

Dr Bob Whiteley
Senior Principal

Dam Geophysics: where to use it

- Site selection & feasibility
- Geotechnical characterisation
- Materials location & mapping
- Problems & Safety
 - leakage/contamination
 - unstable slopes
 - integrity

Advances in geophysical imaging parallel advances in medical imaging

Geophysics + Geotech.

Investigation

Method

Scale of Sample

Sample size/ Site size

Traditional drill & sample

mm to m

1: 1,000,000

+ geophysics

m

1:10,000

Geophysics supplements traditional methods & enhances ground knowledge

Geophysical Methods	Derived Parameters	General Relationships with other properties
Gravity	Mass excess/deficiency	Density
Magnetics	Magnetisation	Magnetic iron content
Electromagnetics	Electrical conductivity	Salinity, saturation, clay content, porosity
Radar	Dielectric constant	Fluid content
Resistivity	Electrical resistivity (=1/conductivity)	Salinity, saturation, clay content, porosity
Self Potential	Groundwater flow	Permeability
Seismic	Seismic velocity	Saturation, strength, density, stability
Nuclear	Radioactivity	Density, porosity, saturation
Thermal	Temperature	Groundwater/contaminant flow

Geophysical Response = physical property contrast

X

active volume

X

n = 2 to 5

1/distance (or depth) n

X

primary field

Type	Material Property	Order of Magnitude Variation
Geotechnical	Stiffness/strength	6
	Permeability	13
	Density	<1
Geophysical	Electrical conductivity	6
	Seismic velocity	1
	Seismic wave attenuation	4
Structural	Made to specification (e.g. steel)	

Geophysical Method	Examples of Applications to Dams
Gravity	Buried river channels, voids in karst
Magnetics	Igneous rocks, lithologies, faults & contacts
Electromagnetics	faults/contacts, leakage, groundwater contamination
Radar	Voids in concrete structures/tunnel lining
Resistivity	Faults & contacts, slopes, leakage, groundwater contamination
Seismic	Bedrock mapping, excavation, lithologies, fault & shears, slopes, strength, voids, liquefaction
Borehole Logging	Stratigraphy, fractures/voids, groundwater

"Nothing yel. ...How about you, Newton?"

Gravity

Application of *Gravity* to Dams

Site Characterisation

- Bedrock mapping in valley
- Sediment volume/stored water estimations
- Void & cavities in karst

Density of Natural Materials

Material	Density (gm/cm^3)
Air	~0
Water	1
Sediments	1.7-2.3
Sandstone	2.0-2.6
Shale	2.0-2.7
Limestone	2.5-2.8
Granite	2.5-2.8
Basalts	2.7-3.1
Metamorphic Rocks	2.6-3.0

GRAVITY

$$g = \frac{Gm_1}{r^2}$$

MAGNETICS

Application of *Magnetics* to Dams

Site Characterisation

- Identifying magnetic lithologies e.g. intrusions
- Mapping contacts & faults
- Locating and mapping igneous rock borrow areas

Internal component of the Earth's magnetic field

External component of the Earth's magnetic field

ROCK MAGNETISATION = INDUCED + REMANENT

 $\mathbf{\underline{M}} = \mathbf{k} \mathbf{\underline{F}}$

MAGNETIC METHODS

Magnetic Susceptibility k

properties of rock depend mainly on the concentration size, shape and dispersion of magnetite Magnetic

Magnetite content

Magnetic map of faulted basalt

Resistivity

Ohms Law

$$\mathbf{R} = \mathbf{V}/\mathbf{I}$$

RESISTIVITY (ρ)

$$\rho = \frac{RA}{L}$$
 ohm-metres

where $R = \frac{V}{I}$ ohms

CONDUCTIVITY (σ)

$$\sigma = \frac{G L}{A}$$
 Siemens/metre

where
$$G = \frac{I}{V}$$
 Siemens

Direct Current (DC) Resistivity

Archie's Law for Porous Media w/o clay

ρ_e = resistivity of the earth

Current souths p

\$\phi = \text{fractional pore volume (porosity)}\$

S = fraction of the pores containing fluid

 $\rho_w =$ the resistivity of the fluid

n, a and m are empirical constants

Application of Resistivity to Dams

Site Characterisation

- Mapping of lithologies
- Locating contact, faults, shears, voids
- Bedrock mapping in valley floor & sediment classification
- Locating & mapping clay borrow areas

