows the AUC value of 0.89 and 0.97 from the cumulative 

gains chart for the training and testing dataset respectively, implying that the model was robust and reliable with high 

predictive power. The histogram of the ERI values used for training and validation (Fig. 3.9) can be used to make ERI 

classes between ‘0’ and ‘1’ using the natural breaks method. 

 

Table 3.3: (a) Coefficients of the selected ERI model using logistic regression in SPSS;                                              

(b) Test for factor significance and goodness-of-fit 

 

 

Coefficients B Standard error 

Continuous rainfall 0.020 .005 

20 day antecedent rainfall 0.008 .008 

Storage capacity 0.002 .003 

Permeability -0.002 .004 

 

Type Χ2 Significance 

level 

Omnibus test 103.095 .000 

Hosmer and Lemeshow 

test 

4.622 .797 
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Fig. 3.8: Accuracy assessment using AUC of the cumulative gains chart  

 

Fig. 3.9: Distribution of ERI values for making probability levels  
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3.4.2 Landslide spatial assessment 

 

Another major component of the landslide hazard analysis, the spatial probability assessment, was determined by 

developing a landslide susceptibility model based on a logistic regression. As discussed in Section 3.2, initially 23 

conditioning factors assumed to have significant influence on landslide initiation were selected from the literature. A 

correlation analysis was conducted using IBM SPSS Statistics 23, a statistical software package with several built-in 

statistical techniques for analytic processes, from data preparation to exploring relationships among variables, trend 

identification, and forecasting.  

Table 3.4 shows the Spearman’s correlation value and its significance, indicating that 11 factors such as elevation, 

aspect, total curvature, distance to drainage, STI, SPI, slope, TWI, IR, drainage density, and forest type that were 

statistically significant (p < 0.05). These were also strongly correlated to the landslide index and, hence, relevant. It 

is also seen from the correlation analysis that elevation and IR are strongly correlated; hence, one of the two parameters 

could be excluded during the model building exercise.  

 

Table 3.4: Correlation of explanatory factors with landslide index 

 

Conditioning 

factor 

Landslide index 

Correlation 

coefficient 

Sig. 

Elevation -0.701** .000 

Aspect -0.091** .001 

Total curvature    0.045** .005 

Slope 0.586** .000 

TWI -0.137** .000 

STI 0.250** .000 

SPI 0.250** .000 

Internal relief 0.670** .000 

Distance to 

drainage 
-0.727** .000 

Drainage 

density 
0.696** .000 

Forest type -0.434** .000 

**Correlation is the significant at the 0.01 level (2-tailed). 



-62- 
 

 

 

Fig.3.10: Models and corresponding AUC for training datasets  

 

The identification of the optimal susceptibility map in the region was conducted using six models, with the first five 

models initially considering all eleven of the significant conditioning factors, and the last model considering only nine 

factors. All six of the models used different sets of non-landslide samples, selected at random. 

Figure 3.10 shows the variation of training accuracy using AUC values for six different models developed using the 

maximum likelihood ratio based on stepwise logistic regression. Models 2, 3, 4, and 5 were found to have very low 

AUC values, indicating poor fit to the training datasets. However, Model 1, with ten conditioning factors excluding 

SPI, showed sufficiently good fit, with S.E. < ±2 and a significant Chi-square value. However, the validation using 

lift analysis gave an AUC of about 66.13% inferring the predictive quality of the susceptibility model to be quite low. 

The susceptibility map development using Model 6 was carried out by neglecting the elevation factor due to its 

correlation with the internal relief. During its initial run through all the steps, this model gave a classification accuracy 

greater than 95%. However, upon closer examination of the coefficient values for the conditioning factors, it was 
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evident that the drainage density factor had an unusually high value of standard error (~ ±1308.2) and a coefficient 

value of 20.12. Hence, this conditioning factor was also discarded and a model with seven explanatory factors with 

extremely high training subset AUC (95.8) was chosen. Table 3.5-a shows the model descriptive values obtained from 

the logistic analysis. A reliability test for the selected model was performed using Omnibus and Hosmer and 

Lemeshow goodness-of-fit statistics tests by calculating Chi-square value and its significance (Table 3.5b). The 

Omnibus test gave the model a Chi-square value of 1283.897 with significance < 0.05, suggesting that the relationship 

between dependent and the subset of conditioning factors was significant, and thus not by chance. The Hosmer and 

Lemeshow goodness-of-fit statistic, which measures the correspondence between actual and predicted values of the 

dependent factors, gave a Chi-square value of 13.465 and significance of 0.097. Thus, the significance > 0.05 for this 

goodness-of-fit statistic, indicated a close correspondence between the predicted landslide susceptibility weight and 

the actual landslide susceptibility weights, indicating a good model fit. Moreover, Table 3.5a shows that all the 

conditioning factors had S.E. < ±2 and thus, no inherent numerical errors existed in the model. The selected model 

weights were then used to make the susceptibility map of Deokjeok-ri (Fig. 3.11a), and the susceptibility classes 

visualized in Fig. 3.11b were decided using the Natural breaks classification scheme in ArcGIS 10.1. Figure 3.12 

shows the high values of AUC (96 and 94%), obtained for the cumulative gain chart plotted using the training and 

validation datasets, respectively. Thus, a high performance susceptibility model including seven relevant conditioning 

factors was developed for Deokjeok-ri Creek (Inje).  

 

Table 3.5. (a) Model coefficients and (b) Reliability test 

 

Coefficients B 
Standard error Wald’s 

significance 

    

Aspect -0.277 .047 .000 

Total curvature -0.134 .130 .004 

Slope 0.402 .128 .002 

STI 0.237 .109 .029 

Internal relief 1.570 .171 .000 

Distance from drainage -1.129 .077 .000 

Forest type -0.801 .097 .000 

Constant 3.217  .000 
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(b) Test for factor significance and goodness-of-fit 

 

Type Χ2 Significance 

level 

Omnibus test 1283.897 .000 

Hosmer and Lemeshow 

test 
13.465 .097 

 

 

 

 

 

 

 

 

 

 
(b) 

(a) 
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Fig.3.11 (a) Landslide susceptibility weights for Deokjeok-ri Creek and (b) Landslide susceptibility class for 

Deokjeok-ri Creek 

 

Fig.3.12: Training and validation curves for accuracy assessment 
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3.4.3 Landslide hazard assessment using DHI 

 

A landslide hazard assessment was performed for the Deokjeok-ri region corresponding to the 2006 extreme rainfall 

event that occurred between 12 and 15 July 2006 using DHI. The permeability and storage capacity database for the 

Deokjeok-ri Creek region used in the temporal probability model was developed as described in Section 3.2.1.2. Figure 

3.13 shows the daily rainfall data of Deokjeok-ri Creek, for July 2006. The temporal probability (using the ERI) was 

calculated for five days i.e., 11th, 12th, 13th, 14th and 15th July. Through the consideration of the rainfall pattern over 

five days, it was the objective of the study to show that the ERI could be used to study the real-time spatial evolution 

of landslides. On the 11th July, with no continuous rainfall and antecedent rainfall of 160 mm, the ERI had values 

between 0.04 and 0.05. The distribution of ERI across the study area is mainly due to the spatial variability of Ks and 

storage capacity. Therefore, combining the ERI with the spatial probability shows the entire region to be classified at 

a very low DHI value between 0 and 0.25 as in Fig. 3.14a, due to the zero continuous rainfall. The commencement of 

rainfall event with continuous rainfall of 175 mm resulted in significant jump of the ERI value from 0.04–0.05 to 

0.65–0.7 (Fig. 3.14b), thereby increasing the % of area from very low (0–0.25) to high (0.65–0.9) level of DHI (Fig. 

3.15b). The rainfall on 12th July resulted in about 38.11% of the total area being classified to a high hazard level (0.65–

0.90), while about 42.44% as medium hazard, and 19.45% as low hazard level as seen in Table 3.6. It can also be 

observed from the figure that the ERI is highest at few isolated downslope areas in the north and south of the region 

(represented in yellow) and decreases towards the ridge at the upslope. This can be attributed to the permeability 

variation due to presence of sandy loam (low ERI), rocky loam and silty clay loam (high ERI) type of soils. However, 

under different rainfall conditions the pixels in that region has low DHI owing to the geomorphological conditioning 

factors, considered analogous to the soil strength characteristics. Frequency analysis of the top four influential 

conditioning factors identified in this study illustrates the following conditions for maximum number of landslides; 

IR> 20, distance to drainage <75 m, slope > 250 and STI < 80. Thus, the low DHI in the above mentioned area can be 

explained by the presence of, low value of IR, large distance from the drainage and low slope angles. The rainfall 

series advancing to the second day (13th July) drastically decreased to 15 mm, however increasing the ERI slightly by 

8.6% as shown in Fig. 14c. This small amount of rainfall transformed about 3.8% of area existing in both low and 

medium DHI levels to high (Fig. 3.15c). Third day of the extreme rainfall event brought in 75 mm of rainfall resulting 

in 32.84% of the area previously existing under high DHI level to be reclassified into very high failure probability. 

The regions, shown in red (Fig. 3.15d, Fig. 3.15e), indicates the very high (0.90-1.0) DHI level at which the slope 
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failure is imminent. A very high daily rainfall of 202 mm as the storm progressed into the fourth day, propelled the 

ERI to attain a value close to ‘1’(Fig. 3.14e), and subsequently driving the areas with lower DHI values to higher. The 

extreme rainfall of 15 July 2006 resulted in the model classifying about 48.86% of the region with DHI values in the 

range of 0.90-1.0 as very high (Fig. 3.15e).  

 

Fig.3.13: Extreme rainfall event in July 2006 in Deokjeok-ri 

 

 

Table 3.6: Percentage of area classified under each hazard level for different rainfall conditions. 

 

 

DHI level 

% Landslide area 

Before event 
Rainfall event 

Day 1 Day 2 Day 3 Day 4 

      

Low (0-0.25) 100 19.45 18.34 16.04 15.31 

Medium (0.25-0.65) 0 42.44 29.09 17.78 15.62 

High (0.65-0.90) 0 38.11 52.57 33.34 20.21 

Very high (0.90-1.0) 0 0 0 32.84 48.86 
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Fig.3.14: ERI map for July 2006 extreme rainfall event in Deokjeok-ri: (a) the day before the rainfall event, (b) rainfall 

event day 1, (c) rainfall event day 2, (d) rainfall event day 3 and (e) rainfall event day 4 
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Fig.3.15: Landslide hazard map for July 2006 extreme rainfall event in Deokjeok-ri: (a) the day before the rainfall 

event, (b) rainfall event day 1, (c) rainfall event day 2, (d) rainfall event day 3 and (e) rainfall event day 4 
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The temporal assessment using ERI was applied to Mt. Woomyeon for the extreme rainfall event of July 2011 (Fig.2.2b) 

using 20-day antecedent rainfall (AR20) of 346.3 mm and continuous rainfall (CR) of 3 mm, 4.5mm, 77.5 mm and 

435.5 mm corresponding to day 1, day 2, day 3, and day 4 rainfall, respectively.  It can be observed that at extremely 

low continuous rainfall on day 1 and day 2 the ERI values are quite low (Fig 3.16a and Fig. 3.16b) and thus none of 

the cells lies under the high or very high landslide hazard classes as seen from the corresponding DHI maps (Fig 3.17a 

and Fig. 3.17b).  As the event progresses to day 3 for ERI values jump to .57~.62 (Fig. 3.16c), and cells in the upper 

southeast and northeast near to air force base evolves to high hazard (Fig. 3.17c). On day 4 due to extremely heavy 

rainfall, the ERI approaches almost 1 (Fig. 3.16d) and a significant portion of the area is classified into very high 

hazard class (Fig. 3.17d). The high hazard class established at 0.5 cutoff as seen is able to predict all the landslides 

and hence can be used as a threshold in the proposed hazard framework (Fig. 1). 

