ENGINEERING

Journal of the

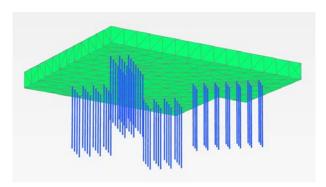
SOUTHEAST ASIAN GEOTECHNICAL SOCIETY

&

ASSOCIATION OF GEOTECHNICAL SOCIETIES IN SOUTHEAST ASIA

Sponsored by

ASIAN INSTITUTE OF TECHNOLOGY (AIT)


Editors: Dr. Phung Duc Long & Prof. San-Shyan Lin

Multiple protective measures used in coastal areas (After Yasuhara *et al.*, 2016)

Example of erosional scene of river bank in the Mekong Delta (After Yasuhara *et al.*, 2016)

Plaxis 3D piled raft foundation model (After Phung Duc Long, 2016)

Geometry of DEM models
(After Nguyen Quang Tuan and H. Konietzky, 2016)

March-2016 Issue: Vietnam Special Issue Edited by Dr. Phung Duc Long & Prof. San Shyan Lin

Dr. Phung Duc Long

Dr. Phung is President of the Vietnamese Society for Soil Mechanics and Geotechnical Engineering (VSSMGE). He received his Ph.D. degree at the Geotechnical Department, Chalmers University of Technology in Gothenburg, Sweden in 1993. He has worked at the Institute for Building Science & Technology (IBST) in Hanoi, Vietnam from 1975 to 1988; at the Swedish Geotechnical Institute (SGI) in Linköping, Sweden from 1988 to 1994; at Chalmers University of Technology from 1989 to 1993, at Skanska Sweden as Technical Manager from 1994 to 2002; at WSP Asia in Hong Kong as Associate Director from 2002-2003; at WSP Vietnam in Hanoi as General Director from 2003-2011; and at Long GeoDesign as Director since 2011.

Dr. Phung has 40 years of international experience. His expertise areas are: deep foundations and piled raft foundations for high-rise buildings, temporary and permanent support for deep excavations, tunneling, soil improvement, underpinning, pile dynamics, and numerical analysis of soil-structure interaction problems. He has worked with projects in many countries, as Sweden, Norway, Denmark, USA, England, Russia, Germany, India, Hong Kong, China and Vietnam, etc. Some of his highlight projects are: Uni-Storebrand Headquarter in Oslo with steel-core piles into rock; SL-10 South Link in Stockholm with sheet pile wall for deep cut & cover tunnel in soft clay; Fredriksberg Metro Station in Copenhagen, the world largest drilled-pile wall for deep excavation; soil stabilization with lime-cement columns for Highway I15, Salt Lake City, Utah, USA; Öresund Link between Sweden and Denmark; Årsta Bridge in Stockholm with pile foundations and sheet pile walls in deep water and soft clay; the peer-review of piled foundation for the ICC Tower, 118 floors, 490m high in Hong Kong, the No. 4 tallest high-rise in the world, and the Sailing Tower in Ho Chi Minh City, Vietnam. He is the author and co-author of more than 100 technical papers and books in English, Swedish and Vietnamese for different national, regional and international seminars, conferences, and technical journals. He is the chief editor of a number of publications, as the proceeding of the international conferences Geotec Hanoi 2011, and Geotec Hanoi 2013.

Prof. San-Shyan Lin

Dr. Lin is a Professor at Department of Harbor and River Engineering of National Taiwan Ocean University in Taiwan. He received his Ph.D. degree in Civil Engineering from Washington University in St. Louis, Missouri USA in 1992. Dr. Lin was an engineer at Taiwan Area National Expressway Engineering Bureau from 1992 to 1994. Prof. Lin also served as TRB A2K03 Committee member on Foundations of Bridges and Other Structures between 1995 and 2004. He is also serving as committee member of TC-212 and ATC-1 of ISSMGE and as editorial board member of four major international journals in geotechnical engineering.

Prof. Lin's research and practical experiences have been dealt with static and dynamic behaviour of deep foundations, ground improvement and effects of scouring on bridge foundations. In the past decades, he was involved in many research projects such as interpretation of pile load testing results due to axial, lateral, or combined loading; effect of soil liquefaction on performance of pile foundation in sand; seismic effect of pile foundations; performance of suction pile in sand or in clay; and effect of scouring on performance of pile and caisson foundations etc. Prof. Lin has published more than 110 peer-reviewed journal papers and conference papers. One of his published Journal papers dealing with cyclic lateral loading effect on permanent strain of deep foundation due to cyclic lateral loading has been cited more than 60 times in Google academic website by many international researchers working on wind turbine foundations.

PREFACE

This journal issue was edited and contributed from works in Vietnam by Vietnamese authors and other popular persons. Sixteen papers are contained in this issue. Dr. Phung Duc Long is the lead editor. His Vietnamese team included: Dr. Pham Van Long, Dr. Pham Huy Giao, Mr. Mai Trieu Quang, Dr. Nguyen Anh Minh, Dr. Vu Quang Hung, and Dr. Vu The Manh.

The construction field in Vietnam has been under a very fast development. More than ten years ago the first 30-storey tower appeared in Vietnam. Today, the height has reached to 70-80 floors. During the last decade many tall towers, long bridges, deep tunnels, large hydro-power dams, large airport and habours, etc have appeared in Vietnam. Thousands of kilometers of highway have been constructed. New metro projects have been started both in Hanoi anh Ho Chi Minh City. It is understandable why geotechnical engineering has recently developed very fast in Vietnam.

The issue's major topics relate to piled raft foundations; piled foundations for storage tanks; pile group settlements; coastal and riverine erosion in the context of climate change; soil characterization for land subsidence evaluation for MRT projects; discrete modelling of excavation in fractured rock; settlement management for urban tunnels; evaluation of performance of diaphragm walls; study on clayey soils using piezocone; DEM simulations of medium dense sand in triaxial apparatus; characteristic of unsaturated soil of earth fill dams; ground improvement using soil-cement columns/deep mixing method; and ground improvement with preloading, and PVD and vacuum pressure.