Problems

- Identifying leakage and unstable zones in embankment walls & slopes
- Locating groundwater contamination

Electrical resistivity of earth materials

Direct Current (DC) Resistivity

Archie's Law for Porous Media w/o clay

ρ_e = resistivity of the earth

Current souths p

\$\phi = \text{fractional pore volume (porosity)}\$

S = fraction of the pores containing fluid

 $\rho_w =$ the resistivity of the fluid

n, a and m are empirical constants

Lithological & soils mapping with Electrical Resistivity Imaging

Karst Features/Voids

ERI in highly variable conditions

Resistivity Imaging for Dam leakage: Granite terrain

Application of Self Potential to Dams

Problems/safety

Identifying leakage inflow & outflow regions

Streaming Potential

caused by flow of a liquid with certain electrical properties under a pressure gradient through a membrane, pipe, capillary, or porous medium (with different electrical properties).

$$E_{k} = -\frac{1}{4\pi\eta} \cdot \zeta \cdot \Delta P \cdot k \cdot \rho$$

 E_k = resulting electrokinetic potential;

 $E_k > 0$ if higher potential is on the high pressure side

 ζ = adsorption potential of double layer between solid and solution

k = solution dielectric constant (= effective permittivitiy ε)

 ΔP = pressure difference (causing fluid flow through pore space)

ρ = electrical resistivity

η = viscosity

Self Potential & Resistivity

Application of *Electromagnetics* to Dams

Site Characterisation

- Mapping of lithologies
- Locating contact, faults, shears, voids
- Locating & mapping clay borrow areas
- Problems & Safety
 - Identifying leakage and unstable zones in embankment walls & slopes
 - Locating groundwater contamination

Electromagnetic Induction (EMI) Surveys

- Active electromagnetic induction techniques
- Applications

Digital recorders

Phase sensing circuits and

amplifiers

PRIMARY FIELD GROUND SURFACE

Receiver

Transmiter

- Profiling
- Sounding

EM-34

EM 34 profiles around margin

Possible leakage zone

Ground Penetrating Radar (GPR)

GPR - uses reflected electromagnetic pulses to sense below ground

Application of Radar to Dams

- Problems/Safety
 - Voids & defects
 - Foundation conditions

capacitor

Material

Air

t<mark>erial</mark>

1

Distilled Water 80

Fresh Water 80

Sea Water 80

Dry Sand 3-5

Saturated Sand 20-30

Limestone 4-8

Shales 5-15

Silts 5-30

Clays 5-40

Dielectric constant (K)

Granite

4-6

Radar reflection at interfaces

$$oldsymbol{K_1}$$
 $oldsymbol{K_2}$ Dielectric Constants

$$R = \frac{\sqrt{K_1} - \sqrt{K_2}}{\sqrt{K_1} + \sqrt{K_2}} \qquad \frac{K_1}{K_2}$$

Reflected energy = R x Incident energy

500 MHz GPR scan along tunnel liner

Enlarged GPR Image

Enlarged again

Drill depth	Recovered	Recovered	Cavity	Cavity	Core loss
	brick thick.	(total)		thick.	
1.90m	1.19m	1.74m	1.19-1.35m	0.16m	0.00m

120MHz GPR Antenna

– – Approx. extent of repair

Seismic Technologies

Seismic Refraction

Multiple Analysis of S-waves (MASW)

- Surface-to-Borehole Seismic (STBH)
- Crosshole Seismic (CH)