 
Fig.3.16: ERI map for July 2011 extreme rainfall event in Mt. Woomyeon: (a) rainfall event day 1, (b) rainfall event 

day 2, (c) rainfall event day 3 and (d) rainfall event day 4 
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Fig.3.17: Landslide hazard map for: (a) rainfall event day 1, (b) rainfall event day 2, (c) rainfall event day 3 and (d) 

rainfall event day 4 

 

 

 

 

3.5. Conclusions 

 

Most of the existing landslide temporal component assessment computes a threshold exceedance-based temporal 

probability corresponding to the regional characteristics. However, this method does not serve well in situations where 

the spatial variation of landslides induced by extreme rainfall is observed due to the variability of soil properties. 

Therefore, the evolution of hazard levels in an area, needs to be studied. This is especially critical when using real-

time-based early warning systems, and when the landslide-hazard-level information is utilized at different tiers of 
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decision-making. Thus, an attempt has been made through this research to develop a simple statistical index coupling 

the rainfall and geotechnical factors to study evolution of the landslide hazard due to temporal variation of factors that 

trigger landslides. The extreme rainfall index (ERI) was developed using four factors (continuous rainfall, 20-day 

antecedent rainfall, permeability, and storage capacity). The developed model was assessed for accuracy using a 

cumulative gains chart, by plotting the percentage of landslides in each class. The high AUC values (89 and 97%, 

respectively) obtained for the training and validation curves, indicate the good performance of the statistical index. 

Moreover, a spatial probabilistic assessment using logistic regression analysis, was conducted in Deokjeok-ri Creek 

(located in Inje), resulting in development of a susceptibility map. The final susceptibility model had high training and 

validation AUC values of 96 and 94%, respectively. The model identified seven relevant conditioning factors (i.e., 

aspect, internal relief, total curvature, slope, distance to drainage, STI, and forest type). Thus, both of the well validated 

models were used to study the landslide hazard in Deokjeok-ri Creek for the extreme rainfall-induced landslide events 

in July 2006 using DHI. It was seen that the ERI values were quite low for the rainfall events prior to the extreme 

rainfall events starting on 11 July 2006, but increased almost 14-fold during the continuous rainfall (175 mm) on 12 

July 2006, and reached the maximum value (0.99) for a CR of 467 mm on 15 July 2006. The entire study area prior 

to 12 July had very low DHI and was classified as low hazard. However, the extreme rainfall from 12 to 15 July 

reduced the percentage of cells in the low DHI level to 15.31%. About 48.86% of the cells in the region were 

reclassified as being under high hazard of landslides after the extreme rainfall of 202 mm on 15 July (formerly 20.59%), 

and an incremental trend towards transformation to instability was observed. This change in hazard areas 

accompanying the temporal variation of extreme rainfall, quantified using DHI, is useful in taking decisions with 

regard to dissemination of the early warning and thus the mitigation of the risk.  
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Chapter 4. A transition scheme for site-specific scale reduction and initial 

volume estimation for landslide induced debris flow hazard 

assessment 

 

4.1  Introduction 

The increase in extreme rainfall occurrences is responsible for debris flow related hazards in mountains across South 

Korea. The Korea Forest Research Institute (2014) has attributed debris flow to cause greater damage in comparison 

to slides, which moves a certain distance and stops along the path. The identification of factors involved requires a 

detailed study of the mechanism leading to the initiation. There are several mechanisms which has been hypothesized 

and studied by researchers for mobilization of debris flow from landslides (Gabet and Mudd, 2006; Iverson 1997; 

Anderson 1991; Sassa 1984) depending on the initial stress state or the drainage condition. Seed et al. (1988) assigned 

the mechanism leading to flow-type failure to undrained loading where there is an excess pore water pressure 

generation during the initial loading and at later stage the soil undergoes strain without any additional loading. Also, 

for loose sand several studies were conducted pertaining to instability and liquefaction under undrained condition 

(Leong et al. 2000; Sasitharan et al. 1993; Lade 1993). It was shown by Eckersley (1991) that slopes can undergo 

drained instability and the subsequent pore pressure generation is the result of flow-type failure. In Korea, most of the 

mountains are overlain by weathered soil at shallow depth and thus, a drained failure instability mechanism preceding 

the mobilization is the most suited and an effective stress based analysis will be undertaken for the same. Though the 

initial instability is a result of drained loading, however, depending on the soil stress state the initiation mechanism 

may vary. A soil with voids ratio above the critical-state porosity i.e., contractive or loose, will undergo contraction 

leading to generation of excess pore water pressure and thereby flow liquefaction. But if the initial voids ratio is below 

the critical-state porosity, i.e., dilative condition, the explanation for flow type failure occurrence is a bit tricky and 

has been the focus of few studies. Flow-failure in some of the well documented studies like the Fort Peck Dam case 

and Nerlerk berm failure case (Been et al. 1988; Torrey and Weaver 1984), was shown to occur for dilative sands that 

lies above the steady state and ruled out undrained mechanism as the probable cause. 
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Fig 4.1. Influence of initial stress state on the stress path to mobilization 

 

Chu et al (1993) and Chu and Leong (2001) established that dilative soils cannot undergo plastic strain under 

undrained conditions. A slope under infiltration follows a stress path where, a dilative soil at initial stress state, 

reaches the critical state line (CSL) under a constant shear stress through an effective stress decrease. The 

contention for emphasizing the importance of this stress path is that the actual increase in shear stress due to 

change in moist unit weight is small and only a change in seepage characteristics can cause the deviation from a 

horizontal stress path. Also, under drained condition the reduction of mean effective stress would not generate 

any negative pore pressure thus, preventing the soil from stabilizing thereby transitioning into a contractive phase 

and the presence of a favorable geomorphological characteristics like a channel, will further the large straining 

and remolding or void redistribution leading to a flow-type failure (USGS video recordings). In another scenario, 

the dilative soil failed under drained condition, through some undrained stress path mechanism transforms and 

forms a slump, then only additional supply of water (e.g. rainfall or ponding at upstream) can provide the 

necessary pore-water pressure for mobilizing (Gabet and Mudd, 2006; Harp et al., 2004; Fleming et al., 1989). 

From the above it can be seen that the mobilization of landslides into debris flow is quite a complicated process 

involving the initial stress state, hydraulic conductivity and geomorphological characteristics. Few attempts have 

been made to develop the mobilization criterion for dilative soils like the one proposed by Gabet and Mudd (2006) 

which however, requires extensive testing to determine the critical voids ratio, dilation angle or the shear zone 

thickness. A 1-D model for debris flow mobilized from landslide was proposed by Takahashi (2001), in which a 

deep seated cohesive landslide mass propagates downwards through undrained mechanism and the liquefied shear 
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zone cannibalizes the upper saturated body. This mechanism and model however is not applicable to events 

observed in Korean mountains since the weathered soil undergoes complete destruction of the void rich structure 

during its mobilization into debris flow. Another criterion, approximate mobility index defined as the ratio of the 

in-situ saturated water content to its liquid limit (Ellen and Fleming 1987), though simple but cannot be applied 

to soil with abundant coarse fraction and also, there is the issue with sampling and lab testing when a large region 

is involved. 

 

Fig 4.2: AMI criterion for debris flow mobilization (Fleming et al., 1989) 

 

It is therefore difficult to explicitly adopt the above mechanisms for landslide induced debris flow in EWS through 

analytical models or their analogous simplified criterions based on geotechnical factors. Hence, currently only 

empirical based methods are the way forward which though having the drawback of being data dependent and 

non-transferable to other regions, can implicitly accommodate all of the above mechanisms and be incorporated 

inexpensively into the EWS for spatial based sifting of debris flows from slides or other landslide types. 
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4.2  Debris flow mobilization scheme for sifting debris flows from landslides 

4.2.1 Existing empirical mobilization criteria 

Data driven methods are usually adopted when the mechanism involved are too complicated and expensive in terms 

of modelling, data collection and validation. In several instances like the landslide susceptibility modelling over a 

large scale or debris flow hazard assessment (runout velocity, volume or spreading), the empirical methods are 

preferred due to their relative easiness and accessibility to quality real event database. 

In this study, the main objective of the mobilization criterion is to discriminate the locations where debris flows will 

initiate from the non-debris flow events. In literature there are two main methods to achieve this objective: (a) 

developing mobilization criterion using debris flow occurrence events and either non-occurrence (which includes non-

landslide points and non-debris flow events) or the non-debris flow events; (b) developing initiation criterion through 

an index based approach using only the debris flow events. 

The empirical statistical model developed by Cui (1992) through experimental results of debris flow initiation. The 

model considered fine grain content C (< 1 mm), the soil saturation Sr, and the bed slope θ are the main factors in the 

regression equation given as: 

2 3.4896
8.0062 2.4859 7.0195 0

0.0996
r rS S

C
     


    (4.1) 

The above equation gives a curved surface, on which if any point which is a function of the above parameters exists 

at a critical state. 

Another GIS based initiation criterion using an empirical method is implemented in a distributed model called Flow-

R. The model though mainly used for run-out susceptibility modelling but also has methodology for identifying the 

initial source areas. The source area delineation is based on an index-based approach in which a grid cells are classified 

as favorable or excluded or ignored. Three debris flow initiation parameters, slope, flow accumulation, and plan 

curvature were selected based on three criteria’s (Rickenmann and Zimmermann, 1993; Takahashi, 1981): slope, water 

supply, and material availability. A value of 15o for the slope was selected as the lower threshold for debris flow 

occurrence based on case studies from Alps and Japan. The upslope contribution value was selected through a  
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combined work of Rickenmann and Zimmermann (1993) and of Heinimann (1998) by plotting a curve for the extreme 

events between terrain slope and the upslope area as shown in Fig 4.3. The threshold fitted using the data as in the 

figure is given as: 

0.2tan 0.32

tan 0.26

thresh uca

thresh

S






          if     

2

2

2.5

2.5

uca

uca

S km

S km




   (4.2) 

The grid cells in a region is selected as susceptible to debris flow if a cell is at least once selected as favorable and 

never excluded. 

