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Parameters affecting Shaft Resistance 

Rock 
•  type, structure, weathering 

•  strength 

•  stiffness 

Construction 
•  socket diameter 

•  socket roughness  

•  socket cleanliness 

•  concrete pour 

•  contractor experience and expertise 



Origin of the Scatter 

 

• socket roughness  

  (drilling tools, artificial roughening)  
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• pile diameter  

   (structural considerations) 
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• initial normal stress  

  (concrete placement) 
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• residual drilling fluids 
  (socket cleaning & bonding)  
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• rock smear  
  (socket cleaning & bonding) 
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Are their models we can use to predict these effects ? 

What engineering properties are required ? 



Shaft Resistance - Back to basics 

• Shaft resistance is developed 

through friction (t) from intimate 

contact between the concrete of 

the pile and the rock 

• The wet concrete applies a 

pressure (sn) to the socket wall 

which is locked in when the 

concrete hardens 

• frictional resistance (+ adhesion)  

 

 

must be overcome before slip at 

the pile/rock interface can occur 
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Shaft Resistance - Back to basics 

• The rock socket is not 
smooth, but has 
undulations referred to 
as roughness 

• For slip to occur at the 
interface, the socket 
must dilate 

• Thus increasing the 
normal stress on the 
interface and the 
frictional resistance 
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Dr 

nm = rock mass Poisson’s ratio  

Increase in normal stress 

Constant Normal Stiffness (CNS) 

r = D/2 = radius of socket  

r 

Dr 

Dsn = change in normal stress  

K = normal stiffness  

Dr = dilation of socket  



Modelling socket shear in the laboratory 

CNS Direct Shear Tests 

(d) Equivalent 2-D model 

for after displacement 
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Laboratory Testing : CNS Rig 

• Computer feedback control 

• 250 kN hydraulic actuators 

for shear and normal stress 

• Monotonic and cyclic loading 

• Stress or strain control 

• Automatic data logging 



Actuator Shaft 

Load Cell 

Transfer Plate 

Bearing Plate 

Rigid Frame 

Needle Rollers 

Rock-concrete interface 

Vertical Piston 

Horizontal Carriage 

Split Shear Box 

Cam Followers 

CNS Direct Shear Testing Rig 



Rough interface sample prior testing 
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CNS test results : Impact of roughness, normal stress and stiffness 

Class A 

Class C 

Increasing roughness increases strength and stiffness of the interface response 

Increasing stiffness increases the strength and stiffness of the interface response 

Increasing initial normal stress increases the strength and stiffness of the 

interface response 



CNS Test Samples - Triangular Asperities 

12.5 deg.   x 6 mm high regular triangles 

5 deg.  x 3.75 mm high regular triangles 

10 deg.   x 7.5 mm high regular triangles 

15 deg.  x 7.5 mm high regular triangles 

17.5 deg.  x 9.5 mm high regular triangles 

22.5 deg.  x 9.5 mm high regular triangles 

27.5 deg.  x 11.5 mm high regular triangles 
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Johnstone sample 6C 

12.5  + 0    

= 330 kPa 

= 321kPa/mm 

= 0.5 mm/min 

TEST No. M1b 

Bandsaw cut / gladwrap o'nite 

Initial nor. stress 

Normal stiffness 

Shear rate 

16/4/1992 

Typical Test Results - Triangular Asperities 

Asperity sliding 

Post peak sliding 

Asperity failure 
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Simple Sliding Model 

t  s   tan(   +  i ) n sl 
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Video image of regular 12.5o siltstone 

asperity at failure 

rotational 

failure 

toe of failure 

surface 

Concrete 

Rock 

At a critical shear displacement, the asperity can 

no longer support the applied load and fails. 

At a critical shear displacement, the asperity can 

no longer support the applied load and fails. 



Effective Roughness 

   If asperities are too steep, there will be no sliding and no 

dilation.  As a result,  the interface may have lower 

shear strength and will behave in a more brittle manner. 

There is an optimal level of roughness, beyond which 

no improvement to shear performance will occur. 

“Grooving” 



Asperities deform under load and reduces dilation 

(to less than the asperity angle) 
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dx (1- e).dx 
a wedge of compressed 

rock 

Unfailed rock 
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Concrete 

•  After failure of the asperity, there is a wedge of compressed 

rubble which effectively acts as a door-stopper            

Relative movement occurs between both the concrete and the wedge 

and the wedge and unfailed material.  This results in a residual 

strength greater than the residual strength of the rock.  

    

                

             

Behaviour after Failure  



5o asperity profile - measured vs predicted 
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10o asperity profile - measured vs predicted 

Test MJR_10_1 : 10  x 7.5mm high :  

  s = 304 kPa;  K  = 300 kPa/mm no 



15o asperity - measured vs predicted 
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22.5o asperity - measured vs predicted 
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Extension to rough profiles 
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Same basic behaviour but more complex ! 