- Vertical Seismic S-wave Profiling (VSSP)
- Seismic Cone Penetrometer (SCPT)

$$V_s = \sqrt{\frac{\overline{G}}{\overline{\rho}}}$$

S-Wave

$$V_R = 0.9V_s$$

R-Wave

Poisson's Ratio and Seismic Velocities

$$\sigma = \frac{V_p^2 - 2V_s^2}{2(V_p^2 - V_s^2)}$$

Youngs Modulus and Seismic Velocities

$$E = \rho V_s^2 \frac{3\left(\frac{V_p}{V_s}\right)^2 - 4}{\left(\frac{V_p}{V_s}\right)^2 - 1}$$

P - Wave Velocities

Compression Wave Velocity, Vp (m/s)

SPT N-value	Geotechnical Classification	Seismic Velocity (km/s)
0 to 4	Very loose	<0.35 to 0.43
4 to 10	Loose	0.43 to 0.52
10 to 30	Medium dense	0.52 to 0.73
30 to 50	Dense	0.73 to 1.68
>50	Very dense	>1.68

SOILS (in situ)
Standard

Penetration

Test

ROCKS (lab.)
Unconfined
Compressive
Strength

UCS (MPa)	Geotechnical Classification	Seismic Velocity (km/s)
< 10	Low strength rock	< 2.0
10 to 20	Medium strength rock	2.0 – 2.5
20 to 60 High strength rock; stratified, jointed		2.5 – 3.5
> 60	Very high strength rock; stressed	3.5 - 7.0

Nafe-Drake Curve

$$V_{\mathfrak{p}}$$

$$V_{p} = \sqrt{\frac{\overline{K} + \frac{4}{3}\overline{G}}{\overline{\rho}}}$$

Application of Seismic Refraction to Dams

Site Characterisation

- Mapping of lithologies
- Excavation conditions
- Locating contact, faults, shears, voids
- Bedrock mapping in valley floor
- Locating & mapping hard rock borrow areas

Problems & Safety

- Unstable zones in embankment walls & slopes
- Seismic & Liquefaction assessments

Seismic refraction uses critically refracted P-waves Waves

P-wave velocity & excavation

D9N Ripper Performance

- Multi or Single Shank Ripper
- Estimated by Seismic Wave Velocities

Velocity Vp in m/s.

KWAE NOI RIVER

SEISMIC REFRACTION STUDY Right abutment

FINAL INTERPRETED SECTION

Application of *Shear Wave Methods* to Dams

Site Characterisation

- Conditions at buried valley margins
- Problems & Safety
 - Unstable zones in embankment walls & slopes
 - Seismic & Liquefaction assessments

S - Wave Velocities

Shear Wave Velocity, V_s (m/s)

Geotechnical Classification	S-Wave Seismic Velocity (m/s)
Very soft soils	<100
Soft soils	100 to 300
Stiff soils	200 to 500
Very Stiff soils	500 to 900
Rock	>900

Rayleigh (R) wave motion

Counterclockwise elliptical motion at surface

http://www.kettering.edu/~drussell/Demos/waves/wavemotion.html

Energy Source MASW Field Equipment Surface Wave Propagatio 10's to 100's of feet Soil

Combined P & S wave seismic sections

Application of *Borehole Seismic Tomography* to Dams

Site Characterisation

- Detailed mapping of weak zones
- Grouting effectiveness
- Bedrock mapping across river

Problems & Safety

- Unstable zones in embankment walls & slopes
- Voids in concrete dams

PROCESSING

RECONSTRUCTED CROSS-SECTION

A 3D IMAGE IS CONSTRUCTED FROM A SERIES OF SLICES IN 2D IMAGE PLANES

Borehole Seismic

SUBS FIELD SET-UP

Single Borehole - Site Uniformity Seismic (SUBS) Test

Seismic raypath section – uniform earth

- is calibrated at the borehole with a Vertical Seismic Profile (VSP)

Vertical Seismic Shear Wave Profiling (VSSP)

Crosshole Shear Wave Testing (CHST)

