

#### Nick Shirlaw



## SETTLEMENT TROUGH



$$s(y)$$
  
=  $s_{max} e^{(-y^2/2i^2)}$ 





### **ERROR FUNCTION' CURVE**

$$s(y) = smax e^{(-y^2/2i^2)}$$

- When y = i,  $s(y) = s_{max} \cdot e^{(-1/2)}$ =  $0.606s_{max}$
- When y = 2i,  $s(y) = s_{max}$ .  $e^{(-2)}$ =  $0.135s_{max}$
- When y = 3i,  $s(y) = s_{max}$ .  $e^{(-4.5)}$ = 0.011 $s_{max}$



#### **VOLUME LOSS**

- Volume Loss = Volume surface settlement trough (per m)/Volume of excavated tunnel (per m)
- ▶ Unit Volume = 2.5 i S <sub>max</sub>.
- > Expressed a a percentage
- ➤ Typical design figures in range 1% to 3%
- ➤ Governed by maximum surface settlement



### CALCULATING S<sub>MAX</sub>

- ► V<sub>t</sub> is unit volume of tunnel, V<sub>l</sub> is volume loss in %, V<sub>ss</sub> is actual unit volume of surface settlement trough
- $V_I = V_{SS}$ . 100 /  $V_t$  (percent)
- $V_{SS} = 2.5$ . i.  $S_{max} \times 1$ m (m<sup>3</sup>)





# HORIZONTAL MOVEMENT





# DISTRIBUTION OF TUNNELLING INDUCED SETTLEMENTS





# SETTLEMENT TROUGH – OPEN FACE SHIELDS





NOT APPLICABLE TO PRESSURISED FACE SHIELDS,
WHERE
SETTLEMENT OCCURS AS /AFTER FACE PASSES

#### VALUES FOR 'i'

(FROM O'REILLY AND NEW, 1982)





## VALUES FOR 'i' (Mair 1998)

For clays, use i = 0.5ZFor sands, use i = 0.35Z





# FAILURE MECHANISM BASED ON CENTRIFUGE MODEL TEST (MAIR, 1979)



## SURFACE SETTLEMENT VS VOLUME LOSS

For 6m diameter tunnel at 20 m depth in clay:

1% Volume Loss ~ 11mm settlement

3% Volume Loss ~ 34 mm settlement

Trough extending to 30m from tunnel



## SUBSURFACE SETTLEMENT





#### SUBSURFACE SETTLEMENT PROFILES IN CLAY

- ▶ Ignoring consolidation, can assume deformation at constant volume
- Volume loss at hypothetical subsurface boundary is the same at the surface
- ➤ Trough width parameter needs to be adjusted compared with the surface settlement trough



## **SUBSURFACE SETTLEMENT - CLAY**









## SOURCE OF MOVEMENT FOR TBM TUNNELLING



- 1. Elastic or plastic deformation (stress relief)
- 2. Over cutting, negotiating curves, shield inclination
- 3. Tail void
- 4. Lining deformation



5. Consolidation

# DIMENSIONS – USED IN EXAMPLES





# DIMENSIONS – USED IN EXAMPLES





## **VOLUMES – MINIMUM & MAXIMUM OVERCUT**

> Minimum overcut:

$$(3.23^2 \times \Pi) - (3.22^2 \times \Pi) = 0.6\%$$
  
 $(3.23^2 \times \Pi)$ 

- Maximum overcut (say 70mm):  $(3.30^2 \times \Pi) (3.22^2 \times \Pi) = 5.00\%$  (3.23<sup>2</sup> x Π)
- Overcut will close in soft clay but may stay open long enough to grout in stiffer soils



#### VOLUME LOSS DUE TO CURVATURE

$$Vc = \frac{\sqrt{(R+rs)^2 + \left(\frac{L_s}{2}\right)^2} - (R+rs)}{2 \cdot rs}$$

