LECTURE 3 # LATERAL LOADING OF PILES ### **OUTLINE** - Ultimate lateral capacity - Lateral deflection - Methods of analysis - Solutions based on elastic continuum - Non-linear analyses - Assessment of parameters - Interaction & group effects # ULTIMATE LATERAL CAPACITY OF PILES #### **SIGNIFICANCE** - Usually lateral deflections govern pile design for lateral loadings - BUT, ultimate lateral resistance may be important for: - Short piers - Long slender piles - Non-linear analysis of deflections # FAILURE MODES & HEAD CONDITIONS #### **SHORT PILE MODE:** Failure of the supporting soil #### LONG PILE MODE: Structural failure or yielding of the pile itself. Both modes need to be analyzed, and the more critical mode established. #### **HEAD CONDITIONS** - 1. Free or unrestrained head no head restraint - 2. Fixed head or restrained head No rotation of head. ### GENERAL PRINCIPLES OF ANALYSIS #### Consider: - Horizontal load equilibrium - Moment equilibrium - Need to specify: - Mode of failure - Distribution of ultimate lateral pilesoil pressure ### SIMPLE CASES – FREE HEAD - Constant p_y with depth (e.g. O/C clays) - Linearly increasing p_y with depth (e.g. N/C clays, sands) # ALTERNATIVE PRESENTATION OF SIMPLE SOLUTIONS H-M "yield" Surface Rigid free-head pile # ULTIMATE LATERAL PILE-SOIL PRESSURE - CLAYS #### Usually adopt $$\mathbf{p_y} = \mathbf{N_c} \cdot \mathbf{c}$$ N_c varies from 2 at the surface to 8 – 12 at z/d greater than 3 (typically, 9 is used) # ULTIMATE LATERAL PILE-SOIL PRESSURE – SANDS & c-\phi SOILS Usually adopt $$p_y = F. p_p$$ where $F = 3 - 5$ Alternatively, use theory of Brinch Hansen $$\mathbf{p_y} = \mathbf{q.N_q} + \mathbf{c.N_c}$$ #### **BROMS' THEORY** - Probably the most widely-used method. - Relies on statics. - Considers short & long-pile failure modes. #### **Analyses Available:** - Cohesive soils - Short & long pile failure unrestrained head - Short & long-pile failure restrained head - Cohesionless Soils - Short & long pile failure unrestrained head - Short & long-pile failure restrained head # BROMS' THEORY FOR PILES IN CLAY Short Pile Long Pile - Assume "dead" zone to1.5d below surface - Assume $p_y = 9c$ below this depth - Employ statics to obtain failure load for short-pile and long-pile cases Failure modes for free-head pile # BROMS' THEORY FOR PILES IN CLAY Short Pile Intermediate Pile Long Pile Failure modes for fixed-head pile ### BROMS' THEORY FOR PILES IN CLAY – ULTIMATE LATERAL LOAD Need: For soil - c_{u} For pile M_{yield} L D e SHORT PILE FAILURE MODE LONG-PILE FAILURE MODE #### **ASSUMPTIONS:** - Ignore active earth pressure behind wall - Assume shape of pile section does not affect py - Soil reaction below point of rotation is represented by a point load (to simplify algebra) - $p_y = 3p_p$ ### BROMS' THEORY FOR PILES IN COHESIONLESS SOILS – FAILURE MODES Free Head Pile Fixed Head Pile ## BROMS' THEORY FOR PILES IN COHESIONLESS SOILS – FAILURE LOAD Short Pile Mode Long Pile Mode Need: For soil - $\mathbf{K}_{\mathbf{p}}$ γ For pile - Myield L D e ## BROMS' THEORY – EVALUATION (Kulhawy & Chen, 1995) ### BROMS' THEORY – EVALUATION (Kulhawy & Chen, 1995) | Data Type | $Calc./Msd$ $Limit\ Load$ H_L | Calc. / Msd. Ult. Load H_h | |---|---------------------------------|------------------------------| | Undrained lab
+ field data