Phung Duc Long (paper No.1) has made a detailed study on pile raft foundation in which the piles are used for reducing settlement, not for taking the total load from superstructure as in the conventional pile foundations. The results from his field model test, which strongly supports the concept of settlement-reducers, are reviewed. Basing on the experiment, a simplified design method is proposed. In the paper, the method is used for the conceptual design of a large high-rise building complex. In combination with FEM, the simplified method gives a reliable tool for conceptual design of piled-raft foundations. PLAXIS 3D is used for modelling both the piled and un-piled foundations in the study.

Yasuhara et al, (paper No.2) describe climate change related disasters such as erosion along riverine and coastal areas of the Mekong Delta in the South Vietnam. Also, the red river delta in the north is expected to be exacerbated by land subsidence, sea-level rise (SLR), and magnified typhoons. Adaptation to severe erosion is expected to respond to regional circumstances and the demands of local residents. Based on the expectations outlined above, for soft adaptation, attempts were made to conduct perception surveys of local residents, in addition to field surveys of erosion at riverside and coastal areas using an un-crewed aerial vehicle (UAV). Furthermore, for hard adaptation, a proposal is made to conduct pilot field tests at the coast for reinforcing coastal dykes using the combined technique of locally available materials with cost-saving eco-geosynthetics in addition to application of ICT. This paper explains the possibility of

smart adaptation combining soft and hard adaptation to reduce severe coastal and riverine erosion in the Vietnamese deltas.

Nguyen, H. M., Fellenius, B.H., Puppala, A.J. Aravind, P., and Tran, Q.T. (paper No.3) introduce bidirectional static loading tests on two shaft-grouted barrette piles of the 40-storey Exim Bank Building in Ho Chi Minh City, Vietnam. Simulation of the measured load-movement response indicated that the shaft resistance response was hyperbolic. The test schedule was interrupted by unloading/reloading cycles, which disturbed the gage data and included uneven load-holding durations which exacerbated the analysis difficulty.

Pham Huy Giao and Ta Thi Thoang (paper No.4) have an excellent paper on soil characterization and land subsidence prediction for the first MRT line in HCM city to meet the transportation needs of a fast growing population and rapid urbanization. Being located in the Sai Gon-Dong Nai delta HCM city area has low elevations and is underlain by a sequence of clayey, silty and sandy soil layers. Land subsidence due to groundwater extraction had been suspected and observed in HCM city. In this study, geotechnical characterization of the subsoil along the first MRT line was carried out. Prediction of land subsidence along this MRT line was conducted using a FEM consolidation code.

Shiwakoti and Manai (paper No.5) examine the application of deep cement-mixing technique in improving engineering properties of soft grounds at nine different sites in southern Vietnam's typical soft soil deposits. The exercise consisted of running a series of laboratory tests on undisturbed soil samples and their mixes with cement and field trials, followed by field application of 500,000 m cement treated columns with 600mm diameter, using Dry Jet Mixing technique. After the field trials and applications, cores were extracted from the treated grounds to evaluate improvement in their engineering characteristics. Both the laboratory and the field results revealed a drastic enhancement in strength, stiffness, and permeability of the treated soft soils.

Over-consolidation ratio (OCR) is an important geotechnical parameter for predicting undrained shear strength, lateral pressure ratio and settlement of clayey ground. Piezocone studies were made by **Bui Truong Son, Le Hong Quang and Lam Ngoc Qui** (paper No.6). In Southern Vietnam, a thick layer of saturated soft clays distributes throughout all the area. It includes Mekong (in Ca Mau province) and Dong Nai (in HCMC and Vung Tau) alluvial deposits. Below the soft clayey layer, there is a layer of either stiff to very stiff clay or fine sand. Based on the reliable data of consolidation test results of samples taken by piston tube and piezocone, relationship between over-consolidation ratio and normalized penetration resistant is established and analysed.

Phan To Anh Vu (paper No.7) studied the ground improvement using soil-cement method: A case study with laboratory testing and in-situ verification for a Highway project in Southern Vietnam. This article presents the experimental unconfined compressive strength results of soil-cement columns to improve the soft soil gained by Tan Son Nhat-Binh Loi Outer Ring Road Project, located in Ho Chi Minh City, Vietnam. The laboratory test results revealed that the Stable Soil cement has a greater unconfined compressive strength than tower (60%) slag cement. In addition, cement-soil samples obtained from insitu indicated that the target cement content of 240 kg/m3 was satisfied not only a required compressive

strength (>24 kgf/cm2) but also a low-cost. The obtained results are expected to provide an experience for further design and construction in Ho Chi Minh City and its vicinity.

Bengt Fellenius and Mauricio Ochoa (paper No.8) write on the use of piled foundations for wide storage tanks. The authors have analyzed five case records involving wide piled foundations and show that the foundation settlement can be modeled as a flexible raft placed at the pile toe level with the foundation load distributed according to Boussinesq stress distribution and that the capacity of an individual pile is not relevant to the foundation performance. Differential settlement between the perimeter and interior piles and the effect of drag force and downdrag are discussed. The limitation of drag force as affected by the pile spacing and the weight of the soil in between the interior piles is addressed.

Tran Thi Thu Hang and Frederic Dubois (paper No.9) deal with discrete modelling of excavation in fractured rock by NSCD method. The presence of the network of discontinuities on intact rock is a special feature of nature rock masses. Non Smooth Contact Dynamics method (NSCD) is a discrete numerical method that owns many strong advantages of the study on granular materials and has been used recently in rock engineering. LMGC90, open-sourced software built on NSCD, has demonstrated a robust capacity in the modelling and mechanical analysis of diverse environments, masonry and rock included. In this study, a numerical modelling of a multi-phase-excavation in fractured rock was realized. The simulation of the tunnelling with the consideration of the state of the excavation and its neighbouring rock blocks, during and after the excavation schedule, and at each excavation phase was conducted. The obtained mechanical behaviours of the model were analysed, and three failure mechanisms of the excavation vicinity during the tunnelling was aimed. The observed phenomena showed typical effects of two components of the rock mass (rock structure and rock material) to the stability of the excavation and the host rock mass.