Vc Volume loss due to curvature

Ls Rigid shield length

rs Shield radius

R Radius of alignment curve



Figure 5 Geometrical Situation for Calculation of Curvature Loss



#### POTENTIAL VOID DUE TO CURVATURE

> 200m curve:

$$\frac{[(R+r_s)^2 + (L_s/2)^2]^{\frac{1}{2}} - (R+r_s)}{2r_s} \times 100$$

$$= \frac{[(200 + 3.23)^2 + (8.1/2)^2]^{\frac{1}{2}} - (R+r_s)}{2r_s} \times 100$$

$$2r_s$$

$$= 0.62\%$$

Void due to curve acts like an overcut, but is not additive (use larger of two)



#### **OVERHANG OR 'LOOK UP'**



- 1.Overhang used when invert in hard soil or rock, crown in soft clay
- 2.'Look up' used to counter effect of weight of head causing shield to dive in soft clay



#### POTENTIAL VOID DUE TO INCLINATION

- > 50mm 'look-up' (example):
- Potential  $V_I = O_h \times L_s \times 100$ Πr<sup>2</sup>
- $\triangleright$  Where  $O_h$  is the overhang or look up.
- Potential  $V_1 = 0.05 \times 8.1 \times 100$ Π x 3.23<sup>2</sup>

Void due to inclination acts like an overcut, but is not additive (use larger of two)



#### **VOLUME – TAIL VOID**

- ightharpoonup Tail void =  $(3.22^2 \times \Pi) (3.15^2 \times \Pi) = 4.27\%$  (3.23<sup>2</sup> x Π)
- In soft clay with conventional grouting through the rings, the tail void closes
- Simultaneous tail void grouting helps to reduce the closure at the tail void



#### SETTLEMENT

- Actual settlement will be due to the sum of volume losses from:
- > Face
- Overcutting or steering (whichever is larger) minus any effects of grouting
- ➤ Tail void minus any effects of grouting
- Lining deflection (v.small for segmental lining)
- Use field data to assess some of these effects



## PORT FOR GROUTING THROUGH RINGS





#### **EPB SHIELD, CONVENTIONAL GROUTING**





## PIPES FOR SIMULTANEOUS TAIL VOID GROUTING









Tail Void Grout between Extrados of Segment Lining and Ground

#### **EPB SHIELDS, SIMULTANEOUS GROUTING**



EPB TUNNELLING IN SOFT CLAY, SIMULTANEOUS GROUTING



## SPRAYED CONCRETE TUNNELS (NATM)



Face Loss: P typically
1m in soft ground
No steering, overcut, tail void
losses
Larger movements of lining

In stable ground, Volume Loss often smaller, more consistent, than shield



## **OVERALL RESULTS - NEL**





RESULTS FROM 20KM OF EPB TUNNELLING, SINGAPORE, CONDITIONS VARYING FROM SOFT CLAY TO WEATHERED ROCK

## **MARINE CLAY**





## KALLANG FORMATION

Where simultaneous tail void grouting is used, total volume loss is typically:

Loss at face + 1 to 2% for other factors



# FORT CANNING BOULDER BED (HARD CLAY WITH BOULDERS





# MIXED GRADES (II TO V) OF GRANITE





Granular behaviour

#### PREDICTION OF SETTLEMENTS

- Predictions' for settlement over tunnels are based on what is reasonably achievable, provided that good control is exercised over face pressure and grouting
- ➤ Actual settlements will (hopefully) generally be smaller than predicted, but occasionally will be higher



#### **FACE PRESSURES**

- ➤ In soft clay, maintain between 0.9 and 1.2 x total overburden for <2% Volume Loss
- In granular soils need to balance water pressure plus a margin
- ➤ In heavily over-consolidated clay, some face pressure will help to minimise settlement



