

LECTURE 6

RESPONSE OF PILES TO GROUND MOVEMENTS FROM TUNNELLING & EXCAVATION

OUTLINE

- Characteristics of pile response near tunnels
- Design charts for single piles
- Comparisons with test results
- Response of pile groups
- Characteristics of pile response near excavations
- Design charts for single piles
- Measured & computed behaviour

TUNNELLING OPERATIONS

ANALYTICAL METHOD FOR MOVEMENTS (Loganathan & Poulos, 1998)

FIGURE 1:- Ground Deformation Patterns and the Ground Loss Boundary Conditions

ANALYTICAL METHOD (Loganathan & Poulos, 1998)

Settlement at depth z:

$$S_{z} = \varepsilon_{0}R^{2} \left[-\frac{z - H}{x^{2} + (z - H)^{2}} + (3 - 4v) \frac{z + H}{x^{2} + (z + H)^{2}} - \frac{2z[x^{2} - (z + H)^{2}]}{[x^{2} + (z + H)^{2}]^{2}} \right].$$

$$\exp \left\{ -\left[\frac{1.38x^{2}}{(H + R)^{2}} + \frac{0.69z^{2}}{H^{2}} \right] \right\}$$

 ε_0 = average ground loss ratio

ANALYTICAL METHOD (Loganathan & Poulos, 1998)

Surface Settlement:

$$S_{z=0} = 4\varepsilon_0 (1-\nu)R^2 \frac{H}{H^2 + x^2} \exp \left[-\frac{1.38x^2}{(H+R)^2} \right]$$

 ε_0 = average ground loss ratio

ANALYTICAL METHOD (Loganathan & Poulos, 1998)

Horizontal Movement at depth z:

$$S_{x} = -\varepsilon_{0}R^{2}x \left[\frac{1}{x^{2} + (H - z)^{2}} + \frac{3 - 4v}{x^{2} + (H + z)^{2}} - \frac{4z(z + H)}{(x^{2} + (H + z)^{2})^{2}} \right]$$

$$\cdot \exp \left\{ -\left[\frac{1.38x^2}{(H+R)^2} + \frac{0.69z^2}{H^2} \right] \right\}$$

SOME CHARACTERISTICS OF PILE RESPONSE NEAR TUNNELS

Parametric Study

- Tunnel
 - D = 6 m
 - H = 20 m
 - Average volume loss = 1, 2.5, 5 %
- Pile:
 - d = 0.5 1.2 m
 - L = 15, 20.25 m
 - -x/H = 0 to 2

BENDING MOMENT DISTRIBUTIONS

Largest moment occurs at or near level of tunnel axis

Note major effect of ground loss

LATERAL DEFLECTION OF PILE

AXIAL INDUCED FORCE IN PILE

Note tension in upper part of pile due to "stretching" by ground settlement increasing with depth

COMPARISONS WITH FLAC

Fig. 6. Comparison of tunnelling-induced bending moment

Fig. 7. Comparison of tunnelling-induced axial down drag force

COMPARISONS WITH FLAC

Comparison of tunnelling-induced lateral deflection of pile

- GEPAN analysis) is generally conservative compared to FLAC
- Similarly for ERCAP & PIES
- General characteristics of behaviour are very similar
- Boundary element programs are much easier & quicker to run than FLAC.

3-D FINITE ELEMENT ANALYSES Mroueh and Shahrour (2002)

3-D FINITE ELEMENT ANALYSES Mroueh and Shahrour (2002)

Figure 3. Three-dimensional finite element mesh used for the pile/tunneling interaction. (3111 20-node isoparametric hexahedral elements; 14 300 nodes; 38 222 dof.).