Duong Diep Thuy, Pham Quang Hung, and Le Thiet Trung (paper No.10) studied the pile groups in Vietnam using a method for estimating the pile group settlement considering the distribution of pile shaft friction, called SDF. For illustrating the proposed method is used for a full scaled experimental model by Koizumi et al (1967), for a field model test by Phung (1993) and for two case histories in Vietnam, Ca Mau Fertilizer Plant, and Ecopark Tower 2. Comparison of the calculated settlements with the measurement results shows that the SDF method provided a good prediction for all the studied cases.

Nguyen Quang Tuan and H. Konietzky (paper No.11) deals with the mechanical behaviour of Hai Duong Medium dense sand in triaxial test and its simulation using DEM. Numerical simulations of the drained triaxial behaviour of medium sand, a typical constructional soil material and widely used in Northern Provinces of Vietnam, were performed using discrete element method (DEM). The sand was simulated based on spherical particles using PFC3D with a non-linear contact model including rolling resistance. The calibrated simulations show that the DEM model is able to capture the mechanical behaviour of sand. The effects of different microscopic parameters on the macroscopic behaviour of the sand were investigated.

Tran The Truyen, Nguyen Van Hung, and Tran N. Hoa (paper No.12) studied the influence of geometrical parameters of soil cement columns on the settlement of embankments on reinforced soft soil. Deep Mixing Method (DMM) is a widely used soft soil improvement method in the construction of road, port, and tunnel foundations, etc. Deep mixing of cement with soil and water, forming Soil Cement Columns (SCC) in situ, has been applied in many projects in Vietnam in recent years; it has proved many advantages compared with other applied methods in the site. At present, Vietnamese engineers are concerned with finding out recommendations for an optimal choice of SCC scheme. This paper analyzes the influence of main geometrical parameters of SCC including the length, the diameter, and the spacing on the behavior of reinforced soft soils in some construction projects in Vietnam. The results will be an important basis for recommendations on the choice of rational schemes of SCC for soft soil improvement in Vietnam.

Benson Hsiung, Dao Sy Dan and William Cheang (paper No.13) evaluated the performance of diaphragm walls by wall deflection paths for deep excavations in Central Hanoi. The objective of this paper is to evaluate the performance of diaphragm walls by wall deflection paths for deep excavations in Central Hanoi. PLAXIS 2D was used for 2D finite element analyses in this paper. A benchmark analysis was first conducted on the excavation to verify the validity of material models and their input parameters for predicting wall deflections. The reference envelopes of wall deflection paths were then delivered for various conditions of deep excavations in Central Hanoi. Considering the current prediction, up to 72 mm of the maximum lateral wall displacement was predicted for an excavation with a 21.9 m depth. Reference envelopes of excavations have been developed and discussed in various conditions of the excavation. It is found that the maximum lateral wall displacement at the first stage of excavation is roughly inversely proportional to the Young's moduli of soils. Changing the wall thickness leads to the limited difference in reference envelope at shallow excavation stages, but this may not be correct when the excavation goes deeper.

Hoang Hiep and Pham Huy Giao (paper No.14) studied the effect of vacuum pressure distribution on settlement analysis results for an improved thick soft clay deposit at Sai Gon-Hiep Phuoc terminal port, South of Vietnam. In this study an approach of settlement analysis using a FORTRAN code was proposed to successfully simulate the large consolidation settlement of a thick soft clay deposit, improved by combination of preloading, PVD and vacuum pressure for Sai Gon-Hiep Phuoc (SGHP) project. Geotechnical characterization of the subsoil profile underlying the project site was carefully done to provide input data for settlement analysis, in which a particular focus was given on studying the vacuum pressure distribution along the 35-m deep PVD. It was found that the coefficient of vacuum pressure distribution (kP) from 0.85 to 1.0 gave the best estimation of the time-dependent total primary settlement as embankment construction goes in addition to a smear effect RS= 3.0. The increasing trend of kP with time might be explained by the fact that for the later stages of loading the vacuum pressure could spread more to the depth.

Nguyen Thi Ngoc Huong and Trinh Minh Thu (paper No.15) studied the Characteristic of Unsaturated Soil of Earth Fill Dams in Vietnam. Earth dams in Vietnam, especially earth dams at the central part of Vietnam, are generally made using in-situ soils having low clay content. The knowledge, experience, calculation theory, apparatus etc, for unsaturated soils in Vietnam are still very limited, especially the

studies of the influences of the shear strength of unsaturated soils to the stability of earthen structures. Therefore, study on the soil-water characteristic curve, shear strength and coefficient of permeability versus different matric suction for Vietnamese soil is an urgent task. This study shows that when the matric suction in the soil changes, the effective cohesion c' would also change; however the internal friction angle is almost unchanged for some types of soil in Vietnam. The experimental results can be applied to study the effect of unsaturated soil to the factor of safety of the slope.

Finally paper by **Alain Guilloux and Hervé Le Bissonnais** (paper No.16) is on the management of settlements for urban tunnels. The TOULON highway tunnel is located in a very dense urban environment, and a much complex geology. The excavated section is about 120 m² and the depth is in the range 15-35 m. The aim of the paper is to show how a great attention was paid to the settlements control: at the design stage through soils investigations, survey of existing constructions in regards to their sensibility to tunnel induced settlement, definition of settlements thresholds, and choice of ground pre-reinforcement techniques; during the construction, by heavy monitoring of deformations and continuous adaptation of the supports to the actual settlements and buildings behaviour.