# LOCAL, LARGE SETTLEMENT DUE TO TUNNELLING





# SINKHOLE DUE TO TUNNELLING





# DTSS – FARRER ROAD





# **CIRCLE LINE**





# SHEPPARD SUBWAY, CANADA





# ST CLAIR RIVER TUNNEL, CANADA

## SINKHOLES OR SETTLEMENTS> 150mm, EPB TUNNELLING

| Tunnel               | Year          | Length | Incidents | No./km | Strata                            |
|----------------------|---------------|--------|-----------|--------|-----------------------------------|
| Phase 2<br>(MRT)     | 1986-<br>1987 | 1.6    | 0         | 0      | Soft Clay                         |
| St Clair<br>River    | 1993-<br>1994 | 1.9    | 3         | 1.6    | Soft Clay<br>(Till)               |
| Allen Sewer          | 1994          | 1.1    | 1         | 0.9    | Glacial<br>sand                   |
| Sheppard<br>Subway   | 1997-<br>1998 | 6.4    | 15        | 2.3    | Tills                             |
| Changi Line          | 1998-<br>1999 | 7      | 1         | 0.1    | Old<br>Alluvium                   |
| North East<br>Line   | 1998-<br>2000 | 20     | 16        | 0.8    | Incidents<br>mainly in<br>w. rock |
| Deep Sewer<br>System | 1999-<br>2005 | 48     | 23        | 0.48   | Incidents<br>mainly in<br>w. rock |



# HIGH RISK AREAS - 56 CASES

- > Launching the shield [9]
- ▶ Breaking into shafts or excavations [3]
- Interfaces between strong, stable soils and weak soils [6]
- ➤ Mixed faces of rock or hard till and soil [15]
- Head access for maintenance [13]
- Mechanical Failures, often associated with long drives in abrasive ground [6]
- **≻** Others [4]



# LAUNCHING PROBLEM



# SHIELD LAUNCH





# SINK HOLE DUE TO FLUVIAL SANDS FLOWING INTO LAUNCHING SHAFT





#### **EXCEPTIONAL SETTLEMENTS OR SINKHOLES**

- ➤ Generally due to large losses at the face of the tunnel
- Either due to poor planning of face pressures (interfaces) or due to inability to maintain desired face pressures



#### Why do they occur?

- Occur due to pore pressure changes induced by tunnelling. The reduction in pore pressures causes consolidation
- ▶ If water drains towards the tunnel → pore pressure reduction
- ▶ If stress changes during tunnelling cause positive excess pore pressures, then consolidation occurs as those excess pore pressures dissipate



- ➤ Can be as much as 30% to 90% of the total settlement over the tunnel, if no measures are taken to control them
- ➤ 30% to 90% is based on tunnelling for N-S and E-W MRT lines, Singapore, in areas of marine or estuarine clay (soft clay)
- Significant consolidation settlements have also been measured over tunnels in London Clay (stiff to very stiff clay)



#### How to identify them?

- Marine clay in Singapore is a perfect medium for studying consolidation settlements
- ➤ The clay is of such low permeability that consolidation settlements occur slowly
- Immediate' settlements occur in an 'S' curve, as the face passes under the settlement point
- Consolidation settlements in marine clay develop slowly with time, and follow Terzaghi's one dimensional consolidation model



#### DEVELOPMENT OF SETTLEMENT

#### IMMEDIATE SETTLEMENTS



#### CONSOLIDATION SETTLEMENTS



DEVELOPMENT OF SETTLEMENT WITH TIME



SETTLEMENT / LOG TIME,
EPB TUNNELLING IN SINGAPORE

#### What from do they take?

- Two (possibly three) general forms of consolidation settlement over tunnels have been identified.
- This is unlike 'immediate' settlements, where the 'error function' trough is constant in width for a particular ground condition



# SETTLEMENT TROUGHS CONSOLIDATION IMMEDIATE DISTANCE DISTANCE DISTANCE DISTANCE 21 FORM I FORM 2 SHAPE OF SETTLEMENT TROUGHS FORM 3