 

Fig 4.3: Slope-upslope criterion for debris flow initiation (Rickenmann and Zimmermann,1993) 

Flow-initiation source areas were determined in the LAHARZ program (Griswold and Iverson, 1998) using the 

morphometric parameters, slope and upslope contributing area. The slope criterion and upslope contributing factors 

had a minimum threshold of 300 and 103 m2 respectively. The threshold criterion was implemented in the program 

using the rule for the area around the centered prospective initiation cell as: steep slopes with 95 % of grid cells 

exceeding 300 in a 100 m2 area. Blahut et al. (2010) analyzed areas susceptible to landslide induced debris flow using 

the debris flow susceptibility map. The model was developed through the Weight-of-Evidence technique on medium 

scales (1:25,000 to 1: 50,000) for Valtellina Valley in Central Italian Alps. The national database for landslide inventory 

GeoIFFI, consisting of 1478 landslide scarps mapped using points, lines, and polygons were classified as debris flow, 

earth flows, shallow landslides, and deep seated landslides. The assessment of debris flow initiation was conducted 

using five factors, namely, slope, land use, geology, internal relief, and planar curvature. A relationship based on  
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regression equation was derived by Chen and Yu (2011) using debris flow events in 11 river basins to study the debris 

flow initiation areas in Taiwan. The debris flows initiated at slope values between 300 and 420 and the relationship 

between TWI and slope was established through regression as: 

.04 6.34RTWI S    2 0.95r             (4.3) 

4.2.2 Study area and data 

The criterion for assessing the spatial information of landslide induced debris flows was developed for Mt. 

Woomyeon, Seoul, South Korea.  The geologic, soil, and vegetation related information has been described in detail 

in Chapter 2 of the thesis. 

Mt. Woomyeon in Seoul was subjected to extreme rainfall event of 460 mm in 16h from 26 to 27 July 2011 resulting 

in several catastrophic debris flows. 

 

Fig 4.4: Debris flow inventory in Woomyeon mountain. 

 

Out of total 163 landslide inventory points mapped, about 141 were debris flow induced from landslides as is seen in 

Fig.4.1. The debris flow points were mapped using satellite images using satellite images, high resolution aerial 



-79- 
 

photographs, and field reconnaissance. High-resolution photographs of 25-cm resolution were procured from the 

National Geographic Information Institute (NGII), and satellite images were obtained from Google Earth and Bing 

maps. These images were orthorectified via ground control points in ArcGIS 10.1, and landslide locations were 

detected through visual interpretation. 

 

4.2.3 Debris flow initiation factors 

Through a detailed literature review seven geomorphological factors which can influence the debris flow initiation 

were selected and classified into two types as seen in Table 4.1: morphological and hydrological. The factors selection 

was performed through a consideration of four criteria’s suggested by Rickenmann and Zimmermann (1993) and 

Takahashi (1981): potential energy, water supply, material availability and presence of channel. 

4.2.3.1 Morphological types 

Elevation has been used as a conditioning factor in several studies, and higher values are generally related to higher 

susceptibility caused by variation in rainfall, vegetation, and potential energy availability (Pachauri and Pant, 1992; 

Ercanoglu et al., 2004). Elevation was positively correlated with landslide occurrence and was divided into six classes, 

with a maximum value of 293 m (Fig. 4.2.3A). 

Slope, defined as steepness of a surface, and its second-order derivative curvature, helps in understanding the 

characteristics of a basin for runoff and erosion processes. In this study, three types of curvature are considered: (i) 

profile curvature is defined along the line of maximum slope (Fig. 4.2.3C); (ii) plan curvature is defined along the line 

of intersection between the surface and XY plan (Moore et al., 1993; Figs. 4.2.3D). Curvature can affect landslide 

susceptibility through acceleration or deceleration and through convergence or divergence of flow (Kimerling et al., 

2011), depending on if it is convex, planar, or concave. In addition, steeper slope angles are related to higher shear 

stress, and Fig. 4.2.3F shows the five classes of the raster, with second class (12.95-25.92) and third class (25.92-

38.87) occupying 61.76% and 24.72% of the total area, respectively. 

4.2.3.2 Hydrological types 

Flow accumulation is a fundamental hydrological attribute and indicates the area that has the potential to produce 

runoff to a cell under consideration (Erskine et al., 2006). 

TWI, based on assumptions of uniform soil properties and steady state conditions (Conforti et al., 2014), can be used 

to describe the distribution pattern of moisture for potential infiltration volumes according to five classes (Fig. 2-3K), 
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with higher values in natural drainage channels and lower values along ridges and alluvial fans. The factor is calculated 

using Eq. (4) (Moore et al., 1991): 

                                                             



 
 
 

sA
TWI ln

tan
                                                               (4.4) 

where As is the specific catchment areas, and β is the local slope gradient measured in degrees. 

SPI, which measures the erosive power of the flow, increases with the surge because of a larger upslope area and slope 

(Florinsky, 2012). Figure 4.2.3M shows higher erosive values existing along the drainage channels. It is given by 

(Moore et al., 1991) 

        sSPI A         (4.5) 

Table 4.1: Database characteristics for debris flow initiation criterion development 

Type Factor Source 
Scale 

(Resolution) 
Organization 

Morphological 

Elevation 

DEM 10 x 10 m NGII 
Slope 

Plan curvature 

Profile curvature 

Hydrological 

Flow accumulation 

DEM 10 x 10 m NGII TWI 

SPI 

Landslide inventory 

Field investigation report  
Korean Society of 

Civil Engineers 

High resolution images 25 x 25 cm NGII 

Satellite images 
 Bing maps 

 Google Earth 

 

 

 

 

 

 

 

 

 



-81- 
 

4.2.4 Methodology 

As described in section 4.2.3 there are two ways to develop debris flow initiation criterion depending on the database 

availability. The criterion developed by Blahut et al. (2010) and Cui et al. (1992) used the first method owing to the 

availability of database which clearly distinguished between the different landslide types. However, LAHARZ, Chen 

and Yu and Flow-R use the index-based approach of debris flow mobilization since the database is limited to only 

debris flow type of landslides. In this study, the debris flow mobilization criterion was established through an index 

based approach by setting up a lower threshold for the factors at which debris flow would initiate. The new criterion 

developed in this study is different from the other index-based previously discussed because of the rule used to classify 

the potential cell as susceptible to debris flow, which is stated as follows: “a pixel is classified as a potential debris 

flow source, if and only if all the four conditions are satisfied”. The main reason for adoption of this approach is not 

only the availability of reliable database for debris flow type landslides but also the lack of database to conduct a 

temporal assessment of the landslide induced debris flow which combined with the spatial component gives an 

indication of hazard to the catastrophic event at large scale. Thus, the development of ERI and ELM based hybrid 

model for landslide susceptibility considering all the types of landslides necessitated the use of a mobilization criterion 

incorporating only the debris flow events. Though, a criterion based on regression or ANN could be made through the 

consideration of both debris flow and slide events, but the lack of a benchmark for distinct discrimination between the 

two types of landslides during the mapping process will compromise the integrity of the final model. The use of a 

simple classification scheme based on distance and mapped based on visualizations on aerial photos can be misleading. 

Many a times owing to considerable time between the events, vegetation may cover a debris flow path and can deceive 

the researcher into mapping the point as a slide. On occasions, landslides occurring at lower elevations and have 

shorter run-out path lengths may get classified as a slide or debris flow. In such cases, it is of utmost importance that 

a site investigation be conducted and the soil sample analyzed to check if it is susceptible to liquefaction or if the soil 

at the deposition zone has liquefied to classify it as a debris flow. Hence, owing to so many uncertainties and to 

preserve the quality of database established, it was decided to adopt only the debris flow occurrence based (index-

based approach) database for the criterion development. 

The seven debris flow mobilizing conditioning factors were extracted from the DEM at 10-m resolution in ArcGIS 

10.2. A filter based method was used to screen the relevant factors by conducting correlation analysis. The bivariate 

parametric analysis called Pearson’s coefficient is used to study the correlation between the initiation conditioning 
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factors. All the debris flow events were divided as two sets:  95 % of the data was used for the criterion establishment 

and 5% was used for validation. The accuracy assessment of the criterion was carried out by evaluating if the cells 

classified as susceptible lies within the real debris flow path. This type of simple validation technique was adopted 

since the cells identified as susceptible are used only for transitioning into the detailed scale and not to estimate the 

initial volume of landslide that mobilizes into debris flow, therefore, is explicitly not part of the quantitative run-out 

hazard assessment carried out at the site-specific scale. 

 

4.2.5 Discussion and conclusion 

Table 4.2 indicates the correlation among the morphometric and hydrological types of debris flow mobilization factors. 

It can be observed that SPI has significant relationship with TWI and plan curvature, while slope is also significantly 

correlated to TWI. On the other hand, TWI is also substantially related to upslope area. Profile curvature has significant 

correlation only with plan curvature, and elevation among all the seven is not related to any of the factors. Thus, in 

light of this relationship, four factors mainly, elevation, profile curvature, slope and SPI are selected for the 

mobilization criterion development. Thus, the debris flow criterion was applied to the Woomyeon mountain using the 

four factors; slope angle, profile curvature, SPI, and elevation having lower threshold values of 24o, -4 to +4, 4.0, and 

60 m, respectively. 

Fig. 4.5 shows the result from application of the debris flow criterion to the entire Woomyeon mountain in Seoul. A 

quick glance at the figure shows majority of potential areas to be mainly located at the higher elevation around the air 

force base, which has seen several debris flow events and also, along the stream channels. The criterion developed 

using only the debris flow cases and not considering any other landslide types gives a conservative estimate. The 

debris flow criterion can be coupled with temporal data to determine the locations where debris flow will mobilize for 

a given rainfall event. The DHI map developed for rainfall event in Chapter 3 can be coupled with the criterion (Fig. 

4.5) and the result is as seen in Fig. 4.6. Day 1 and Day 2 were not considered since no cells were classified into the 

very high hazard classes (DHI≥ 0.5).  From the figure for day 3 it can be seen that few cells in southeast and one cell 

in north at top of the mountain mobilize into debris flow (Fig 4.6a). On the other hand, for extreme rainfall on day 4 

(Fig 4.6b) a significant number of debris flow points can be seen and many of them correspond to the real event 

location.  
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Table 4.2: Correlation among the debris flow initiation factors 

  
SPI Slope TWI Upslope Profile Elevation Plan 

SPI 

Pearson 

Correlation 

1 .194 .872** .206 .018 .041 -.474** 

Sig.(2-tailed)  .080 .000 .063 .872 .715 .000 

Slope 

Pearson 

Correlation 

.194 1 -.302** -.032 -.001 .124 -.015 

Sig.(2-tailed) .08  .006 .773 .996 .268 .896 

TWI 

Pearson 

Correlation 

.872** -.302** 1 .209* .026 -.004 -.450** 

Sig.(2-tailed) .000 .006  .048 .814 .971 .000 

Upslope 

Pearson 

Correlation 

.206 -.032 .219* 1 -.209 .061 .022 

Sig.(2-tailed) .063 .773 .048  .060 .586 .848 

Profile 

Pearson 

Correlation 

.018 -.001 .026 -.209 1 -.09 -.449** 

Sig.(2-tailed) .872 .996 .814 .060  .423 .000 

Elevation 

Pearson 

Correlation 

.041 .124 -.004 -.061 -.090 1 .212 

Sig.(2-tailed) .715 .268 .971 .586 .423  .055 

Plan 

Pearson 

Correlation 

-.474** -.015 -.450** .022 -.449** .212 1 

Sig.(2-tailed) .000 .896 .000 .848 .000 .055  
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Fig. 4.5: Application of mobilization criterion to Mt. Woomyeon 
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Fig. 4.6: Evolution of debris flow points for 2011 extreme rainfall event: (a) Day 3; (b) Day 4 

 

 

 

 

Day 3 

Day 4 
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4.3  Methodology for slope selection at site-specific scale 

4.3.1 GIS based database 

The scale reduction from large to site specific involves establishing slope units incorporating the debris flow 

mobilization criterion. The study area for the application of this scheme is Mt. Woomyeon, Seoul. 