This issue contains sixteen papers which are related to the Vietnam soil conditions and contribute to the advancement of geotechnics, and are all written by the Vietnamese authors, about projects in Vietnam, or the topics that Vietnam are facing. It is hoped that the issue will demonstrate how the authors have made their studies geared in a manner useful to geotechnical engineers in Vietnam and elsewhere.

Phung Duc Long

ACKNOWLEDGEMENT

It is a genuine pleasure to note that this Issue contains sixteen excellent contributions as made by authors mostly from Vietnam in using modern developments in Geotechnics relevant and applicable to Vietnamese soil and rock conditions. They are mostly practical in nature and is an excellent example of how research be conducted useful to our geotechnical profession in practice. Dr. PHUNG Duc Long is the lead editor. His Vietnamese team included: Dr. Pham Van Long, Dr. Pham Huy Giao, Mr. Mai Trieu Quang, Dr. Nguyen Anh Minh, Dr. Vu Quang Hung, and Dr. Vu The Manh.

The Preface by Dr. Phung adequately covers the details of the contributions by the authors. Vietnam is an important arm of our AGSSEA and has developed enormously in the recent years with tall buildings, coastal structures, highways and expressways, airport developments etc. It is a paradise for geotechnical engineers. We are all most grateful to Dr. Phung and his team. This issue demonstrates the future of Geotechnics extend to all member countries of AGSSEA and beyond. The successful conferences and symposia organised by the Vietnamese Society for Soil Mechanics and Geotechnical Engineering (VSSMGE) is also worthy of praise.

K. Y. Yong
N . Phienwej
T. A. Ooi
A. S. Balasubramaniam

March 2016: VIETNAM SPECIAL ISSUE

Editors: Dr. Phung Duc Long & San Shyan Lin

TABLE OF CONTENTS

<u>List of Papers</u>		<u>Page</u>
1:	Prediction of Piled Raft Foundation Settlement – A Case Study By Phung Duc Long	01-06
2:	Geotechnical Adaptation to the Vietnamese Coastal and Riverine Erosion in the Context of Climate Change By K. Yasuhara, M. Tamura, Trinh Cong Van and Do Minh Duc	07-14
3:	Bidirectional Tests on Two Shaft-Grouted Barrette Piles in Mekong Delta, Vietnam By H. M. Nguyen, B. H. Fellenius, A. J. Puppala, P. Aravind, and Q. T. Tran	15-25
4:	Soil Characterization and Land Subsidence Prediction for the First MRT Line in HCM City By Pham Huy Giao and Ta Thi Thoang	26-31
5:	Soft Ground Improvement by Deep Cement-Mixing Technique in Southern Vietnam By Dinesh Raj Shiwakoti and Ryuji Manai	32-38
6:	Over Consolidation Feature of Clayey Soils in Southern Vietnam According to Piezocone By Bui Truong Son, Le Hong Quang, Lam Ngoc Qui	39-44
7:	Ground Improvement Using Soil-Cement Method: A Case Study with Laboratory Testing and In-Situ Verification for a Highway Project in Southern Vietnam By Phan To Anh Vu	45-49
8:	Wide Storage Tanks on Piled Foundations By Bengt H. Fellenius and Mauricio Ochoa	50-61
9:	Discrete Modelling of Excavation in Fractured Rock by NSCD Method By Tran Thi Thu Hang and Frederic Dubois	62-68

10: A Method for Estimating Pile Group Settlement Considering Distribution of	69-78	
Pile Shaft Friction (SDF) – Application for Pile Groups in Vietnam		
By Duong Diep Thuy, Pham Quang Hung, and Le Thiet Trung		
11: Mechanical behaviour of Hai Duong Medium Sand in Triaxial Test and its DEM Simulations	79-86	
By Nguyen Quang Tuan and Heinz Konietzky		
12. Influence of Commentation Department of Scil Comment Columns on the Assessed Scilland of		
12: Influence of Geometrical Parameters of Soil-Cement Columns on the Average Settlement of	87-91	
Embankment on Reinforced Soft Soil – Numerical Analysis		
By Tran The Truyen, Nguyen Van Hung, and Tran N. Hoa		
12 Evaluation of Darfamson of Diophyson Walls by Wall Deflection Daths for Deep Evacuations in Central He No.	92-99	
13:Evaluation of Performance of Diaphragm Walls by Wall Deflection Paths for Deep Excavations in Central Ha Noi	92-99	
By Benson Hsiung, Dao Sy Dan, and William Cheang		
14: Effect of Vacuum Pressure Distribution on Settlement Analysis Results for an Improved Thick Soft Clay Deposit		
at Sai Gon-Hiep Phuoc Terminal Port, South of Vietnam		
By Hoang Hiep and Pham Huy Giao		
15: Characteristic of Unsaturated Soil of Earth Fill Dams in Vietnam	106-117	
By Nguyen Thi Ngoc Huong and Trinh Minh Thu		
16: Settlement management for urban tunnels: an example from France	118-125	
By Alain Guilloux and Hervé Le Bissonnais		

Cover Photographs:

- 1. Multiple protective measures used in coastal areas (After Yasuhara et al. June 2016)
- 2. Example of erosional scene of river bank in the Mekong Delta (After Yasuhara et al. June 2016)
- 3. Plaxis 3D piled raft foundation model (After Phung Duc Long June 2016)
- 4. Geometry of DEM models (After N.Q. Tuan and H. Konietzky June 2016)

GEOTECHNICAL

ENGINEERING

Editor: Prof. Meei-Ling Lin

Journal of the

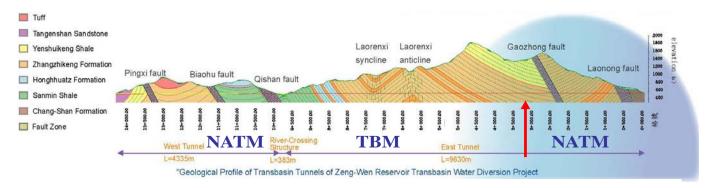
SOUTHEAST ASIAN GEOTECHNICAL SOCIETY

&

ASSOCIATION OF GEOTECHNICAL SOCIETIES IN SOUTHEAST ASIA

Sponsored by

ASIAN INSTITUTE OF TECHNOLOGY (AIT)