(68 tests) | 0.78 | 0.50 | | Drained lab + field data (65 tests) | 1.38 | 0.89 | H_L = load for initial failure or yield H_h = hyperbolic extrapolation for ultimate load In general, Broms' method appears to be moderately conservative # PILE IN LAYERED COHESIVE SOIL Again, consider short- and longpile failure modes. Obtain failure load via statics. # PILE IN LAYERED COHESIVE SOIL Fig. 5. Short-Pile Failure: Free-Head Pile. Quadratic equation for ultimate lateral load capacity: $$aH^{*2} + bH^* + C = 0$$ where $$H^* = H/(p_2dL)$$ $M^* = M_y/(p_2dL^2)$ $\alpha = p_1/p_2$ $\beta = L_1/L$ $\gamma = \zeta/L$ Coefficients a, b, c given by Poulos (1985) #### PILE GROUPS - Take group capacity as lesser of: - Sum of individual pile capacities; - Capacity of block containing piles + soil. - Need to consider both short-pile and long-pile modes for single piles. - Consider only short-pile mode for block. - DO NOT USE Broms' solutions for blocks in clay! "Dead zone" of 1.5B is not realistic. - Suggest use of solutions for uniform p_y, with a smaller "dead" zone (via an eccentricity of load), or solutions of Fleming et al (1992).. # LATERAL DEFLECTION OF PILES #### METHODS OF ANALYSIS #### 1. SUBGRADE REACTION METHOD Soil modelled as series of independent springs (linear or nonlinear). A point in the soil only deflects if it has stress acting on it. Therefore, this model does not consider stress transmission. $$\rho(i,j) = 0 \qquad \text{for } i \neq j$$ $$\rho(i,j) = p(j)/k(j) \quad \text{for } i = j$$ #### 2. ELASTIC - BASED METHOD Soil modelled as an elastic mass. Allowance is made for soil yielding by specifying limiting values of pile - soil pressure at various points along the pile. $$\rho(i, j) = p(j) \cdot d \cdot I(i, j) / Es(i)$$ where I (i, j) = displacement influence factor, evaluated from Mindlin's equations. #### 3. FINITE ELEMENT METHOD Requires 3 - Dimensional analysis for proper nonlinear analysis. ### METHODS OF ANALYSIS #### ADVANTAGES AND DISADVANTAGES OF ALTERNATIVE METHODS OF ANALYSIS | METHOD | ADVANTAGES | DISADVANTAGES | |--------------------------|---|---| | Subgrade Reaction | Simpler analysis Any type of "p - y" pile - soil response can be analysed Considerable experience in use & evaluation of parameters | Soil "spring" stiffness is dimension - dependent Cannot consider group action | | Elastic - based analysis | Can analyse interaction
between piles and
consider group behaviour
can allow for effect of cut
or slope near pile
Can extend to batter piles
Can use to analyse effect
of external soil
movements | Only limited experience in practical use Uncertainties remain in evaluation of relevant soil | ### SUBGRADE REACTION THEORY #### **Linear Analysis** - Soil "spring"behaviour: - $\mathbf{p} = \mathbf{k} \cdot \mathbf{p}$ - Usual cases: - k = constant - $k = n_h \cdot z / d$ ### **Dimensionless Parameters:** 1. k=constant $$\beta = (k_h.d / E_pI_p)^{1/4}$$ $Lcr = 2.5 / \beta$ 2. Linearly Varying k $$T = (EpIp / nh)1/5$$ $$Lcr = 4T$$ ### NONLINEAR "p-y" ANALYSES - Widely used, both onshore and offshore - Uses empirical relationships between pressure p and deflection r at a point on the pile - These are used in a beam analysis to obtain loaddeflection curves for the pile ### TYPICAL "p-y" CURVES - CLAY Fig. 6.42 Determining shape of p-y curve in soft to firm clay (after Matlock (6.16)) $$x_r=6d /$$ $(\gamma d/c_u +J)$ $J=0.5 \text{ soft clay}$ $=0.25 \text{ stiff clay}$ $$p_u = N_c.c_u.d$$ $$y_c = 2.5\varepsilon_c.d$$ ϵ_c =0.02 soft clay; 0.0005 for brittle & stiff clay ### CONTINUUM SOIL MODEL E_o = Pile modulus Ip = Pile moment of inertia Es = Soil Young's modulus (uniform soil) v_s = Soil Poisson's ratio G = Soil shear modulus k = Modulus of subgrade reaction N_h = Rate of increase of Young's modulus with depth n_h = Rate of increase of subgrade reaction modulus with depth #### For linear theory: - Components due to shear & moment can be superposed - Critical length exists (as for subgrade reaction theory) - Need accurate assessment of soil parameters near surface - Soil characterized by: Dimensionless - Young's modulus E_s - Ultimate lateral pressure p_y - Cases: - Uniform E_s & p_y - Linearly varying E_s &p_y (Es = Nh.z) - DimensionlessParameters: - Flexibility Factor $$\blacksquare \mathbf{K}_{\mathbf{R}} = \mathbf{E}_{\mathbf{p}} \mathbf{I}_{\mathbf{p}} / \mathbf{E}_{\mathbf{s}} \mathbf{L}^4$$ • $$K_N = E_p I_p / N_h L^4$$ Critical Length $$L_c/L = 4.44.K_R^{1/4}$$ $$L_c/L = 3.30 K_N^{1/5}$$ #### 1. Constant Modulus With Depth $$\rho = \frac{H}{E_s L} I_{pH} + \frac{M}{E_s L^2} I_{pM}$$ $$\Theta = \frac{H}{E_S L^2} I_{\Theta H} + \frac{M}{E_S L^3} I_{\Theta M}$$ $$f_r = \frac{H}{E_0 L} I_{pf}$$ (Fixed-head) #### 2. Linearly Increasing Modulus With Depth $$\beta = \frac{H}{N_h L^2} I'_{\rho H} + \frac{M}{N_h L^3} I'_{\rho M}$$ $$\Theta = \frac{H}{N_h L^3} I'_{\Theta H} + \frac{M}{N_h L^4} I'_{\Theta M}$$ $$P_F = \frac{H}{N_h L^2} I'_{pF}$$ (Fixed-head) **IGURE 8.13** Values of $I_{\rho H}$ —free-head floating pile, constant soil addulus. **IGURE 8.14** Values of $I_{\rho M}$ and $I_{\theta H}$ —free-head floating pile, contant soil modulus. FIGURE 8.15 Values of $I_{\theta M}$ -free-head floating pile, constant soil modulus. IGURE 8.19 Influence factor $I_{ ho F}$ -fixed-head floating pile, contant soil modulus. ### **SOLUTIONS FROM CONTINUUM** SOIL MODEL (Poulos & Hull, 1989) Table 3. Solutions For Lateral Pile Response (Linear Elastic Soil) | Pile Head
Condition | Groundline
Deflection | Groundline
Rotation | Pile Head
Fixing
Moment | |------------------------|---|--------------------------------------|-------------------------------| | | u _e | f e | M _{Fe} | | Free | $\frac{H}{E_eL_e}$ I, | $\frac{H}{E_e L_e^2}$ 1 ₂ | | | | $+ \frac{M}{E_e L_e^2} I_2$ | $+\frac{M}{E_eL_e^3}I_3$ | - | | Fixed | H
E _e L _e I ₄ | 0 | - HLels | = applied horizontal load at groundline = applied moment at groundline E. = soil Young's modulus at depth equal to effective length L. of L_a = effective length of pile = critical length L_c if L > L_c (flexible pile) = or actual length L if L < L_c/3 (rigid pile) I₁-I₅ = influence factors depending on L_e/d (where d = pile diameter or breadth) (see Table 4) Table 4. Solutions For Pile Head Displacement and Rotation - Linear Elastic Response | Case | Factor | Uniform | Soil | Gibson Soil | | |-------------------------|--------|---------|---------|-------------|---------| | | | Α | В | Α | В | | Flexible Piles | Ι, | 1.646 | 3.395 | 13.10 | 11.09 | | | I, | 5.520 | 9.082 | 34.63 | 18.03 | | (L > L _c) | I, | 64.98 | 37.95 | 156.1 | 37.14 | | | I4 | 1.326 | 1.641 | 5.659 | 4.139 | | | Is | 0.09764 | 0.04245 | 0.2278 | 0.04402 | | Rigid Piles | 1, | 0.976 | 2.196 | 3.181 | 9.701 | | | I, | 0.701 | 3.225 | 2.409 | 12.71 | | (L < L _c /3) | I, | 1.086 | 6.292 | 1.844 | 18.65 | | | I. | 0.539 | 0.545 | 0.773 | 1.081 | | | Is | 0.547 | -0.0140 | 0.764 | -0.347 | For each factor, $I = A + B \log_{10}(L_e/d)$ Solutions are for soil Poisson's ratio $r_s = 0.5$. ### MOMENTS INDUCED IN PILE FIGURE 8.27 Maximum moment in free-head pile. FIGURE 8.28 Fixing moment at head of fixed-head pile. # COMPARISONS BETWEEN THEORIES (Linear) Fig. 17. Constant modulus: influence coefficients for horizontal load, $I_{\rm H}$ Fig. 18. Constant modulus: influence coefficients for moment, $I_{\rm M}$ ## COMPARISONS