3-D FINITE ELEMENT ANALYSES Mroueh and Shahrour (2002)

Details of Problem Analyzed:

- Tunnel lining -E = 35000 MPa
- Soil:
 - Es = 30 MPa
 - c = 5 kPa
 - $\phi = 27 \text{ degrees}$
 - $\psi = 5$ degrees
- Pile:
 - L = 22.5 m
 - d = 1.0 m
 - $\blacksquare Ep = 23500 MPa$

3-D FINITE ELEMENT ANALYSES Lateral pile deflections

Figure 5. Pile deflection due to tunneling (reference example): (a) lateral section and (b) longitudinal section.

3-D FINITE ELEMENT ANALYSES Axial force and bending moments

- •Maximum axial force and lateral moment values occur when face is past pile
- •Maximum longitudinal moment values occur when face is level with pile

3-D FINITE ELEMENT ANALYSES

Effect of tunnel depth on axial force & bending moments

 Maximum force and moment occur when pile tip is at or just below tunnel invert

DESIGN CHARTS FOR SINGLE PILES NEAR TUNNELS

DESIGN EQUATIONS

> Lateral Response

$$\blacksquare M_{\text{max}} = M_{\text{b}}.k_{\text{cu}}^{\text{m}}.k_{\text{d}}^{\text{m}}.k_{\text{lp}}^{\text{m}}$$

> Axial response

$$- +P_{max} = P_b.k_{cu}^p.k_d^p.k_{lp}^p$$

BASIC CURVES

CORRECTIONS FOR SHEAR STRENGTH

CORRECTIONS FOR PILE DIAMETER

CORRECTIONS FOR RELATIVE PILE LENGTH

GEOTECHNICAL CENTRIFUGE (UWA)

CENTRIFUGE TEST SETUP

CENTRIFUGE MODEL TEST SETUP

CENTRIFUGE MODEL TEST SETUP

COMPARISON OF SOIL SETTLEMENTS

COMPARISON OF LATERAL SOIL MOVEMENTS

Fig. 14. Comparison of interal soil movements 5.5 m from the tunnel: (a) test 1; (b) test 2; (b) test 3

MAXIMUM PILE MOMENTS

Fig. 19. Tunnelling-induced maximum bending moments for varying ground loss values

BENDING MOMENT DISTRIBUTIONS

Induced Bending Moment (kNm)

INDUCED LATERAL PILE MOVEMENT DISTRIBUTIONS

Induced Lat. Movement (mm)

MEASURED AND COMPUTED PILE SETTLEMENTS

MEASURED AND COMPUTED PILE DOWNDRAG FORCES

MEASURED AND COMPUTED LATERAL PILE MOVEMENTS

MEASURED AND COMPUTED PILE MAXIMUM MOMENTS

RESPONSE OF PILE GROUPS

Fig. 9. Pile group adjacent to tunnelling—the basic problem analysed

Typical example of 4-pile group compared with a single pile at the same distance from the tunnel.

RESPONSE OF PILE GROUPS

Fig. 10. Comparison of the settlement of a pile in a group and a single pile at equal distance from the tunnel axis

Fig. 11. Comparison of the lateral deformation of a pile in a group and a single pile

Settlements

Lateral deflections

RESPONSE OF PILE GROUPS

Fig. 13. Comparison of the induced axial forces on a pile in a group and a single pile

Induced Axial Force

- Settlements and lateral deflections of group & single pile are similar
- Axial forces in group less than an a single pile
- Thus, is conservative to use single pile solutions for a small group

MAIN CONCLUSIONS ON EFFECTS OF TUNNELLING

- Tunnelling can induce significant deflection and forces in piles
- Effects are most severe when pile is near tunnel
- Largest effects are when pile tip at or near tunnel invert
- Group effects reduce axial force and bending moments
- Pile cap condition has little effect can usually assume free-head condition, unless pile is restrained.

RESPONSE OF TUNNEL TO PILE GROUP LOADING - Settlement

Figure 1. Geometric parameters in the modelling of piletunnel interaction

Figure 10. The influence of clear distance between pile and tunnel on tunnel crown settlement

RESPONSE OF TUNNEL TO PILE GROUP LOADING - Distortions

Figure 8. The influence of the clear distance between piles and tunnel, S3 on tunnel distortions.