Satellite Image of the Taipei Basin (After Yang, Wong and Hwang, 2016)

Sedimentation of Typhoon Morakot on Wanda Reservoir in central Taiwan. (After Lee, Wang, Chang Lien and Huang, 2016)

Geological profile along tunnels in TDT project

JUNE 2016 ISSUE: CTGS ISSUE

Edited by Meei-Ling Lin

Professor Meei-Ling Lin

Dr. Lin is a Professor at Department of Civil Engineering, National Taiwan University. She received her Ph.D. degree in Civil Engineering from University of Texas, Austin, USA, in 1987. Dr. Lin has been a member of the General Committee of the Southeast Asia Geotechnical Society since 2007. She serves as a committee member of the Jointed Technical Committee 1 (JTC1 on Landslide) of the International Society for Soil Mechanics and Geotechnical Engineering, the International Association for Engineering Geology and the Environment, the International Society for Rock Mechanics, and the International Geo-textile Society. She also serves as a committee member of Technical Committee 303 (TC-303 on Flood) and Asian Technical Committee-1 (ATC-1 on Climate Change) of ISSMGE.

Prof. Lin's research interests and experiences include: potential analysis and simulation and behaviors of debris flow and slope stability, seismic slope behavior and stability, dynamic soil behaviors associated with soil liquefaction and ground responses analysis, mapping and micro-zonation of related debris flow, seismic slope stability potential, and seismic ground response. She lead a group to initiate a drafted Code for the Engineered Slope for the Ministry of Transportation and Communication, Executive Yuan, Taiwan. She has been invited as a Keynote speaker of international conferences, a special lecture speaker of International Landslide Symposiums and a panel reporter by ISSMG Conferences, and recently delivered an Opening Keynote for the Fourth Italian Workshop on Landslides.

SPECIAL FEATURE STORY ON

"Recent Diaphragm Wall Technologies and Future Challenges" By Hosoi Takeshi and Matsushita Shinya.

Dr. Hosoi Takeshi

Dr. Hosoi Takeshi is a Technical Advisor at WSP Parsons Brinckerhoff, Singapore. He received his PhD with research focused on "Bearing Capacity of Diaphragm Wall Foundation and various Issues during its Construction" from Kyoto University, Kyoto, Japan in the year 1993.

Dr. Hosoi has more than 50 years of experience in design and construction of underground structures, tunnelling, bridge foundations and marine works. He is an international expert in diaphragm wall, barrette and bored pile foundation, shield tunnelling, NATM tunnelling, and other complex geotechnical works.

He is a Professional Engineer (PE) in Japan Since 1983, Fellowship of Japanese Society of Civil Engineer and International Member of Japanese Geotechnical Society. He coordinated the Asian Ocean Seminar sponsored by Japanese Ministry of Port and Harbour for 10 years. He was also a national member in "E-Defence Project" in Japan.

He served as a General Manager of Technical Research & Earthquake Technology Research Institute for 8 years and General Manager of Design Department of Nishimatsu Construction Co. Ltd. for 7 years.

Mr. Matsushita Shinya

Mr. Matsushita Shinya has been a Chief Engineer of Matsushita M&C Lab Co. Ltd. Since 2013. He was graduated from Nagoya University (Department of Science) in 1972 and joined Matsushita M&C Lab Co. Ltd.in 1972. He served as CEO of Matsushita M&C Lab. Co. Ltd. from 2003-2013. He is a Member of Japanese Geotechnical Society. He has been involved in a lot of big diaphragm wall projects in Japan for more than 40yers. In 1982 he was engaged in the experimental diaphragm wall construction for practical use of high DS polymer slurry and in 1984 he was joined the diaphragm wall construction project for Nagoya Subway 6 Line to lead successful adoption of polymer slurry. He was involved in Diaphragm Wall Foundation of Aomori Bay Bridge in 1988 and also in 1991 Diaphragm Wall Shaft at Kawasaki Artificial Island for Trans Tokyo Bay Highway Road. From 1992 to 1994 he was invited by the Grand Hi-Lai Hotel project and the Tuntex project (the Tuntex & Chien Tai Tower) at Kaohsiung, Taiwan as a consultant of Polymer slurry. From 2001 to 2006 he took part in the Water

Cut-off Wall Project at Kansai International Airport for stabilizing land settlement as a chief engineer for quality control of slurry. In 2008 he engaged in the Wall Foundation, "Knuckle Wall" Project of Tokyo Sky Tree as a chief engineer for quality control of polymer slurry.

HISTORICAL NOTE ON

"Expriences of Geotechnical Development in Japan and Future Directions" By Masami Fukuoka

Professor Masami Fukuoka

Prof. Fukuoka was born on 12 March 1917 in Okayama Prefecture, Japan. He studied Civil Engineering at the University of Tokyo, and in 1940 he entered the profession fully, taking up a post as a civil engineer for Japan's Public Works Research Institute (PWRI) of the Ministry of Internal Affair. During the Second World War, he served in the Japanese military.