The conditions at every asperity are the same 

Regular triangular asperity profiles 

The conditions at every asperity are different  

Rough asperity profiles 
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Elastic Modulus, E  

Asperity Deformation and Load Sharing 

s i 



Class A Profile - measured vs predicted 
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Class C Profile - measured vs predicted 
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Understanding Roughness 

• Impact is complex 

• Shape dependent 

• Optimal roughness is not to cause 

interlock but to generate maximum 

dilation 

• Scale dependent 

• Impact is complex 

• Shape dependent 

• Optimal roughness is not to cause 

interlock but to generate maximum 

dilation 

• Scale dependent 

0 10 20 30 40 50

Shear displacement (mm)

0

500

1000

1500

2000

S
h
e

a
r 

s
tr

e
s
s
 (

k
P

a
)

10 degree

12.5 degree

15 degree

17.5 degree

22.5 degree

27.5 degree

As asperity angle increases - strength and stiffness increases 

0 10 20 30 40

Shear displacement (mm)

0

300

600

900

1200

S
h
e
a
r 

st
re

ss
 (

k
P

a
)

Class A

Class B

Class C

Class D

Class E

Increasing 

roughness 

As roughness increases - strength and stiffness increase 

0 10 20 30 40 50

0

300

600

900

1200

x (mm)

t
(k

P
a)

Triangular profile

Irregular profile

0 10 20 30 40 50

0

300

600

900

1200

x (mm)

t
(k

P
a)

0 10 20 30 40 50

0

300

600

900

1200

x (mm)x (mm)

t
(k

P
a)

Triangular profileTriangular profile

Irregular profileIrregular profile



Scale effects 

q 

Standard deviation of angle, Sl,q 

l = 40 mm, S40,q = 3o 

l = 10 mm, S10,q = 5.5o 



Roughness Parameter vs Scale 
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If we want to represent real roughness as a set of statistics - e.g. 

standard deviation of asperity angle (or height), what length scale 

(chord length) is appropriate? 

If we want to represent real roughness as a set of statistics - e.g. 

standard deviation of asperity angle (or height), what length scale 

(chord length) is appropriate? 

Answer : All scales, but … 

in practical terms : it depends on the scale at which performance 

(often displacement) is being considered. 

Answer : All scales, but … 

in practical terms : it depends on the scale at which performance 

(often displacement) is being considered. 



Fine Approximation 

Medium Approximation 

Coarse Approximation 
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Some CNS direct shear test results 

•  Stiffness is systematically 

higher for finer profiles 

•  Peak shear strength does 

vary systematically 

•  Stiffness is systematically 

higher for finer profiles 

•  Peak shear strength does 

vary systematically 



Profiles with different geometry but 

similar statistics also perform in an 

essentially similar manner. 

Profiles with different geometry but 

similar statistics also perform in an 

essentially similar manner. 
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Impact of Roughness - Summary 

• All scales of roughness important 

• Small scale roughness impacts on initial 

stiffness  

• Large scale roughness impacts on peak 

shear strength  

• “Grooving” may not be advantageous 

• All scales of roughness important 

• Small scale roughness impacts on initial 

stiffness  

• Large scale roughness impacts on peak 

shear strength  

• “Grooving” may not be advantageous 



What are differences in roughness?    

Rock socket roughness is 

3D not the 2D approximation 

used in CNS laboratory 

testing 
. 

From laboratory test to rock socket 

3D socket roughness 

2D CNS roughness 

Patch contact 

and loading 

Strip contact 

and loading 



Patch-loading : intensive but localized 

effect about loaded patch both along 

pile axis and around circumference. 

Thickness is infinite. 

   

Displacements and load sharing between 

asperities in laboratory sample and field 

socket are different 

. 

From laboratory test to rock socket 

Plane-strain : extensive but moderate 

deformation effect about loaded strip 

and along axis of sample. Thickness 

of sample is finite. 

Take care when extrapolating CNS laboratory test 

results directly to field socket behaviour 



ROCKET  input parameters 

•  Shear strength parameters - c’ and ’ 

       - drained triaxial tests 

       - UCS and Hoek Brown 

•  Sliding friction angle - direct shear tests. 

•  Rock mass modulus and Poisson’s ratio 

- pressuremeter tests. 
- triaxial tests, correction for jointing ? 
- moisture content correlations, correction for jointing ? 

•  Socket diameter (structural strength requirements) 

•  Socket roughness 
- direct measurements 
- back calculated from load tests 
   

•  Initial normal stress - estimated 



Pile Load Test 
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Pile Load Test 

"Rocket"  prediction 
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Field validation 
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Field validation 

Bahrain 
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Field measurement of roughness 



Example Profiles 

SW, Cored 
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Some results in Siltstone 



Back-calculated from pile load tests, l = 50 mm 
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Does this explain the empirical load test data ? 
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Revisit : Parameters affecting Shaft Resistance 

Rock 
•  type, structure, weathering 

•  strength 

•  stiffness 

Construction 
•  socket diameter 

•  socket roughness  

•  socket cleanliness 

•  concrete pour 

•  contractor experience and expertise 

Affect strength 

and stiffness 

Affects shear strength 

of asperities, load 

sharing between 

asperities 

Affects socket dilation, normal 

stiffness and increase in normal 

stress, asperity deformation, 

load sharing between asperities 

Affects normal stiffness 

and increase in normal 

stress with dilation 

Major impact on interface 

behaviour wrt stiffness 

and strength of response 

Affects interface friction 

and interaction between 

asperities 

May impact on 

soundness and 

integrity of pile 



Summary 

• Understanding shaft resistance is of prime importance to 

predicting rock socketed pile performance 

• Shaft resistance is highly dependent on rock properties, socket 

roughness and construction effects.  Socket diameter also has 

an impact. 

• Be aware of differences between CNS laboratory testing 

performance and field socket performance 

• Sockets should be roughened – “grooving” may not be 

advantageous” 
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