For application of the scheme, DEM and reverse DEM at 10-m resolution are obtained as seen in Fig 4.7a and Fig 

4.7b. Also, the mobilization criterion developed in the study area, shown in Fig 4.5, is also used. 

 

 

Fig 4.7. (a) Original DEM; (b) Reverse DEM 

 

4.3.2 Methodology 

In the previous section, debris flow mobilization criterion and their application to Woomyeon mountain, Seoul was 

discussed. The application of debris flow mobilization criterion shows the spatial locations where the landslide has 

very high probability to mobilize into a debris flow. Thus, among the large spatial distribution of landslides at regional 

scale it was possible to sift the potential debris flow mobilizing ones for further analysis in EWS. 

The slope for detailed debris flow run-out assessment was selected using the watershed management tools in ArcGIS 

10.1. The following procedure was adopted for same: 

a) Initially, the DEM of the desired assessment region is checked for errors due to sinks using the Fill tool. 

b) The stream flow directions are calculated using the D8 algorithm through flow direction tool which is used to 

determine the actual river lines through flow accumulation tool. 
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c) The debris flow mobilization criterion is applied in the region and the points overlaying the landslide points 

determined from the susceptibility map are selected. 

d) The selected potential debris flow points are combined with the stream flow directions and the lowest value along 

the stream flow is carefully chosen as the outlet point of the watershed. Finally, the chosen pour points are inputted 

in the watershed tool to create the automated watersheds. 

e) Instead of step (d), another method through inversion of DEM can be used to create the watersheds (Xie et al., 

2003). The reverse DEM transforms the previous valleys as ridges and thus on combining with the original DEM 

it is possible to get the left and right part of slope units. Finally, polygons can be created only for the regions 

where debris flow criterion and landslide occurrence points overlap each other. 

4.3.3 Application 

The stream flow directions using the hydrologically corrected 10-m DEM of Mt. Woomyeon is as shown in Fig 4.8a 

and the calculated flow direction is used to determine the stream flow channels for an upslope area threshold of 250 

m2. It can be seen that the southeast side of the mountain has channels of higher order in comparison to those at the 

northeast side. 

 

Fig 4.8. (a) Flow directions for DEM; (b) Flow directions for combined DEM 

In this study, the reverse DEM method is applied onward to get the watersheds in the region. Fig 4.8b shows the 

delineation of the ridges and valleys obtained through flow accumulation tools in ArcGIS 10.1 using the DEM obtained 

from combination of original and reverse. The redlines seen in the figure represents the ridges. 

 

 

a b 
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The final slope unit distribution for Mt. Woomyeon developed in combination with the mobilization criterion is shown 

in Fig.4.9.  Mt. Woomyeon has been divided into 45 slope units based on drainage channels and the debris flow 

mobilization criterion. The watershed area is smaller in the northeast side of the mountain in comparison to the 

southeast side because of the presence of drainage channels of lower order. 

 

 

 

Fig 4.9: Slope units for Mt. Woomyeon 
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Chapter 5.  Predictive debris flow runout assessment methodology at a 

site-specific scale using a quasi-3-D model 

 

5.1 Introduction 

The most catastrophic landslide events in Korea are the debris flow mobilized from landslides due to extreme rainfall. 

These rapid to extremely rapid processes are characterized by completely liquefied materials comprising of coarse 

and fine particles matrix with varying level of water saturation. The hazard evaluation as a component of EWS would 

require the evaluation of the debris flow intensity and magnitude factors like velocity, volume or the flow depth. There 

are several existing approaches to estimate the flow type run out which vary with respect to the type of landslide, the 

scale of analysis, availability of data and the extent of outputs.  The run out models for debris flow simulation can be 

broadly classified into two types i.e., empirical and physical. The models developed using empirical methods are used 

to estimate the travel distances or the final volume rather than other quantitative factors like velocity, thickness, flow 

direction, etc. (Pastor et al., 2014).  These type of models, established using past event database though simple and 

easy to implement, have the major limitation of systematic collection of large database for model building and 

verification and not being transferable to other regions.  

There are two main concepts used to physically model the flow type landslides in the literature and can be classified 

as discontinuum methods like discrete, molecular dynamics, or statistical mechanics (Campbell and Brennen, 1985; 

Campbell, 1990; Cundall and Strack, 1979), and continuum methods (Hungr, 1984; Denlinger and Iverson,2004; 

Pastor et al., 2014). Discontinuum based methods are mainly used to model rock falls, rock avalanches, granular flows 

with particle-fluid coupling, or flows with significant boulders. The application of discrete models to flow type 

landslides especially granular flows are considered since many researchers believe the solid to show discrete 

characteristics, with particle collisions and interstitial fluid altering the flow properties along the flow path. The solid 

particles in this method can be represented in spherical or non-spherical shapes and interactions are modelled using 

force-displacement law and Newton’s second law of motion (Teufelsbauer et al., 2011). However, these methods are 

still at infant stage in application towards geohazard problems of the flow type landslides which will involve modelling 

different grain sizes (sand, silt, clay or boulders) involved and also owing to large computational resources 

requirements. On the other hand, continuum models are the most popular and widely used by researchers for modelling  
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most of the flow-type landslides. This method is based on the concept that particles can be modelled as continuous 

mass rather than discrete for analyzing their mechanical and kinematic behavior. The lumped mass models using the 

work-energy theory and assuming the displacement of the landslide as a single point are the simplest continuum 

models (Perla et al., 1980; Hutchinson, 1986). In these models the internal deformation and energy dissipations are 

neglected but provides a reasonable approximation of the center of gravity motion of the debris flow (Hungr, 1995). 

However, these models cannot be used for hazard analysis owing to the failure to simulate the flow front.   

5.2 Framework for database development  

In this section, a methodology for database establishment with the objective of debris flow runout hazard assessment 

is presented. Fig.5.1 shows the methodology adopted for the same. 

STEP1: SLOPE SELECTION ( SITE-SPECIFIC SCALE)

Apply debris flow mobilization 
criterion

Watershed selection using 
hydrological management tools in 

ArcGIS 

INITIAL VOLUME ESTIMATION 

RHEOLOGICAL MODEL SELECTION 
AND PARAMETER ESTIMATION

GROWTH RATE FACTOR ESTIMATION 
FOR ENTRAINMENT MECHANISM

3D infiltration analysis due to 
extreme rainfall 

3-D limit equilibrium based slope 
stability analysis  

Empirical model for 
frictional coefficient 

estimation 

Method selection

Calibration based method

Rheometer testing

Slope length using GIS 
hydrological tool

Final volume using 
forestry map

Initial volume using 

3D seepage and slope 

analysis

 

Fig. 5.1. Framework for database establishment for predictive hazard assessment of debris flow runout 
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5.2.1 Site-specific initial volume estimation 

Initial volume is analogous to the potential energy that will be transformed into bulk translational kinetic energy. As 

mentioned in introduction (Chapter 1) there are several models for landslide initiation volume estimation and its 

accuracy varies depends on the scale of application. In this research we have used coupled 3D hydro-mechanical 

model for assessment of initial volume that will mobilize into debris flow at a slope scale. 

5.2.1.1 State-of-art 3D slope stability methods 

Slope stability methods can generally be classified into, (i) limit formulation which provides a theoretical 

understanding through upper and lower bound solutions, (ii) displacement formulation such as finite element method 

(Fredlund, 1984). Limit equilibrium analysis technique is an example of the upper bound type of solutions which 

considers the slope behavior at verge of failure under static condition and does not analyze the stress-strain relationship 

or the corresponding deformation within the soil body. Consequently, assumptions are needed with respect to slip 

surface, defining the sliding body, and also the interslice forces. The following principles are mutual in the framework 

of all the limit equilibrium methods: 

a. A kinematically feasible sliding surface is assumed to define the mechanism of failure.  

b. Available shearing strength along the assumed slip surface is obtained by using the application of static 

principles. Two applied static principles are the assumption of plastic behavior for soil mass and validity of 

Mohr-coulomb failure criterion.  

c. Satisfying the equilibrium conditions (three forces and three moments in 3D) 

d. The comparison of available shear strength and required shear resistance to bring the equilibrium into limiting 

condition is made in terms of FOS.  

e. The satisfying value of FOS is determined through an iterative process.  

Two-dimensional limit equilibrium methods are the most popular and widely used in practice owing to its simplicity 

and being on the conservative side. 2-D models are based on the assumption of infinite width of the failure surface 

such that 3D effects are negligible, which is not the case in the real scenario. Several models integrate the GIS with 1-

D or 2-D slope stability methods either through a DEM cell by cell basis (Montgomery and Dietrich, 1994; Wu and  
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Sidle, 1995; Pack et al., 1998; Baum et al., 2010) or by extracting a cross-section (Miller, 1995; Miller and Sias, 1998). 

The real topography has 3D characteristics and can integrate the effects of strength, morphology and pore pressure 

over potential areas larger than a single pixel in the DEM. the assumption of infinite width and neglecting the lateral 

variations of these properties results in lower dimensional stability analysis inaccurate (Hungr, 1987; Stark and Eid 

1998; Bromhead et al., 2002). The use of 3D based LEM can give the direct estimate of potential failure volumes 

which serves as input to landslide run-out models for hazard assessments. The 3D methods are an extension of the 2D 

through the use of columns instead of slices and depending on the type of method the assumptions related to the 

interslice forces change. Fig 4.9 shows the column considered for a 3D analysis along with all the actual forces acting 

on it. Thus, recently several 3D LEM based slope stability has been conducted by incorporating 3D column based 

methods in to GIS framework (Xie et al., 2006; Mergili et al., 2014; Reid et al., 2015). Table 4.3 gives a brief summary 

of existing 3D based methods. 

 

Fig 5.2: Forces acting on the column considered in a 3D slope stability scheme. 