He returned to PWRI after the war ended, and his engineering acumen was immediately needed. Japan experienced a series of severe earthquakes and floods, which further complicated the damage the country had suffered to its infrastructure during the war. It was one of the most difficult times in the history of Japan, he said to me when I was young. As a civil engineer, in particularly, as a geotechnical engineer, he worked to restore Japan's infrastructures from the effects of war and natural disasters. His strength of leadership was an especially important contribution to the design and construction of a great number of important infrastructures; and his work improved projects across a broad range of sectors, including those dealing landslides, road building and pavements, slope stability, flood control, river and coastal dyke engineering, ground investigation and soil test, earth pressure and retaining walls, rock-fill and earth-fill dams, ground subsidence, foundations of long-span bridges, earthquake geotechnical engineering and, eventually, geosynthetic engineering. The breadth of his work was extraordinary, considering how difficult it is to become a specialist in even one of these areas today. After rising to serve as PWRI's director, he retired in 1970 and entered academia and became a full professor of Civil Engineering of the University of Tokyo, where I was studying as doctoral candidate. In 1977, Prof. Fukuoka transitioned to a professorship

at Tokyo University of Science where he remained until his retirement in 1986. As his career progressed; he contributed greatly to multiple professional organizations. He helped establish the Japanese Geotechnical Society (JGS) in 1949 and served as President from 1976 – 1997. He was integral to Tokyo playing host to the 9thInternational Conference on Soil Mechanics and Foundation Engineering, then served as President of the International Society for Soil Mechanics and Foundation Engineering (now ISSMGE) from 1977-1981. During this period, while at Tokyo University of Science, he started the research on geosynthetic-reinforced soil retaining walls and geomembrane lining at the bottom of reservoirs.

PREFACE

This Issue contains thirteen excellent papers as the country issue from Chinese Taipei Geotechnical Society (CTGS). It is an example of contributions from leading private sectors in Taiwan and also academics.

The first paper by Lee et al deals with the topic of rock tunnelling applied to steady water resources supply in Taiwan, challenges and examples. The authors deal with increasing soil erosion and slope collapse in some catchment area in Taiwan in the past decade. Also, increased sedimentation rates of the reservoirs reducing the effective capacity, and severely affecting the steady water supply. Multiple measures have been proposed for stabilizing the water supply. Tunnelling in the catchment area, even close to a dam, represents serious environmental and engineering risks. The authors present two cases of rock tunnelling as applied to steady water resources supply. Challenges and some distinctive issues, such as the presence of a high-temperature ground, a combustible gas emission ground, and potential instability of rock wedges caused by large underground excavation, are discussed. The authors then present countermeasures with a clever design of an elephant-trunk intake pipe to release turbid water. State-of-the-art tunnelling through rock and some innovative tunnelling technologies are utilized in these two cases.

The second paper by Chiu et al deals with the interesting topic of the state-of-the-art of tunnel maintenance in Taiwan and challenges to sustainable development. Tunnel construction in Taiwan started as early as the late nineteenth century; within the last 125 years, tunnel maintenance in Taiwan went through several stages. In early years engineers dealt with tunnel excavation. Now tunnel inspections, repairs and reinforcement were performed only when serious damages were observed. As the number of damaged tunnels increased, investigations revealed that the degradation of tunnels in Taiwan is inevitable and usually occurred in an exceptionally shot period. Frequent earthquakes, a high ground water level and poorly cemented rock masses provide an environment for such degradation. To adapt more effectively to the environment, tunnel maintenance looked at the entire life cycle of a tunnel. Thus the diagnostic methods have demonstrated to be useful in enhancing the sustainable operation of tunnels.

An interesting contribution by Wang et al dealt with rock tunnel –shaft intersection in projects in Taiwan. The construction of an intersection between a shaft and a rock tunnel is a three-dimensional problem, and requires more complex excavation and support methods than those used in conventional two-dimensional tunnel construction. The paper considered examples of rock tunnelling in Taiwan, and the construction of intersections between shafts and tunnels. Data are collected from case histories first, and the excavation sequences are classified. Then challenges as encountered to secure construction of the intersections of shafts and tunnels are examined, including the significant scale effects of rock masses on excavations; difficulties

in controlling rock deformation near the intersections, and groundwater ingress are also discussed. Strategies and countermeasures as applied to overcome these difficulties in recent projects, and their effectiveness is investigated. Finally, the state-of-the-art design and construction of intersections between shafts and tunnels in Taiwan are presented.

The fourth paper by Hsiao et al dealt with the influence of peak strength degradation in assessing the stability of tunnels in hard rocks. Tunnelling depths are increasing rapidly in Taiwan. The effect of brittle failure on hard rock tunnelling is, however, rarely studied. In this paper, a study is carried out on the importance of the post-peak behaviour using Hoek-Brown failure criterion is investigated; through strength loss experimental studies, a relationship between strength loss parameter and confining stress is established. Subsequently, a numerical analysis model (so-called strength degradation model), is proposed and applied to predict the impact of the post-peak strength degradation on an actual tunnel. The analysis showed that the effect of the post-peak strength degradation on deformation during excavation is becoming more and more pronounced with increasing depth of tunnels. Severe deformation due to the excavation may endanger the tunnel stability during construction in deep overburden. Thus the strength degradation beyond brittle failure shall play an exceptionally important role in the stability of deep tunnelling.

The fifth paper by Hwang et al is on the deep excavations in Taipei Basin and the performance of diaphragm walls. Since movements of diaphragm walls are reduced by the presence of existing underground structures in the vicinity of excavation, comparison of the observed wall deflections with the results obtained by using two-dimensional analyses may lead to erroneous conclusions. Similarly, additions to diaphragm walls, such as buttresses, station entrances, ventilation shafts, etc., will also tend to reduce wall deflections. Thus the authors recommend to compare the results of two-dimensional analyses with the upper envelopes, designated as "reference envelope", of a family of wall deflection paths of the same geometry of excavation and the same characteristics of the retaining system. Inclinometer readings obtained at Shandao Temple Station of the Bannan Line of Taipei Metro were studied to establish the relationship between wall deflections and depth of excavations. The results are verified by numerical analyses using PLAXIS computer software. Reference envelopes were then developed for estimating maximum wall deflections; and charts were established for correcting inclinometer readings to account for the movement at diaphragm wall toes. The authors found that the width of excavation has significant influence on wall deflections and toe movements. Additionally, the consolidation of the Songshan Formation due to the drawdown of groundwater in the Jingmei Formation reduced the movements of diaphragm wall toes.

