5. RISK TO TBM TUNNELLING FROM FAULTS




INTRODUCTION

 After a tunnel collapse or TBM cutter-head blockage in a
tunnel, it is usually clear to the experienced tunnelling
engineer what the cause(s) of the collapse or blockage
were.

« Before the event it would often be necessary to be
exceptionally pessimistic to have foreseen the
‘unthinkable’.

e The ‘unthinkable’is often the combination of several
adverse factors, which separately are ‘expected’ though
serious events, but when combined are, quite logically,
‘unexpected events’.




SOME OF THE (OBVIOUS) HIGH-RISK FACTORS

significant fault zones

 adversely oriented planar clay-coated joints

e Vvery abrasive rock

o very low stress, very high stress
e exceptional stress anisotropy
 high volumes of stored water

* high permeability



A short list of TBM tunnels that suffered (catastrophically) from
multiple unexpected events

1.  Unpredicted fault swarm parallel to valley-side, together
with very high (and fault-eroding) water pressures, at
depths of 700-900m. TBM tunnel (diameter 5m) eventually
ran sub-parallel to individual faults, causing delays of at
least half a year for each 1m wide fault (AR = 0.005m/hr).

TBM finally abandoned; new contractor for D+B from other
end of tunnel.

(Pont Ventoux HEP, N. Italy).
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KEY FEATURES WERE MISSED IN THE SITE INVESTIGATION —
BUT THE TUNNEL IS DEEP



FAULT ZONE STOPPAGES---AND MASSIVE WATER INFLOWS




STRESS-SLABBING
HIGH WATER PRESSURES

(IN ADDITION TO FAULT ZONEYS)




A SIX MONTH DELAY AT JUST ONE FAULT
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1. Alternating massive quartzite (minimum PR = 0.2m/hr),
talcy sheared phyllites (‘over-excavating’ and stand-up
time limitations), and fractured quartzite ‘aquifer’. Early
blow-out of 4000 m3 rounded gravels at 750m depth
and maximum 70 m3/minute water in-rush. Eventual
abandonment of the 8m diameter TBM in a fault zone;
D+B from other end of tunnel after years of delay.

(Dul Hasti HEP Kashmir).



THE ALTERNATING QUARTZITE AND PHYLLITE
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Fig. 41 Blow-out location for 4000 m’ of sands and gravels and peak water inflows of
70 m’/min at Dul Hasti HEP, Kashmir, Deva et al., 1994,
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Figure 18 Deva et al. (1994) recordings of pressure decay in 8.4 m TBM tunnel driven in

fractured quartzite and phyllite




THE SITE OF THE BLOW-OUT....SOME YEARS LATER....
NOW A NEW CONTRACTOR




.OVER-EXCAVATION DUE TO
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1. ‘Unexpected’ combination of fault zones, abrasive quartzites
and meta-sandstones, clay-coated joint sets and exceptional
water pressures and inflows. At least twelve D+B by-passes
of TBM pilot tunnel during 10 years of delays. Squeezing
deformation of pilot tunnel from 26m distant main (11.7m)
TBM. Fault zone collapse destroyed one 11.7m TBM, other
used to mine invert, needing D+B cutter-head releases and
D+B mining and support of top-heading. Great difficulties to
drill pre-injection holes. Eventual completion (after 12 years)
by mainly D+B from other end of tunnel.

(Pinglin Tunnels, Taiwan).
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The 12th by-pass of the pilot TBM to release the cutter-head, after 10
years of tunnelling problems (2002).




BY-PASS SITUATION FOR THE DOUBLE-SHIELD (11.7m) TBM

PINGLIN LARGE TEM

Fractured rock
caving in materials
shoterete backfill

consolidation groutirng

; ey r

¢=2m central pilot —

\—free the trapping shield

Shows risky means to free TBM cutter head or shield Shen et ol. (798




ONE 11.7m TBM IS REMAINING, ONE IS DESTROYED (2002)




1. Unexpectedly high water inflows and unexplored
regional fault zone due to limited access for marine
seismic at container port. Sub-sea TBM of 3.3m
diameter took three times longer than contracted, even
after abandonment by first contractor.

(Tunnel F, SSDS, Hong Kong).
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NOTE DIFFICULT PRE-GROUTING ‘GEOMETRY’

[

Fig. 36. The unfavourable position of the Tamrock drills, and measures used to collar closer to
the face. (Skanska photos)
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SKETCH OF REGIONAL FAULT ZONE and 'pilot’ borehole drilled
backwards from forward shaft

waged #1(or2?) CowTAWER PORT
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THE 730m OF CORE WAS Q-HISTOGRAM LOGGED TO PRODUCE
STATISTICS OF FIVE ROCK CLASSES
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EXAMPLES OF FIVE ROCK CLASSES and their Q-parameter statistics



CASE RECORD DATA FROM 140 TBM (Barton, 2000).
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THE GENERAL TRENDS OF
DECELERATION WITH LENGTH
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Penetration rate (PR)
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Relative difficulty of ground for TBM use
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USE OF Qg METHOD TO ESTIMATE PROGRESS WITHOUT INJECTION
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USE OF Q.g,, METHOD TO ESTIMATE
PROGRESS WITH INJECTION
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Detail
Seismic velocity sonde

AN IDEAL GOAL.... V, and Q-value
far with the TBM !



IN OTHER WORDS-----AVOIDANCE OF THESE TYPES OF DELAYS
(which reduce AR, and increase the negative gradient (-)m of
deceleration)
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EARLIER IN THE TUNNEL, THIS TBM WAS BREAKING RECORDS IN SHALE




BUT SOMETIMES THE TBM IS THE PILOT HOLE'!