Though significant research has been done into the 3D slope stability methods, however many of the methods does 

not incorporate transient pore-pressure variability considering the 3D topographic characteristics which can affect the 

final volume of the landslide to be used for further hazard assessments. Hence, in this research, a commercial code 

called SVOFFICE 5 considering a coupled 3D seepage and limit equilibrium based stability method has been used.   
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Table 5.1: Summary of 3D limit equilibrium methods 

Name Based method Direction of sliding Slip surface 

Optimization 

method for critical 

surface 

Anagosti (1969) Morgenstern-price Assumed Generalized No 

Hovland (1977) Fellenius method Assumed 

Cone/ wedged 

shape 

No 

Hungr (1987) 

Bishop’s modified 

method 

Assumed 

Rotational with 

circular central 

section 

No 

Hungr et al. (1989) 

Simplified Bishop 

and Janbu’s method 

Assumed 

Symmetrical 

rotational 

No 

Lam and Fredlund 

(1993) 

Generalized limit 

equilibrium 

Assumed 

Generalized 

rotational surfaces 

No 

Cheng and Yip 

(2007) 

Bishop’s, Janbu and 

Morgenstern-price 

Calculated Spherical No 

Xie et al. (2006) Hovland Assumed  Probabilistic Monte-

Carlo method 

Mergili et al. (2014) Hovland Assumed Ellipsoidal 

Monte-Carlo 

method on 

variability of shear 

strength and depth 

Scoops-3D (2015) 

Ordinary/ 

Simplified Bishop’s 

Assumed 

Spherical 

( rotational slip) 

Search lattice 
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5.2.1.2 Methodology 

5.2.1.2.1 Transient 3-D seepage analysis 

The transient 3D seepage analysis is carried using the commercial code SVFLUX. Before detailing the governing 

equations and the flow laws, it is necessary to understand the assumptions governing the pde derivation for seepage 

modelling: 

1) Soil phases can be described using the continuum mechanics approach, 

2) Atmospheric pressure gradients are negligible. 

3) The factors involved are continuous and valid from a macroscopic and phenomenological standpoint. 

A representative element is assumed based on continuum mechanics concept to derive the governing equation for 

conservation of mass of water for saturated and unsaturated seepage.  

The continuity equation is considered by taking into consideration the flow rates in and out of the REV and equating 

the difference to the rate of change of mass to storage within REV with time. A three dimensional flow condition is 

used to derive the following differential equation in Cartesian coordinates: 

1
ww w
yx wz

o

qq Mq

x y z V t

 
   
   

    (5.1) 

where: 

i

wq  = total water flow rate in the i-direction across a unit area of the soil, kg/m2-s 

 = density of water, 1000 kg/m3, 

vi
w= water flow rate in the i-direction across a unit area of the soil m/s (specific discharge), 

Vo= referential volume, V0=dxdydz, m3 

Mw=mass of water within the representative elemental volume, kg, 

t= time, s. 

 

 

 

 

 



-95- 
 

The amount of water stored in the soil pores is usually written in terms of volume of water with respect to the overall 

total volume. The change in volume of water stored in the soil pores is expressed as a coefficient of water storage m2
w 

and is given as follows: 

2

0

( )ww
a w

dV
m d u u

V
                                                                          (5.2) 

where 

2

( / )

( ) 1 ( )

w w o

a w a w

d V V e dS
m

d u u e d u u
 

  
  

Vw/Vo= volumetric water content, 

E= voids ratio 

S=degree of saturation 

(ua-uw) =matric suction 

The above equation indicates that the changes in volume of water stored in the soil pores are a function of matric 

suction and are independent of changes in total stress. The coefficient of water storage can be obtained from taking 

derivatives of the slope of soil-water characteristics curve (SWCC). 

This approach is essential to providing a smooth transition between the saturated and unsaturated conditions. As the 

degree of saturation increases in the soil, the changes in soil suction and effective stress becomes equal and the changes 

in volume can be referenced to changes in voids ratio.  

5.2.1.2.2   Coupled 3-D limit equilibrium analysis 

The general limit equilibrium method (GLE) was developed as the 2D method of slices (Lam and Fredlund, 1993). 

The formulation assumes that a slip mechanism has the direction of movement in one plane and that the FOS due to 

cohesion and frictional component is the same. The method of columns is indeterminate and to reduce the same some 

assumptions are additionally considered: 

(a) Normal force acts through the center of the base area 

(b) Intercolumn force functions are used to relate the normal force with intercolumn shear forces acting on each 

face. 
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Summing the forces on each column in the y direction, the normal force N acting perpendicular to the base of a column 

can be expressed as 

                          

' 'sin tan sin
( ) ( )

C x x

L R L R

A U
W X X V V F FN

m m 

  


   
                                             (5.3) 

where, 

'tan sin
cos x

ym
F



 
    

W is the weight of the column of the soil, 

XL, XR, VL, VR is the intercolumn shear force, 

Is the angle between the horizontal and the shear force at the base of the slice 

C is the effective cohesion 

  is the effective angle of shear friction 

A is the area of the column base 

U is the pore water pressure acting at base of column 

The factor of safety with respect to moment equilibrium, can be derived by summing the moment of all the forces 

over the entire failed mass about an axis of rotation as 
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5.2.2 Rheological model and parameters estimation  

The selection of appropriate rheological model and growth rate estimation for predictive assessment of debris flow 

runout has been conducted by collecting suitable debris flow related data from 3 district located in Gyeonggi province, 

South Korea: Yongin, Seoul and Yeoju.  The database thus developed will be used to achieve the following objectives: 

(a) selection of rheological model with emphasis on representation of the mechanism under consideration, easiness of 

acquirement, and apt for predictive hazard assessment; (b) ANN based model development for the selected rheology 

parameter; and (c) last but not the least, to recreate a real event and comment on predictability using the proposed 

approach.  

For achieving the above stated objectives, 35 debris flow cases were collected from the previously mentioned areas 

as; 23 events from Yongin, 10 events from Woomyeon mountain in Seoul, and 2 from Yeoju. However, 4 of the event 

flow paths did not have curvature and hence could not estimate the velocity for fitting. The locations of the area and 

the events are as shown in Fig. 5.3. 

                    

Fig. 5.3. Data sampling locations of debris flow events 

5.2.2.2 Selection of rheological model 

Debris flow, a sediment-water mixture, mostly moves downslope as unsteady and non-uniform surges. These surges 

at debris flow head have pore pressure close to zero, however the flow body behind has pore pressure almost balancing 

the total normal stress thus, liquefying the mass. Also, the flow appears to be undrained since no pore fluid escapes 

from the surge heads during the rapid motion (Iverson, 1997). Many laboratory tests on the rheological characteristics 

of debris flow indicate the mixtures to behave as non-Newtonian fluids and they are influenced by factors like 
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aggregate formation (shape, size, and size distribution of particles), solid volume concentration and particle forces 

(Vander Waals, thermal, and electrical) (Major and Pierson, 1992).  

There are five rheological models that are implemented in the rheological kernel of Dan-3D. However, for debris flow 

mainly, Bingham, frictional, or Voellmy models are suitable.  

In order to identify the suitable rheological model for predictive debris flow modelling for events observed in Korea 

using two methods; calibration and rheometer testing for debris flow events in Korean peninsula. Calibration of the 

rheological parameters were done by running the model several trials to get a good match of the landslide footprint, 

final volume and velocity. For debris flow channels with curvature, the velocity at curvature were determined using 

the forced vortex equation and the back calculation of the rheological factors were done using an optimization code 

(Aaron, 2015). The parameters for the Bingham rheology were determined using rheometer test with a parallel plate 

rheometer, with distance between the plates set at 2 mm and the soil finer than .075 mm was used. 

Many researchers tried to model the debris flows mobilized from landslides owing to liquefaction using the Bingham 

model by defining the yield strength and viscosity. The mobilization of the flow-type landslides was characterized 

based on if the strength of the failed rigid landslide mass was higher or lower than the yield strength. However, the 

model is oversimplified for capturing the overall flow behavior (Iverson, 1997; Jeong, 2011).  

In order to assess the suitability of the rheological model only two cases, Sindonga and Raemein watersheds, located 

in Mt. Woomyeon, Seoul could be used owing to accurate estimate of velocity from video recording during the 

occurrence of the event. In Dan-3D, the governing equations are formulated such that the basal rheological model 

mainly influences the velocity and the runout distance, while the volume affected by the growth rate controls the 

spreading. In all the debris flow events except the those in Mt. Woomyeon, no data regarding their velocity or 

spreading was available. Therefore, the velocity at the bends were calculated using the vortex equation and the 

rheological model was fitted using these estimated values. In view of this limitation, the results of the suitable 

rheological model selection were generalized using only the two events with actual measured data.  

The Voellmy and frictional rheological model parameters were back-calibrated using the optimization code 

incorporated with the DAN-3D model.  The code was used because a manual based trial-and-error method is time 

consuming, and has a limitation with regard to exploring the entire parameter space and possible non-identification of 

non-uniqueness existence. The optimization was based on the inverse model implemented in PEST, which minimizes 

the difference between the model and field observations.  
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The model output c as a function of the input parameters b, can be written as; 

                                                           ( )c f b             (5.6)  

The least square error function is used to measure the misfit between the model output and the field data as; 

      
2

1

( )
n

i i i

i

w c o


          (5.7) 

where,   is the value of objective function, wi is a user specified weight given to observation i, ci is the model 

simulated output and oi is the observed data. 

The fitness function is minimized via Gauss-Marquart-Levenberg algorithm using the observation values and the user 

specified initial guess for the parameters. The model trial runs over a given parameter space and determines the 

residuals and model sensitivities. This process was automated through a DAN-3D postprocessor which can interpret 

the Dan-3D output results and in turn calculate the residuals at the end of each run. The method determines the 

parameter values by fitting the following three outputs: velocity, landslide impact area, and landslide deposit 

distribution. Fig.5.3 shows the general methodology adopted for calibration. 

 

 

 

Fig. 5.4: Methodology for optimizing the rheological parameters (Aaron et al., 2015) 
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Table 5.2 shows the calibrated values obtained for Sindonga and Raemein watershed events and the corresponding 

velocity and volumes through frictional and Voellmy rheology. The results shown in the Table 5.2 points towards 

frictional rheology being more suited for debris flow modelling not only because they best fit the velocity values but 

also because it is a one-parameter model.  