In an interesting paper Yang et al studied the hydraulic characteristics of the Jingmei Formation and the Dewatering of Deep Excavations in Taipei Basin. Geotechnical Engineers in Taipei are well aware that the Jingmei Formation is a unique geological feature of the Taipei Basin. It is highly permeable and a waterrich stratum responsible for many failures in underground constructions. The piezometric heads in the

Jingmei Formation had to be lowered by pumping for the deep excavations to be carried out safely. The authors thus discuss the hydraulic characteristics of the Jingmei Formation and the experience gained in large scale dewatering schemes. Attempts have been made to establish the relationship between the progression of tides in the river and the fluctuation of the piezometric levels in this Formation. The authors found that, the transmissivity and storage coefficient deduced from the observed groundwater drawdown are affected not only by the pumping rate, but also the duration of pumping; thus the rates required tend to be overestimated as based on the results of pumping tests.

Forensic studies have now become an important field in geotechnical engineering. The seventh paper by Lee et al is on the forensic investigation of a subway tunnel failure during construction. In this paper, the forensic evidences and investigation of a subway tunnel construction failure occurred in Kaohsiung, Taiwan is presented. The studied construction failure occurred during a cross-passage excavation of a shield tunnel construction work of the Kaohsiung Mass Rapid Transit System, and resulted in severe tunnel collapse and extensive ground failure that even reached to ground surface 30m above the tunnel depth. Valuable photo images obtained during and post event, as well as results of special geophysical testing methods were presented and compared to verify aspects of the proposed failure scenario. Information presented in this paper would be helpful to improve engineers' knowledge for preventing similar construction risks.

Typhoon Morakot brought tremendous rainfall of a hundred-year recurrence period in Taiwan. The paper by Chou et al concentrates on the effects as encountered by roads and houses in the middle and southern part of Taiwan; from landslides, debris flows, and floods. Erosion of road foundations, sliding of slopes, and collapse of bridges has paralysed the road system. Using Alishan Route 18 as an example, this paper discusses different causes, types, and renovation methods of slope disasters for future reference.

The paper by Lee et al also deals with the forecast of shallow landslides pertinent to Taiwan in a study which combines rainfall parameters and landslide susceptibility. Catastrophic landslides and debris slides triggered by typhoons such as Typhoon Morakot (2009) have occurred more frequently in the recent years, and caused many casualties and much economic loss in Taiwan. For the purpose of reducing the damage and preventing loss of life resulting from geological hazards, this study collects multiple period landslide inventories which contain the information of occurrence time, location, magnitude, rainfall intensity, and accumulated rainfall to establish the rainfall threshold for shallow landslides on a regional scale. The concept of a hazard matrix which combines the magnitude (landslide ratio of slope units) and the possibility of occurrence (historical disaster records) are investigated to set up the early warning thresholds. Accordingly, the critical rainfall thresholds were built up based on the R₂₄ (24 hours cumulated rainfall) and I₃ (3-hour mean rainfall intensity) of historical records. The model developed can predict the possible sediment hazard on the hillslope 2~9 hours before occurrence of landslides. The web based GIS helped to have early-warning systems to display the real-time rainfall data and the warning signal immediately for disaster prevention through increasing the response time.

Chang et al made dynamic analyses for performance based seismic design of geotechnical structures with examples in deep foundation. Performance-Based Seismic design (PBSD) of geotechnical engineering structures can be evaluated by a number of methods taking into account the uncertainties of the designed influence factors. Despite the fact that the seismic force is known to be a significant factor, the static and/or pseudo static analyses seem to be commonly adopted in design practice. The paper by Chang et al briefly discusses alternate approaches with the emphasis on dynamic analysis. Examples are given with the assessments of two deep foundations located in Taiwan. Dynamic analysis is rather important to the seismic design problems since it can monitor the details of time-dependent structural responses incorporating both peak ground acceleration and duration of the earthquake. Other than the 3D finite element analysis, the simplified solution from 1D wave equation analysis can be very effective and convenient for PBSD analysis on deep foundation.

The eleventh paper in this CTGS Issue is on the time dependent dynamic characteristics during soil liquefaction in saturated sand. Chen et al, conducted model pile tests to quantify the relation between soil stiffness and excess pore water pressure during liquefaction, the test data of a series of shaking table tests on model pile in saturated sand using a large biaxial laminar shear box conducted at the National Center for Research on Earthquake Engineering were analysed. The pile tip was fixed at the bottom of the shear box to simulate the condition of a pile foundation embedded in a firm stratum. The pile head was mounted with steel disks to simulate the superstructure. In addition, strain gauges and mini-accelerometers were placed on the pile surface to obtain the response of the pile under shaking. Therefore, the model pile can be considered as a sensor to evaluate the changes of dynamic characteristics of soil-pile system during the shaking by using the time-frequency analysis and system identification technique. The results showed that the stiffness of the soil would increase with the dissipation of pore water pressure and the recovery of soil stiffness is directly related to the effective stress ratio of soil specimen.

The interesting paper by Shi et al present geological investigation and sliding mitigation in Jiufen Area in Taiwan. Jiufen's orographic and geological characteristics together with frequent typhoons and heavy rain make it potentially vulnerable to landslides. The landslide problems can be disastrous not only to the 2,300 local residents, but also to the constant flow of tourists visiting the town. After the site investigations, it is concluded that both of the colluvium and groundwater are the most important geological factors to the slope stability problems. According to the long-term groundwater level monitoring result, it varied from 8m to 12m during the period of typhoon and heavy rainfall. And the displacement induced by the groundwater level rising was found. Four underground flow lines were located based on the resistivity image profiling and self-potential investigation. Then five water collection wells were planned to construct according to the locations of underground flow lines. The level lowered down about 15m after the wells completed and the slope became stable. It is suggested that the depth of colluvium in Jiufen area needs to be investigated in more detail.