#### FORM 1





# FORM 3 TUNNEL DRIVEN AT EXCESS PRESSURE



#### PORE PRESSURE MEASUREMENTS, TAIPEI



# GROUT BEHAVIOUR IN TAIL VOID



ALTERNATIVE GROUT BEHAVIOUR AROUND TUNNELS



# MINIMISING CONSOLIDATION SETTLEMENTS OVER TUNNELS

- Minimise stress changes during tunnelling in soft clay. Keep face pressure at close to overburden pressure and use simultaneous tail void grouting
- Minimise seepage into the tunnel
- Where there are soft clays over the tunnel, can use recharge wells, particularly where buildings on mixed foundations or varied founding conditions occur near tunnels not driven by pressurised TBM



# SETTLEMENTS OVER TUNNELS

- Prediction is an important part of tunnel design in urban areas
- Important to know why settlements occur (components of settlement), and how they can be controlled



#### **PUBLISHED 2005**



Resulted from the Lavender Street sinkhole in London, but took into account over 100 incidents worldwide



On choice of shield type (EPB or Slurry).

Base on:

- Gradings of ground anticipated
- Soil permeability
- Hydrostatic head at tunnel horizon





#### **Operating pressure:**

- Keep operating pressure > hydrostatic pressure and sufficient to ensure chamber is full
- Operating pressure < pressure to heave the ground surface</p>
- Plan and justify operating pressures
- Minimum three pressure cells in plenum chamber, one near top



# **COMMENTS ON BTS GUIDELINE**

- Using a face pressure over the hydrostatic pressure is a good basis for avoiding major loss of ground
- Using a high face pressure in abrasive ground exacerbates wear – excessive wear can lead to ground losses





Setting operating parameters; provide 'drive sheet with targets for:

- Operating pressures
- Grouting parameters
- > Thrust forces
- Cutterhead torque
- Excavation quantities
- Foam/slurry parameters
- Alignment
- Provide operator with information on geology, groundwater and structures



## COMMENTS ON BTS GUIDELINE

Setting operating parameters; provide 'drive sheet'

- Can operator of shield practically assess all data and adjust operation continuously when tunnelling through highly variable conditions?
- Team approach required?





Measure excavation quantity:

For slurry shields:

Monitor flow and density of slurry in inbound and out-bound lines

For EPB shields:

- > Use at least 3 belt weighers
- Count muck skips
- Consider laser profiler

General:

- Provide audible and visible alarm of excessive excavation
- Monitor for each ring of advance



# LASER BELT SCANNER - Circle Line







## **COMMENTS ON BTS GUIDELINE**

#### Measure excavation quantity:

- Singapore experience is that it is necessary to check at least every 200mm of advance
- Very wet muck will slide/spray off belt





Spoil conditioning:

For slurry shields:

Use slurry with polymer

For EPB shields:

- ➤ 1 cutterhead injection point/metre of diameter
- Continuous record of quantities injected
- ➤ Test foams for the anticipated ground conditions, under pressure



Tail void grouting.

For TBMs > 5m diameter: Grouting through pipes along tailskin (also for smaller shields in critical areas)

- Minimum of four ports, double grout lines at each port
- Accurately measure volume and pressure at each port
- Control by pressure primarily, check volume
- Recommends two part, accelerated grouts



#### Risk Management:

- Four stages of risk management (identification, assessment, response, and embed and review)
- > Aim for risk reduction/elimination
- Correct choice of equipment, including TBM
- Risk register by each main party to contract



#### Staff and personnel:

- Minimum criteria for experience of key staff
- Training of new operatives





# HOWEVER.....



Risk assessment – experienced contractor, trained staff, specially Selected EPB TBMs, therefore negligible risk of excessive settlement



Result: 7 sinkholes in first 500m of tunnelling

#### Site investigation:

- Three phase investigation; desk study and reconnaissance, detailed investigation, construction review
- Intrusive investigation (boreholes) and geophysics, before tunnelling
- Further information obtained during tunnelling