- a) increase of horizontal diameter
- b) reduction of vertical diameter

(D = 4.146 m)

CASE HISTORY APPLICATION - UK

FIG. 9. Case History Studied Tunneling for Angel Underground Station (after Mair (1993) and Lee et al. (1994)] (a) Section through Angel Escalator Tunnel and Building Foundations; (b) Undrained Shear Strength

ANALYSIS vs MEASUREMENT

FIG. 10. Lateral Pile Deflection for Case History Studied

PILES NEAR AN EXCAVATION

PILES NEAR EXCAVATIONS

BASIC CASE FOR EXCAVATION ANALYSIS

TYPICAL PILE RESPONSES

FIG. 3. Computed Lateral Wall and Soil Movement

MAXIMUM LATERAL SOIL MOVEMENT vs DISTANCE

FIG. 4. Maximum Lateral Soil Movement versus Distance from Excavation Face

BENDING MOMENT vs DISTANCE

FIG. 6. Maximum Bending Moment versus Distance for Basic Problem

DETAILED PILE RESPONSES FOR BASIC PROBLEM

FIG. 5. Pile Response for Basic Problem: (a) Deflection Profile; (b) Bending Moment Profile

SENSITIVITY STUDY (Goh et al, 1996)

Table 1. Effects of variation of soil properties

	Variation of
Parameter	Max. BM
Reduce G/c _u of soft clay by 2 times	-5%
Increase G/c _u of soft clay by 2 times	+4%
Increase G/c, for stiff clay by 2 times	0%
$p_y = 10.5c_u$ for soft and stiff clay	+6%

DESIGN EQUATIONS FOR LATERAL RESPONSE

MAXIMUM MOMENT:

 $M_{\text{max}} = M_{\text{b}}.k_{\text{cu}}.k_{\text{d}}.k_{\text{Nc}}.k_{\text{Elw}}.k_{\text{k}}.k_{\text{s}}$

MAXIMUM DEFLECTION

Basic values M_b , ρ_b depend on distance from excavation.

Correction factors are for undrained shear strength, pile diameter, excavation depth (stability number), wall stiffness, strut stiffness, strut spacing respectively

BASIC CURVES FOR BENDING MOMENT

FIG. 7. Basic Bending Moment versus Distance from Excavation Face

CORRECTION CURVES FOR BENDING MOMENT

BASIC CURVES FOR DEFLECTION

FIG. 9. Basic Deflection versus Distance from Excavation Face

CORRECTION CURVES FOR DEFLECTION

MEASURED & COMPUTED BEHAVIOUR – CASE 1

FIG. 13. Pile Bending Moment Profile for Case 1

MEASURED & COMPUTED BEHAVIOUR – CASE 2

FIG. 14. Pile Response for Case 2: (a) Deflection Profile; (b) Bending Moment Profile

EFFECTS OF EXCAVATION-INDUCED MOVEMENTS ON PILES

Fig. A Estimated and Measured Maximum Pile Bending Moments and Deflections

CASE STUDY: TILTED BUILDING IN INDONESIA

BUILDING AFFECTED BY EXCAVATION

EFFECT OF CONSTRUCTION OPERATIONS ON A BUILDING

- 9-storey building in Indonesia
- Uncontrolled excavation near one corner
- Building tilted and continued to tilt
- Eventually demolished
- Study made of possible causes of the tilting
 - Various hypotheses examined
 - —Soil-structure analysis carried out

GEOTECHNICAL PROFILE

Figure 15 Summary of Engineering Properties

EVIDENCE OF GROUND MOVEMENTS

STRUCTURAL CAPACITY OF PILES

Conclusion:

Induced moment due to excavation was sufficient to cause structural failure of the piles near the uncontrolled excavation.

Figure 18 Structural Capacity of Office Building Piles

EXCAVATION FAILURE - MALAYSIA

THE CONSEQUENCES FOR A NEARBY BRIDGE

Relative movement