Table 5.2. Fitted parameters to field observations (Lee, 2016) 

 Raemian Sindonga 

Velocity Thickness Volume Velocity Thickness Volume 

Observation 28 3-5 46125 18 NA 26220 

Bingham 27.2 3.95 45884 17.5 2.95 25813 

Voellmy 25.1 4.0 46970 13.7 2.88 26687 

Frictional 27.5 4.0 46550 18 3.03 26840 

 

The back-calibration was conducted for all of these 30 cases in order to ascertain the bulk or apparent friction angle 

for frictional rheology. Table 5.3 shows the values of factors obtained using back-calibration of the 30 events 

(excluding Raemian event). The back analysis of Voellmy model in Sindonga site, Mt. Woomyeon, gives a velocity 

of 25.1 m/hr which is less than the real measured velocity of 28 m/hr. The Voellmy model has a physical basis which 

can be explained through the experiment conducted by Bagnold (1954). He showed that the shear stress and effective 

normal stress in a dense dispersion of grains in fluid, shearing under constant volume, depends on the square of 

shearing strain rate. As the velocity increases, grains in the shearing layer will begin interacting dynamically with each 

other and with the fluid to produce dispersive effective normal stress. As the velocity of the flow increases an increase 

in volume will be accompanied, which if under undrained condition (pore pressure diffusion is very slow), will result 

in decrease in pore pressure thereby increasing the friction. Thus, in case of flows which are completely fluidized, the 

Voellmy is not appropriate to be applied since in that scenario the effective normal stress is zero and the basal friction 

should be negligible. Thus, for completely liquefied flow-type landslides, the Voellmy rheology tends to 

underestimate the velocity.  
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5.2.2.2 Database for bulk frictional angle prediction model 

 

Profile curvature is defined as the curvature of the terrain in the direction of the slope. This factor induces centripetal 

acceleration to the flow, which alters the bed-normal stress and thus can affect the basal and internal stresses (Park, 

2015; McDougall, 2006). Plan curvature is defined as the curvature perpendicular to the slope direction and considers 

the effect of confinement, i.e. a gully or an open channel, of the debris flow in the channel. Fine content implies the 

proportion of silt or the clay content in the soil, which according to a research by Wang and Sassa (2003), can affect 

the pore pressure ratio during the flow and thus is an important factor which can change the bulk frictional angle 

during the flow. Another factor D50 representing the median grain size distribution in the soil bed of the slope is also 

considered. Travel angle is a parameter defined as the ratio of elevation difference between the starting point and the 

lowest point of deposition to the corresponding runout horizontal distance. It mainly indicates the mobility of a mass 

and in case of dry sand or broken rock it equals the angle of friction. A value of travel angle less than friction angle 

indicates the influence of pore pressure (Hungr and McDougall,2006). Fig. 5.5 shows the frequency distribution for 

the above described independent factor values.  
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Table 5.3. Database of factors influencing bulk friction angle (Park,2015; Lee, 2016) 

Unit 

weight 

Fine 

content 
D50 

Travel 

angle 
Plan Profile ru 

1.492 2.757 1.314 0.29 -2.062 0.2 0.87 

1.478 4.657 1.038 0.286 -5.602 2.272 0.86 

1.459 2.321 1.961 0.49 -0.874 0.262 0.87 

1.342 6.459 1.16 0.4 -4.487 1.324 0.89 

1.161 1.686 0.957 0.255 1.434 0.08 0.9 

1.507 6.781 1.357 0.225 -2.723 0.602 0.88 

1.504 6.558 1.323 0.323 -4.21 0.134 0.95 

1.509 6.957 1.37 0.296 -2.844 0.851 0.88 

1.515 7.489 1.427 0.476 -5.179 0.706 0.88 

1.513 7.294 1.413 0.344 -17.108 7.965 0.88 

1.515 1.706 1.42 0.116 -3.089 0.729 0.91 

1.514 1.831 1.411 0.275 -5.352 0.355 0.9 

1.511 2.34 1.383 0.324 -4.193 0.956 0.92 

1.579 4.864 0.644 0.386 -2.142 0.326 0.95 

1.551 5.499 0.698 0.292 -3.695 0.955 1 

1.479 2.743 1.128 0.389 -2.826 0.477 0.92 

1.475 3.088 1.074 0.368 -0.793 0.284 0.89 

1.467 3.198 1.003 0.348 -4.527 0.647 0.86 

1.51 10.444 0.895 0.338 -1.407 0.237 0.85 

1.448 4.19 1.054 0.183 -1.464 0.239 0.84 

1.317 3.444 1.284 0.258 -4.036 0.766 0.88 

1.447 2.363 1.245 0.279 -3.865 0.764 0.87 

1.473 55.1 0.05 0.306 -4.276 0.837 0.88 

1.265 28.8 0.2 0.526 -3.663 0.904 0.889 

1.687 31.9 0.22 0.5 -2.434 0.568 0.97 

1.687 31.9 0.22 0.536 -2.221 0.178 0.92 

1.119 54.2 0.05 0.385 -6.51 0.644 0.89 

1.687 31.9 0.22 0.422 -7.767 0.929 0.92 

1.119 54.2 0.05 0.417 -6.135 0.863 0.86 

1.616 30.9 0.42 0.306 -0.869 0.117 1 
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Fig. 5.5. Histogram for independent factors used for making the ANN model 
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5.2.2.3 ANN based predictive model  

 

In this study an ANN model was used to consider the non-linear relationship existing among the independent and the 

dependent factors. The ANN modelling mainly consists of a combination of several layers, including the diverse 

neurons, the output value of a certain neuron is multiplied by a weight before inputting the value to the other neurons. 

A net is formed by adding all values, which are the multiplication of each weight and output value from the previous 

neurons, and then the output value to be used as input to the next neuron can be calculated through the activation 

function as shown in the equations below: 

1

n

i i

i

net W X


                (5.8) 

( )output f net b       (5.9) 

where Xi is the input value to a certain neuron, Wi is the weight for the corresponding input value, b is the bias of each 

neuron, and f is the activation functions like step, sigmoid, tangent function etc. A multi-perceptron, consisting of an 

input layer, a hidden layer, and an output layer, are used for the ANN modelling since the usage of a single-layer 

perceptron is limited to linearly separable data sets. An error back-propagation learning algorithm is usually used in a 

multi-layer perceptron to determine the neural networks architecture. The difference between the output target value 

and the actual value is reduced through modulations of the weights and bias.  

The ANN model was constructed using Matlab distributes of 90%, 5%, and 5% of the total 30 data among the training, 

testing and validation dataset, respectively. The training was conducted using the Levenberg-Marquardt (Marquardt, 

1963) back propagation algorithm for different number of neurons in the hidden layer. After several trial and error for 

different combinations of parameters, the best model was obtained for four independent factors with 5 neurons. The 

four independent factors; unit weight, travel angle, fine content and D50, gave the high model performance as shown 

in Fig. 5.6, with high R-square values of .93, 1 and 1 obtained for the training, validation and testing data, respectively. 

Fig. 5.7 a and b show the error histogram for the 3 datasets and the training stoppage based on the best validation 

performance value.  
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Fig.5.6. RMSE for training, testing and validation dataset  
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Fig.5.7. (a) Error histogram with 20 bins; (b) Training stoppage for best validation performance 

 

5.2.3 Growth rate estimation for entrainment process 

The final volume, run-out distance and spreading is mainly influenced by the amount of soil entrained during the 

debris flow runout. In Dan-3D, a simple erosion mechanism is implemented through a user defined value. The erosion 

is mainly by the growth rate parameter defined as: 

ln( / )f o

s

V V
E

L
        (5.10) 

where, Vf  is the final volume, Vo is the initial volume, and L is the approximate run out length 

With objective of predictive modelling, the above parameters used in the determination of growth rate can be estimated 

as follows: 

1) Final volume (Vf) (m3): The final volume can be determined using the slope unit established for the watershed 

where there is a high debris flow occurrence potential. The soil depth map obtained from the Korea Forestry 

Research Institute can be used along with the approximate area calculated from the slope unit to estimate the 

total volume. An average value of depth over the entire slope unit can be used when calculating the final 

volume. 

2) Initial volume (Vo) (m3): The initial volume is estimated using the 3D seepage coupled limit equilibrium 

method as explained in section 5.2.1.  
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3) Run-out path length (m): The approximate distance travelled by the debris flow can be determined by 

inputting the total length of the slope unit from the initiation zone till the point where material exists for 

entrainment, which in a usual case is the end of mountain into the settlement area. 

5.3 3-D based post-failure hazard assessment model for debris flow: DAN-3D 

In this section, the debris flow predictive modelling methodology comprising of the slope selection, run-out model, 

rheological models, growth rate estimation and finally application to a site is described.   

Among the various number of existing physical based models as described earlier, we have selected DAN-3D 

(developed at the Department of Earth, Ocean and Atmospheric Sciences at the University of British Columbia UBC) 

for the predictive modelling of hazard.  The reason for its selection is as follows: 

i) Rheological model choice 

ii) Constitutive model simplicity 

iii) Entrainment mechanism 

iv) User friendly GUI and visualization in GIS environment 

Using the runout model a two-staged framework for estimating the components for debris flow hazard assessment at 

a site specific scale has been established. The first stage consists of the slope selection highly susceptible to debris 

flow using a mobilization criterion which then is processed in the next stage for runout assessment. The second stage 

is a bit more complex since it involves the estimation of input parameters for the DAN-3D analysis. There are three 

main input parameters in DAN-3D; i.e., initial volume, rheological model, and growth rate coefficient. The biggest 

challenge of using a physically based model in hazard assessment for EWS is the database establishment of the input 

parameters which are usually difficult to obtain. Thus, the second stage of the framework is more focused on database 

establishment and estimation method for the parameters used in runout modelling. Before discussing these methods 

in detail it is vital to understand the overall working of the model along with the influence of input parameters on the 

debris flow modelling.  

The final continuum depth averaged based governing equations for mass and momentum are numerically solved 

through smooth particle hydrodynamics method.  

The initial release volume inputted by the user is divided among finite number of reference mass columns centered at 

base as particle number density (equation 5.11) due to the incompressible shallow flow assumption of the working 
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governing equations.  

1

N
j

i j ij

j j

V
f f W

h

           (5.11) 

The depth of the given initial mass is calculated through the definition of an interpolation function kernel, which is 

the backbone concept for SPH. The depth of interested particle is calculated through interpolation function as given 

by the equation below: 
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i j ij
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h V W


             (5.12) 

The Lagrangian coordinate system (local coordinate system) for the particles is defined as; z direction is aligned with 

the local bed-normal direction and x direction is aligned with the local direction of motion. The distance between the 

reference columns, required for calculating the tangential strain is determined as: 

2 2 2

ij ij ij ijs x y z           (5.13) 

The equation (5.13) for calculating x and y components of depth is extended considering the irregular topographic 

surfaces through the equation: 
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During the flow, the particles converging and diverging indicating the dilation and thinning mechanism are 

incorporated through the Rankine’s earth pressure theory. Through plane strain assumption and ignoring the 

reorientation effect of the local reference frame under a small time step, the incremental tangential strain at a time step 

is: 

( ) cos2 sin 2
2 2 2

x y x y xy

i i i
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where, the ij  between the two particles is 
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From the above equation it is clear that three equations are needed for the system to be determinate. However, if there 

are less than three neighboring particles or more than 3 neighboring particles (one smoothing length is used to 

determine if the particles are neighbors) then the system will be indeterminate or redundant, respectively.  Therefore, 
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as a solution, only the principal increment tangential strains in the flow direction is considered while neglecting the 

transverse engineering strain. In the resulting system, for indeterminate condition the effect of strain is ignored while 

for redundant condition a two parameter least-square fitted as a line is used to estimate the x  and y . Dan3D thus 

adopts an effective simple solution to a stress redistribution problem. The internal stress of flow-type landslides due 

to complex 3D deformations can have significant influence on the flow characteristics. In Dan-3D, assuming an 

elastic-plastic behavior, the initial stress coefficients kx and ky are assumed as 1 for a constant  . Decoupling the 

dynamic characteristics in x and y direction and assuming the internal stresses to vary linearly with depth, the 

tangential stress coefficients can be expressed as: 
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      (5.16) 

where D is the dimensionless stiffness coefficient.  