SHIMIZU 3, TOMEI 2, JAPAN



1880 (!) PILOT TBM in chalk marl (¢, = 4 to 9 MPa)




THE CHALK MARL WAS NOT EXPECTED TO BE JOINTED !

CHALK MARL

THE TBM HAD GREAT DIFFICULTIES IN THE EARLY KILOMETERS, DUE TO
SUCH JOINTS ( weathering and water pressure and salt water and block-falls
..... all added risk



DON'T AUTOMATICALLY ASSUME THAT LONG TUNNELS NEED TBM —
this will also reduce risk !
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ONE MUST BE CLEAR ABOUT THE ROCK QUALITY STATISTICS....

200 - Average rates of advance for TBM =
decline more strongly with increased
tunnel length or time of measurement
than they do in D+B tunneling.
150 |
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BEFORE CHOOSING THE TBM ALTERNATIVE.....FOR THE WHOLE TUNNEL



BAD FOR TBM TUNNELLING ! BAD FOR D+B and TBM TUNNELLING !

Q =100/0.5 x 4/0.75 x 1/1 Q =10/20 x 1/8 x 0.5/ 20
Q = 1000 (or better) Q =0.001 (or worse)



SEISMIC MEASUREMENTS FOR REDUCING RISK....

EFFECT OF TIME, INSUFFICIENT SUPPORT, DEPTH on V,
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(Is the deeper rock better quality.....

or just more highly stressed?)




OVERBURDEN STRESS (MN/m?)
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Gjovik Olympic cavern.....see pre-investigations

(Photo from Veidekke A/S, one of the contractors)




Cores were logged from either side of the seismic cross-hole tomography
profiles (NGI, Barton et al. 1991)
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the velocity next to the boreholes was increasing.....up to 2 km/s



An empirical model for interpreting depth effects

Seismic velocity (km/sec.

Q. «—> V, «—> M Approx.
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Velocities are ‘all’ predicted to be high at depth, but different rock
qgualities are differentiated to a degree that should still be useful




PRE-GROUTING...... FOR REDUCING RISK

Excavation Cycle Completed Prior to Grouting Cycle

Outer reduced-permeability
zone grouted using “Blockg

Permanent strengthened, low Extended, strengthened, low
permeability zone using stable permeability zone
ultrafine/microfine cementitious grout.

(One of ELKEM’s Multigrout concepts)




REDUCING RISK BY PRE-INJECTION
MEASURES....INCREASE Q 7?7?77

Rook classes
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testing
=eleciricol seclion
conductivily (1,5m)

water
enfrance packer (0,75m)

_olgﬁld'""‘“' W‘\
Serer(0,5m) SR - O

borehole
waoll

pressure
Iransducer

s

T BEFORE GROUTING

* AFTER GROUTING

mon

Kman
LEVEL (=]}
7007 sA-m SR-IL SR Kemin
6954 e
': SR-I SR gp.ag 7| SR-I sl:—l.l
690 s-08 " / S [ Geometric Tensor
y Vi s i 3| { M\ Before Grouting
N Vi i | \ Hydroulic Tensor o o8 0® O ing
P { sl A r
R i £ ~ " e
\ & r
o s RS fi
680+ y ¥ ~
3 [ T )
N H 4 ']
675 | A= A )
H o w w )
A" ";’ {em/sl Kmax (before) 0.8534 x 10°2
e . = 17.36
L = ) - Kmax (after) 0.4917 x 103
T w8 Test interval n® 5
sR I Borehole n2 IL Kmin (before) 0.0872 x 102
—---= Before grouting o = 11.85

i X 5 3
—— After grouting Kmin (after) 0.0736 x 10—

IPT multi-probe-multi-hole measurement of grouting
(Quadros and Correa Filho, 1995)




effective RQD increases e.g. 30to 50%

effective J, reduces e.g. 9to 6
I, increases e.g. 1to2 (changed set)*
Ja reduces e.g. 2tol (changed set)*
| - increases e.g. 0.5t00.66 (perhapsJw=11is
achieved)
_p ting O ~ 30 1 0.5
efore pre-grouting —g e X ——
9 2 )
= 0.3 .
Af . o 50 2 0.66
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e 6 1 lor2.5
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Before pre-grouting After pre-grouting (alternative)

Q =03 Q =11 (Q = 4-4)
Vo =3.0 km/sec Vp=4.5 km/sec (Vp=4-1) km/sec
L ~33x10"m/s L=01(10%m/s) (L=02)2x10°m/s

M =7 GPa M = 22 GPa (M =16) GPa

P, =14 tnf/m’ Pr=4-5tnf/m*  (P,=61) tnf/m’

A =33 mm A =0-9 mm (A =2-3) mm
Without pre-grouting With pre-grouting (alternative)
B 1-5 m/sec B24mclc B2-1mc/c

S(fr) 12 cm S (fr) 4 cm S (fr) 5 cm
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CONCLUSIONS

» High risk factors are often combined in an ‘unexpected’
combination when TBM get stuck

» Risk can be reduced by appropriate use of standard
techniques (geological logging and rock mass
characterization, core logging, hydraulic testing, seismic
profiles between holes)

» When tunnel depth is great each of the above require
‘extrapolation’ and risk increases, making probe drilling (even)
more important

» The assumption that TBM go faster than drilling-and-blasting
In long tunnels introduce several increased risks:

a) adverse rock quality statistics (extreme-value problem)

b) need ‘central’ rock qualities to improve TBM deceleration (-)m



c) less favourable ‘problem solving’ conditions for the contractor in
TBM tunnel

Seismic velocity probing needs careful correction for
stress/compaction effects as V, may increase without rock
qguality improvements

A way to improve effective rock quality and control water, and
therefore to reduce risk, is to (try to) perform pre-injection
ahead of the face
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