Finally the last paper thirteenth in this Issue is by Shu et al on the interpretation and analysis of potential fluidised landslide slope. Fluidized landslide, also called hillslope-type debris flow, often occurs on the village side hillslope in the mountain area during extreme weather condition. Fluidized landslide induces more severe damages than the shallow landslide; however its recognition model is still lacked. In this research a recognition model of the potential fluidized landslide slope was developed using 80 cases occurred in the Kaoping River basin, southern Taiwan. 30 fluidized landslides and 30 shallow landslides are employed for the model development and another 10 events of each landslide are applied for verification. Results show that the recognition model composed of 8 discriminant factors including geomorphology factors, hydrology factors and potential landslide factor predicated by SHALSTAB model provides accuracy rate of 85% of the verification events. Thus the model can be of practical use for fluidized landslide interpretation. The model can be used to identify the potential dangerous slope areas and effectively assist the disaster prevention and early warning of villages in mountain area.

The editor of this CTGS Issue is very pleased to be able to present the geotechnical activities in Taiwan through these thirteen contributions and hope that the material would be beneficial to Geotechnical Engineers in SE Asia and elsewhere.

Meei Ling Lin

ACKNOWLEDGEMENT

Thirteen excellent contributions are contained in this Country Issue of the Chinese Taipei Geotechnical Society (CTGS) as edited by Prof. Meei Ling Lin. All contributions are by authors from Taiwan and Prof. Meei Ling Lin must be congratulated for her excellent task. In the Preface Prof Lin have described in great detail the contributions from the authors. It is a pleasure to note that successful country issues are now completed by the Thai Geotechnical Society, The Vietnamese Society and now the Chinese Taipei Society. The contributions from Singapore, Hong Kong and Malaysia will also be released soon. Also, last but not least from Indonesia.

This issue also contains a special feature story on "Recent Diaphragm Wall Technologies and Future Challenges" by Hosoi Takeshi and Matsushita Shinya; a historical note on "Experiences of Geotechnical Development in Japan and Future Directions" by Masami Fukuoka and an "Obituary of Masami Fukuoka" by Fumio Tatsuoka. The passing away of Prof Masami Fukuoka on 27 January 2016 is a great loss to the engineering communities.

K. Y. Yong
N . Phienwej
T. A. Ooi
A. S. Balasubramaniam

June 2016: CHINESE TAIPEI SPECIAL ISSUE

Editor: Professor Meei-Ling Lin

TABLE OF CONTENTS

<u>List of Papers</u>	
1: Rock Tunneling Applied to Steady Water Resources Supply in Taiwan: Challenges an By Chia-Han Lee, Tai-Tien Wang, Shih-Hsien Chang, Shang-Yao Lien and Shih-Wei	•
2: State-of-the Art of the Tunnel Maintanance in Taiwan and Challenges to Sustainable I By Ya-Chu Chiu, Tai-Tien Wang, Tsan-Hwei Huang	Development 07-13
3: Tunneling Issues Regarding the Rock Tunnel-Shaft Intersection in Taiwan By Tai-Tien. Wang, Tzu-Tung. Lee, Shun-Min. Lee, Kwei-Shr. Li and Cheng-Hsun. C	14-23 Chen
4: Assessment of Hard Rock Tunnel Stability: A Note on the Influence of Post-peak Stre By F. Y. Hsiao, H. C. Kao and S. Y. Chi	ngth Degradation 24-31
5: Deep Excavations in Taipei Basin and Performance of Diaphragm Walls By R. N. Hwang, C. H. Wang, C. R. Chou and L. W. Wong	32-40
6: Hydraulic Characteristics of Jingmei Formation and Dewatering for Deep Excavations By G. R. Yang, L. W. Wong and R. N. Hwang	in Taipei Basin 41-49
7: Forensic Investigation of A Subway Tunnel Construction Failure By W. F. Lee, C. C. Wang, K. Ishihara, R. N. Hwang	50-59
8: Case Study of Renovation on Alishan Route 18 after Typhoon Morakot By Kung, Tai, Chou, Wen-Long Wu, Chiao-An Hsiao, Kun-Hsien Chou	60-71
9: Combining rainfall parameter and landslide susceptibility to forecast shallow landslide By C.F. Lee, C.M. Huang, T.C. Tsao, L.W. Wei, W.K. Huang, C.T. Cheng, and C.C.	

10: Dynamic Analyses for Performance-Based Seismic Design of Geotechnical Structures with Examples in Deep Foundations By D.W. Chang, C.W. Lu, S.S. Lin and J.R. Lai	83-88
By D. W. Chang, C. W. Lu, S.S. Em and J.R. Lai	
11: Time-Dependent Dynamic Characteristics of Model Pile in Saturated Sand during Soil Liquefaction	89-94
By Chia-Han Chen, Yung-Yen Ko, Cheng-Hsing Chen and Tzou-Shin Ueng	
12: Geological Investigation and Sliding Mitigation in Jiufen Area	95-100
By Lee-Ping Shi, Jen-Cheng Liao, Sheng-Hsiung Hung and Chien-Shui Huang	
13: Interpretation and Analysis of Potential Fluidized Landslide Slope	101-111
By H. M. Shu, T. C. Chen, W.C. Yang and Y.X. Luo	
SPECIAL FEATURE STORY ON "Recent Diaphragm Wall Technologies and Future Challenge" By Hosoi Takeshi and Matsushita Shinya	112-125
HISTORICAL NOTE ON "Expriences of Geotechnical Development in Japan and Future Directions"	126-129
By Masami Fukuoka	120-12)
OBITUARY of Masami Fukuoka	130-131
By Fumio Tatsuoka	

Cover Photographs:

- 1. Photo 1 Satellite Image of the Taipei Basin (After Yang, Wong and Hwang, June 2016)
- 2. Photo 1 Sedimentation of Typhoon Morakot on Wanda Reservoir in central Taiwan. (After Lee, Wang, Chang Lien and Huang, June 2016)
- 3. Photo 1 Geological profile along tunnels in TDT project (After Lee, Wang, Chang, Lien and Huang, 2016)