Dan-3D can model entrainment process through an additional momentum flux term in the momentum balance equation. 

Flow-type landslides due to its rapid dynamics can entrain material along the path either through plowing or undrained 

loading of the bed. An initial small volume can be transformed to several times larger volume owing to erosion process 

as it is usually seen in all the debris flow events in the mountains of South Korea.  The erosion mechanism is affected 

by the velocity, rheology and the bed characteristics. However, in DAN-3D a simple user defined model is 

incorporated through a concept of erosion velocity and growth rate.  

The removal of mass by the flow not only adds to the volume but also reduces the velocity through generation of 

velocity-dependent inertial resistance in addition to the basal shear resistance considering the inelastic collision 

mechanism. This velocity dependent inertial resistance arising due to solid collisions, fluid thrust, and friction is 

implicitly considered in the governing equation during back analysis of the rheological parameters for determining 

the bulk basal shear resistance term. Thus, rheology, which influences the flow velocity, does not affect the erosion 

mechanism in DAN-3D. However, an implicit effect of increase in flow velocity on erosion is can be seen through the 

erosion velocity, which is incorporated in to the momentum balance equation through a user defined semi-empirical 

parameter called the growth rate (Es). It is defined as the depth of bed eroded in normal direction per unit flow depth 

and unit displacement and is a displacement-dependent erosion rate instead of velocity-dependent. The erosion rate 

and growth rate are related as: 

t s xE E h v          (5.17) 
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5.4 Application to Raemian slope unit, Mt. Woomyeon, Seoul 

5.4.1 Site-specific initial volume estimation 

The Raemein slope (Fig. 5.8) for analyzing the debris flow hazard was selected based on the methodology detailed 

in the previous sections. The topography needed for the analysis was extracted using the spatial analyst tool in ArcGIS 

10.1 extending between 37 ̊ 27 ̍17 ̎–37  ̊28 ̍ 23 ̎ N latitude and 127 ̊ 0' 24" – 127 ̊ 0' ̍30" E longitude, with the highest 

point 272 m above sea level. The soil profile, as seen in Fig. 5.9b, for the Raemein slope exhibits three main layers: 

a colluvium layer consisting of a poorly sorted sand and gravel mixture in a silty matrix up to 4 m thickness, a highly 

weathered rock layer with a thickness of 1 m, and a subsoil of stiff weathered bedrock of low permeability.  The site 

investigation data in the Ramein watershed were obtained from the Korean Society of Civil Engineers (2012) and 

Korean Geotechnical Society (2011) reports. After the catastrophic event on 27 July, about 7 geotechnical 

investigation borehole were drilled in the site under consideration for collecting soil, hydrological and geological 

information. Locations of the sampling sites are shown in Fig. 5.9a. The hydraulic property of the soil in the site was 

characterized using the hydraulic conductivity and soil water characteristic curves as is seen in Fig.5.10a and 5.10b. 

The SWCC was estimated for the sampled soils using the pressure plate extractor and filter paper method. The 

obtained data was fitted using the Van Genuchten formula and obtained a saturated and residual volumetric water 

content values of 0.5 and 0.18, respectively.  

  

 

Fig. 5.8: Watershed selection for initial volume analysis 
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Fig 5.9: (a) Sampling locations, and (b) cross-section showing soil layers (KSCE report) 

                                    

 

Fig 5.10: (a) Hydraulic conductivity for colluvium and weathered rock; (b) SWCC 

The hydraulic conductivity of the soil was obtained through the constant head permeability test and the results for 

both the soil is shown in Fig. 5.10a. The hydraulic conductivity of the colluvium layer was one magnitude (101) 

higher than that of the weathered rock layer. Also, the shear strength properties (cohesion and friction angle) obtained 

from the direct shear tests, given in Table 5.4, is lower for the colluvium layer in comparison that for the highly 

weathered rock. 
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Table 5.4: Soil hydraulic and strength characteristics 

Parameters Colluvium Weathered 

Ks (m/hr) .0288 .006336 

SWCC 0.5, 0.18 0.5, 0.18 

Unit density 

(kN/m3) 

18.5 19 

Frictional angle 22.4 27.3 

Cohesion (kPa) 18.1 12.8 

 

The extreme rainfall event of 27 July, the application of ERI and landslide susceptibility in association with the 

mobilization criteria was used to chalk out the individual slope units for further site-specific debris low hazard 

assessment. For the predictive modelling of debris flow runout to be applied to Raemian watershed, the slope unit and 

initial volume estimation methodology was detailed in the previous chapter.  

For assessing the most critical failure volume, at first 3D seepage analysis was conducted using the rainfall data given 

in Fig 5.11. The geometry shown in Fig 5.12 was meshed with about 15,669 triangular elements and 26,690 nodes.  

 

Fig 5.11: Rainfall pattern for initial volume estimation in Raemein slope 
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Fig 5.12: Numerical model used for initial volume estimation 

The convergence of the model and the final results are highly dependent on the choice of the initial conditions and the 

boundary conditions. In this analysis, a boundary condition of zero flux implying, no flow normal to the boundary 

exists, was given at the upstream and both the sidewalls to create a flow in the downward direction. Also, at the base 

a review boundary condition was applied. The review boundary condition in SVFLUX behaves as follows: (1) If the 

pore water pressure is negative, then the boundary condition has zero flux; (2) As the saturation occurs and the positive 

pore water pressure (pwp) starts building up there will be a negative flux indicating an outward flow from the boundary. 

Finally, a flux boundary condition at the top surface using the rainfall profile indicated in Fig 5.12 is applied. In order 

to prevent any convergence issues a very small rainfall (10-5 m/hr) was applied during the periods of no rainfall. A 

field test monitoring the variation of matric suction on the Ramein slope indicated that during the dry period a suction 

between 60 and 80 kPa exists, however, a small amount of rainfall can rapidly decrease the suction value to a steady 

value of about 10 kPa and takes significant time to recover (Jeong et al., 2014). Thus, in the simulation an initial matric 

suction value of 5 kPa was applied.  

Before analyzing the results, the normal flux values in Fig.5.13a, Fig.5.13b, Fig.5.13c, Fig.5.13d and Fig.5.13e needs 

to be discussed in order to ascertain the model behaves in accordance with the assigned boundary conditions. The 

bottom boundary in Fig.5.13a shows the flux to be zero except for the initial variation which is because the model is 

trying to converge for the given initial conditions. The graphs for the left, right and upstream boundaries also show 

zero normal flux with insignificantly small value of deviation at certain time steps. The Fig.5.13b showing the 

variation of normal flux with time for the downstream boundary indicates that the flow occurs only in the outward 
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direction and has a maximum flux of 7 m3/hr at the end of 25hr and remains constant until 30hr since there is no more 

rainfall occurring during this period.  

 

 

  

  

Fig. 5.13: (a) Bottom surface; (b) Downstream boundary; (c) Left boundary sidewall; (d) Right boundary sidewall; (e) 

Upstream boundary 

a b 

c d 

e 
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Fig 5.14: Pore-water pressure distribution corresponding to section Y=68m for time t=0 to 30 hr. 
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Fig 5.15: Spatial distribution of pwp on surface 1 (top of bedrock): (a) 0 hr ; (b) 7 hr ; (c) 12 hr ; (e) 15 hr; (d) 18 hr; 

(f) 21 hr; (g) 23 hr; (h) 25 hr; (i) 28 hr; (j) 30 hr 
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Fig 5.16: Spatial distribution of pwp on surface 2 (layer between colluvium and weathered rock): (a) 0 hr ; (b) 7 hr ; 

(c) 12 hr ; (e) 15 hr; (d) 18 hr; (f) 21 hr; (g) 23 hr; (h) 25 hr; (i) 28 hr; (j) 30 hr 

Fig.5.14 shows the variation of pore water pressure for cross section at Y=68 m when the rainfall from period 0-30 

i 

j 
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hrs is applied. At time t=0, the top surface has initial matric suction value of 6 to 8 kPa, while the bottom has lower 

value around 1.5 kPa. Fig.5.15a and 5.16a shows that for both surfaces 1 and 2 there is not any significant spatial 

variation of matric suction, though the surface 2 exists at a higher matric suction value relative to surface 1 and is in 

correspondence to that seen in the field monitoring tests. As time progresses, though there is no significant rainfall, 

however the high permeability of the soil results in formation of an initial water table at approximately 20 to 40 cm 

from the bottom. At time t= 8.8 hrs, after the actual rainfall starts, the matric suction drops from a maximum value of 

12.5 kPa (at time t=4.4) to -8.97 and the positive pore water pressure builds up with maximum pore pressure at 11.9 

kPa. The pore pressure variation on surface 1 (Fig.5.15b) and surface 2 (Fig.5.16b) indicates top most part near to the 

air force base to have lower pwp in comparison to the other area of the terrain due to the elevation effect. After a 

steady rainfall of .025 m/hr for 4hr starting from 15hrs, at 19.8hr the water table reaches about 1~1.6 m approximately, 

while the top surface is still unsaturated with maximum suction existing at 5 kPa. The peak of extreme rainfall at .07 

m/hr occurred between 21 and 23 hrs during which the entire soil depth was saturated and pore water pressure reached 

about 25 kPa (at t=24.2 hr). The Fig.5.15g and Fig.5.16g shows the spatial variation of pore water pressure at time 23 

hrs at surface 1 and 2 respectively. The pore water pressure at some sections at right uppermost part has negative pore 

water pressure though significantly lower than that at previous time steps. The spatial pore-water pressure given in 

Fig. 5.17 for the upper most surface shows almost entire area having zero pore pressure at the end of 23 hr except the 

white portion at the top part and during the time ahead, the pore pressure at the top most surface significantly falls 

indicating the draining away of water.  

The slope stability analysis was conducted using the pore water pressure condition at the end of 23 hrs. The critical 

slip surface is searched using the grid and tangent method. The general limit equilibrium method (GLE) was adopted 

to calculate the factor of safety (FOS) owing to its accuracy in comparison to the other methods implemented in the 

code and a half sine function was assumed for the interslice force. For the analysis, the vertical side resistance forces 

were also considered which parallels the direction of motion by adding shear resistance due to at-rest earth pressure. 

Fig.5.18 shows the critical slip surface value and location along with the other trial slip surfaces. The critical FOS for 

pore pressure at end of 23 hr is .907 and the total volume is about 2626.5 m3 (Fig.5.18). The critical slip surface occurs 

almost near the location as that of real event, though the initial release volume was about 1827 m3 (Jeong, 2014).  
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Fig 5.17: Spatial distribution of pwp on surface 3 (Top of colluvium layer) at time= 23 hr. 

 

Fig 5.18: Critical slip surface at time t=23 hr. 
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5.4.2 Post-failure hazard assessment  

The ANN model developed for the predictive estimation of bulk frictional angle was used in the Raemian watershed 

(section 5.2.2.2). Table 5.3 shows the independent factors and the estimated value of bulk frictional angle. 