BETWEEN THEORIES (Non-Linear) - Subgrade reaction & elastic continuum analyses are quite similar - Elastic solution shows general additional movement due to pile-soil interaction through the soil - Bending moments are very close, as are pressures ### MODIFICATIONS FOR NON-LINEAR SOIL-PILE BEHAVIOUR Can allow for non-linear lateral response by modifying elastic solutions via yield factors obtained from non-linear analysis. **Lateral Displacement:** $$\rho = \rho_e / F_u$$ Fixing Moment at Pile Head: $$M_f = M_{fe} / F_m$$ ρ_e , M_{fe} are calculated from elastic theory. The yield correction factors F_{u} , F_{m} depend on: - Load level - Relative flexibility of pile. Non-linearity can be significant for: - Piles in stiff clay - Relatively flexible piles. Solutions available for: - Uniform E_s & p_y (except near surface) relevant to stiff clay - Linearly varying E_s & p_y ("Gibson soil") relevant to soft clay FIGURE 8.16 Yield-displacement factor F_{ρ} -free-head floating pile, uniform E_{s} and p_{v} . ### MODIFICATIONS FOR NON-LINEAR SOIL-PILE BEHAVIOUR Figure 2. Nonlinear Correction Factors for a Flexible Fixed-Head Pile in Stiff Clay Figure 3. Nonlinear Correction Factors for a Flexible Fixed-Head Pile in Soft Clay Fixed-head Piles (Poulos & Hull, 1989) ### COMPARISONS BETWEEN MEASURED AND CALCULATED BEHAVIOUR - All methods show acceptable agreement - p-y analysis agrees closely because it was used in calibration of method - Fair results with elastic –plastic subgrade reaction model ## ESTIMATION OF SOIL PARAMETERS (MODULUS) 1) INTERPRETATION OF PILE LOAD TESTS Fit observed deflections to theory INSITU TESTS eg pressuremeter plate load tests (lateral) #### 3) EMPIRICAL CORRELATIONS a) Clays $$E_s / c_u = 300 \pm 100$$ $$p_y = 9 c_u$$ b) Sands $$E_s = 1.6 \text{ N}$$ MPa (Kishida & Nakai) $$N_h = 0.19 D_r^{1.16} MPa / m$$ (tangent value, Reese et al, 1974) ## CORRELATIONS FOR MODULUS IN CLAYS Table 7.12 Empirical correlations for Young's modulus in clays, for laterally loaded piles. | Relationship | | Theory | Reference | Remarks | | |---------------------------------------|--|------------------------------|--|--|--| | $E_{\rm si}/c_{\rm u}=300-600$ | | non-linear subgrade reaction | Jamiolkowski
& Garassino
(1977) | initial tangent modulus
for driven piles in soft
clays | | | $E_{\rm si}/c_{\rm u}=180-450$ | | non-linear boundary element | Poulos
(1973) | tangent modulus from model tests on jacked piles | | | $E_{\rm si}/c_{\rm u}=280-400$ | | non-linear subgrade reaction | Kishida &
Nakai (1977) | tangent modulus | | | $E_{\rm s}/c_{\rm u}=100-180$ | | linear boundary
element | Banerjee
(1978) | secant value | | | c _u
(kPa) | N _{hi}
(MPa
m ₋₁) | nan linaan aubanada | Cullings of | ton next values of sets of | | | 12-25 | 8 | non-linear subgrade reaction | Sullivan <i>et</i>
<i>al</i> . (1979) | tangent values of rate of modulus increase: | | | 25–50
50–100
100–200
200–400 | 27
80
270
800 | | | $E_{\rm si}=N_{\rm hi}~z$ | | ## CORRELATIONS FOR MODULUS IN SANDS Table 7.13 Empirical correlations for Young's modulus in sands, for laterally loaded piles. | Relationship | | Theory non-linear subgrade reaction | Reference
Jamiolkowski
& Garassino
(1977) | Remarks
tangent value for driven
piles in saturated sands | |--|---------------------------|-------------------------------------|--|---| | $N_{hi} = 0.19D_{\rm R}$ MPa m ⁻¹ where $D_{\rm R} =$ | | | | | | Condition | N _{hi}
MP a/m | | | | | Loose | 5.4 | non-linear subgrade reaction | (1974) | tangent value for driven