The final volume was calculated based on a conservative methodology of considering the entire area of the slope unit 

with the average soil depth. Fig. 2.3W shows the soil depth map for Mt. Woomyeon obtained from KFRI. The slope 

unit had an area of 79455.35 m2 and from the soil depth map 0.71 m is selected as the soil depth as determined using 

ArcGIS 10.1. Thus, the final volume is approximately about 56413.3 m3. Also, the runout distance measured from the 

initiation area to the end of the slope unit using the COGO tool in ArcGIS 10.1 is about 619.34 m. 

Thus the growth rate can be estimated as,  

ln(56413.3 / 2626.5)
.00495

619.34
sE         (5.18) 

Table 5.5 shows the predicted parameters used for the debris flow run-out analysis in Raemian slope, Mt. Woomyeon, 

Seoul. The results show a lower predicted final volume than that observed in the field and hence for further analysis 

the soil depth information from the site investigation, shown in Fig.5.19b, is used.  

 

Table 5.5. Predicted input factors for DAN-3D 

Predicted input factors Values 

Initial release volume 2626.5 

Bulk frictional angle (ru ) 0 (1) 

Growth rate .00495 

 

The parameters of yield strength and viscosity were determined using rheometer test as explained in section 5.2.2.1. 

The Fig.5.19 shows different values of yield strength and viscosity for water contents between 60 % and 90% (Cv 

values between 0.4 and 0.1).  
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Fig. 5.19: Yield strength and viscosity for different water content in Raemein slope (Lee, 2016) 

The fluidized flow has a very low yield strength and a general trend of decrease in yield strength and viscosity with 

the drop in Cv owing to the increase in water content is observed. The application of these values to DAN-3D model 

gave velocity values of 27.2 m/s, 26.4 m/s, 24.2 m/s, and 21.7 m/s corresponding to Cv values of 0.1,0.2,0.3, and 0.4, 

respectively.  

The total volume of debris flow which reaches the road is around 41920 m3 which is 9.12% less than that the actual 

volume. The less amount of volume mobilized can be assigned to the value of the erosion depth used in the model. 

The data from borehole in Fig.5.9b shows the actual depth to be around 5 m at the top, which is almost 10 m towards 

the toe of the mountain as opposed to the 0.7 m used from the soil depth map. Considering the soil depth with an 

average value of 5 m would give us a conservative estimate of the volume of 52642.6 m3 which is 14.13% larger than 

the field measured volume. Thus, the estimation of soil depth is extremely essential as it can affect the final volume, 

velocity and spreading based intensity values which in turn will influence the hazard levels for risk assessment. Fig. 

5.20 showing the red boundary indicates the actual flow path and impact area of the debris flow, while the white and 

colored area shows that calculated using the model. The thickness of the fluidized landslide impacting the Raemian 

apartments is about 5 m i.e. about two floors shall be affected. Figure 5.21 shows that debris flow in Woomyeon 

mountain impacted more than 2 floors of buildings.  
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Fig. 5.20. Debris flow thickness and impact area 

 

 

Fig. 5.21. Debris flow impact on buildings (Jang Seung-Yoon/ Getty images, Truth Leem/ Reuters) 
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In this analysis, at the deposition zone a rheology with higher bulk frictional angle was defined so as to bring the 

material to stop as in the real case due to the presence of obstructions like buildings, which otherwise would continue 

flowing until the maximum time of simulation is achieved. Table 5.6 indicates the maximum final velocity when the 

debris flow reaches the deposition zone as 27.5 m/s which is almost similar to that observed for the real event (28 m/s; 

video recording). Thus, the bulk frictional angle of 0O (ru=1) predicted by the ANN model corresponds to that observed 

in the field indicating that the flow was completely fluidized. 

Table 5.6. Debris flow intensity parameters predicted using the model 

Intensity parameters Model simulation Field observation 

Volume (m3) 52642.6 46125 

Velocity (m/s) 27.5 28 

Run-out path  
Follows the same path as observed 

in field 
NA 

 

Thus, the predictive debris flow runout conducted for Raemian slope gives a conservative estimate for the intensity 

parameters like the volume and spread out area while almost similar velocity value in comparison to the real event 

signifying that the database establishment methodology and the rheology selected are appropriate for the region.  

However, the results are underestimated when using the soil depth values from the KFRI map and thus, users should 

be cautious when using them. It is recommended through research that depth be determined through site investigation 

in the slope-of-interest, before conducting the predictive analysis.    
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Chapter 6. Conclusions and recommendations 

 

 

 

 

6.1 Conclusions 

 

The research attempts to develop and apply a framework for debris flow hazard analysis considering a real-time 

rainfall event through sequential sifting and scale reduction approach for integrating into the hazard component of the 

early warning system. For achieving the same, a new framework consisting of three new models along with a database 

establishment approach has been advanced. The results are summarized as below: 

1.  An attempt to shed light on the determination of the best subset of factors from numerous possible combinations 

using an objective general hybrid framework was done since most of the previous studies have focused on either using 

different supervised learning schemes with a fixed set of factors and selecting the best performance model or using 

filter models to generate a subset of relevant factors. When using the same dataset for creating a landslide susceptibility 

model through different learning algorithms or filter models, diverse factors will be selected each time and only using 

the set of relevant factors selected through initial screening does not always provide the best susceptibility model. 

Therefore, a two-stage hybrid algorithm was devised to select the optimal subset by first implementing a filter 

approach, using the Spearman’s correlation, for the initial partitioning into relevant and irrelevant factors. The 

feedback-controlled scheme is further developed in two phases, the first of which is conducted to check for redundancy 

among the relevant subsets through backward substitution, and the latter is conducted through a forward search scheme, 

effectively screening for relevant features among the initially categorized irrelevant factors. The results showed that 

thirteen factors, namely, soil density, plan curvature, slope, SPI, STI, distance from stream, TRI, geology, soil depth, 

total curvature, elevation, TWI, and topography, are the most relevant factors for Mt. Woomyeon. The landslide 

susceptibility map developed using the hybrid model in comparison to that developed by the wrapper model gave the 

best performance, using a lower number of factors with a success rate and prediction rate AUC of 85% and 89%, 

respectively. The implemented scheme therefore provides a systematic approach to rank and select the relevant 

conditioning factor subsets, and the resulting high performing landslide susceptibility map can be used for hazard 

assessment by linking it with the temporal probability.  

2. The existing methods to assess the landslide temporal component do not serve well in situations where the spatial 
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variation of landslides induced by extreme rainfall is observed due to the variability of soil properties and especially 

is critical when using real-time-based early warning systems, and when the landslide-hazard-level information is 

utilized at different tiers of decision-making. In this research, a simple statistical index coupling the rainfall and 

geotechnical factors to study evolution of the landslide hazard due to temporal variation of factors that trigger 

landslides was undertaken. The extreme rainfall index (ERI) was developed using four factors (continuous rainfall, 

20-day antecedent rainfall, permeability, and storage capacity) and had high AUC values (89 and 97%, respectively) 

for the training and validation curves, indicating the good performance of the statistical index. The ERI was coupled 

with landslide susceptibility map to study the landslide hazard in Deokjeok-ri Creek for the extreme rainfall-induced 

landslide events in July 2006 using DHI. It was seen that the ERI values were quite low for the rainfall events prior to 

the extreme rainfall events starting on 11 July 2006, but increased almost 14-fold during the continuous rainfall (175 

mm) on 12 July 2006, and reached the maximum value (0.99) for a CR of 467 mm on 15 July 2006. The entire study 

area prior to 12 July had very low DHI and was classified as low hazard. However, the extreme rainfall from 12 to 15 

July reduced the percentage of cells in the low DHI level to 15.31%. About 48.86% of the cells in the region were 

reclassified as being under high hazard of landslides after the extreme rainfall of 202 mm on 15 July (formerly 20.59%), 

and an incremental trend towards transformation to instability was observed. This change in hazard areas 

accompanying the temporal variation of extreme rainfall, quantified using DHI, is useful in taking decisions with 

regard to dissemination of the early warning.  

3. An index based approach was used to develop a criterion for debris flow mobilization to implicitly accommodate 

initiation mechanisms and be incorporated inexpensively into the EWS for spatial based sifting of debris flows from 

slides or other landslide types. In using Pearson’s correlation analysis, four factors; Slope angle, profile curvature, SPI, 

and elevation with lower threshold values of 24o, -4 to +4, 4.0, and 60 m, respectively, were selected. The criterion 

was applied to Mt. Woomyeon and showed good predictability, thus indicating its discerning ability of debris flow 

from landslides. The criterion, however, gives a conservative estimate and can be improved in future by including 

slide data as well. The scale reduction for hazard assessment of debris flow caused by extreme rainfall was conducted 

through establishment of slope units incorporating the mobilization criterion. The Mt. Woomyeon, using the approach 

of combining the DEM and reverse DEM, was divided into 45 slope units. Among the current slope units in the Mt. 

Woomyeon, the Raemian slope unit was selected to predict the debris flow hazard since a well establish database of 

the field observations exists. The real event extreme rainfall scenario was applied to the terrain and a 3-D based 
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seepage analysis coupled with slope stability was conducted. It was seen that the failure occurred at 23 hours, when 

the rainfall had extremely high intensity of 70 mm/hr, owing to the high pore-water pressure generated in the entire 

soil depth.  The 3-D limit equilibrium based analysis based on GLE method considering the vertical side forces gave 

a critical factor of safety of .44 for a landslide volume of 2626.5 m3 which is about 43.76% higher than that observed 

in the field (1827 m3). It is always best to work using the conservative estimate owing to the uncertainties and spatial 

variabilities involved in the strength and hydraulic conductivity measurements, and also during the run-out assessment. 

4.  A predictive debris flow hazard assessment is conducted at a site-specific scale on the slope selected through the 

methodology detailed earlier. The reliability of the predictive modelling depends on the quality of the database used 

and hence, a framework is advanced for estimating the parameters used in the DAN-3D code for debris flow run-out 

modelling. At first, among the various rheological model the most suitable for the Korean conditions is selected, 

followed by estimation of the parameter for the same. In this study, frictional rheology was found to be the most suited 

and an ANN based model is used for the bulk frictional angle assessment. A method for estimation of growth rate, 

user controlled entrainment factor, was suggested. However, the use of soil depth from KFRI map was found to 

underestimate the predicted volume and therefore, site investigated soil depth values should preferably be used. The 

predictive modelling estimates the final volume of 52642.6 m3, a velocity of 27 m/s and about 5 m debris thickness 

concentrated near the Raemian apartment. Thus, a predictive modelling through scale reduction and sequential sifting 

for a given extreme rainfall event has been conducted in Mt. Woomyeon, Seoul.  

 

6.2  Recommendations for further study 

 
1)  The proposed framework along with the developed core technologies will be applied to mountainous region in 

Busan and the data from heavily instrumented slope will be helpful for site-specific analysis in the framework. 

2)  Mobilization criterion needs to be improved by considering both debris flow and slide events to reduce the false-

positives. Hence, a methodology needs to be developed to distinguish debris flow from slides which can be extended 

to visual based mapping. Thus, a larger database can be created at lower cost as against site-investigation.  

3)  Further study is needed to develop run-out models considering effect of entrainment on the rheological property.    
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