piles in submerged | | Medium | 16.3 | | () | sands | | Dense | 34.0 | | | | | $N_{\rm h} = 8{\text -}19~{\rm MPa~m^{-1}}$ (av. 10.9) | | linear boundary
element | Banerjee
(1978) | secant value | | $E_{\rm si} = 1.6 N M$
where $N = S$ | | non-linear subgrade reaction | Kishida &
Nakai (1977) | tangent value | ### **CYCLIC LOADING** #### MAIN EFFECTS - Cyclic deflection increases - Sustainable cyclic load decreases - Degradation effects more severe for stiffer soils - Failure can be quite abrupt for small increases in cyclic load level #### ANALYTICAL PROCEDURES - 1. p-y analyses with modified curves - 2. Matlock et al degradation model - Degradation occurs when have reversal of plastic strain - Modified boundary element analysis: soil modulus & p_y degrade, depending on cyclic deflection & no. of cycles ### CYCLIC LOADING APPROACHES ## CYCLIC LOADING APPROACH VIA CONTINUUM ANALYSIS - 1. Compute static lateral deflection for maximum lateral loading, $\rho_{\text{c}1}$ - 2. Estimate: - Critical strain ε_{cr} - Ultimate lateral load capacity under static loading (HuR) - Number of cycles N - 3. Look up curves to obtain ratio of ρ_c/ρ_{c1} , where $\rho_c=$ maximum deflection under cyclic loading, and $\rho_{c1}=$ static lateral deflection - 4. Compute $\rho_c = \rho_{c1} \cdot \rho_c / \rho_{c1}$ ## MEASURED vs CALCULATED BEHAVIOUR Load-deflection & Load-maximum moment Bending moment distribution along pile ### ALLOWANCE FOR GROUP EFFECTS - US practice employs the concept of "p-multipliers". - These scale down the p-y curves for a single pile to allow for pile-soil-pile interaction in piles within a group. - Typical example shown in table, from program FLPIER. | Row | p-multiplier | | |-----------------------|--------------|--| | Lead | 0.8 | | | 1 st trail | 0.4 | | | 2 nd trail | 0.2 | | | 3 rd trail | 0.3 | | ### ALLOWANCE FOR GROUP EFFECTS – "p-Multiplier" Apply multiplier (≤1) to p-y curve for each pile in group. Multiplier derived empirically in most cases. ## LATERAL INTERACTION BETWEEN PILES - Can adopt the interaction factor approach, as for settlement of groups. - BUT, have some additional problems: - Have 5 interaction factors: - $\alpha_{\rho H}$, $\alpha_{\rho M}$, $\alpha_{\theta H}$, $\alpha_{\theta M}$, $\alpha_{\rho F}$ (but $\alpha_{\rho M} = \alpha_{\theta H}$ from reciprocal theorem) - Interaction factors depend both on spacing (s/d) and "departure angle" between direction of loading & piles - Values plotted in Poulos & Davis (1980. - Useful approximations by Randolph (1981). ### TYPICAL LATERAL INTERACTION FACTOR DIAGRAM ### APPROXIMATIONS FOR LATERAL INTERACTION FACTORS #### APPROXIMATIONS FOR LATERAL INTERACTION FACTORS (Randolph, Geotechnique, June 1981) 1 Non-Homogeneity Factor $$\rho_c = \frac{G_{lc/4}^{\bullet}}{G_{lc/2}^{\bullet}}$$ 2 Critical length $$l_c = 2r_o \left(\frac{E_p}{m^* r_o}\right)^{2/9}$$ where $$m^* = m \left(1 + \frac{3v_s}{4}\right)$$ m = dG/dz = rate of increase of shear modulus with depth r_o = pile radius E_p = pile modulus $$G^* = G(1 + \frac{3v_s}{4})$$ $G_* = G^*_{4e/2}$ #### 3 Interaction Factors $$\alpha_{\rho F} = 0.6 \rho_c \left(\frac{Ep}{Gc}\right)^{1/7} \frac{r_o}{s} (1 + \cos^2 \beta)$$ i) If $\alpha_{pF} > 0.5$ from this expression use $$\alpha_{\rho F} = 1 - (4\alpha_{\rho F})^{-1}$$ $$\alpha_{pH} = 0.5 \ \rho_{C} \ (\frac{Ep}{Gc})^{1/7} \ \frac{r_{o}}{s} \ (1 + \cos^{2}\beta)$$ ii) If $\alpha_{\rho H} > 0.5$ from this expression use $$\alpha_{\rho H} = 1 - (4 \alpha_{\rho H})^{-1}$$ iii) $$\alpha_{\rho M} = \alpha_{\theta H} - \alpha_{\rho H}^2$$ iv) $$\alpha_{0m} = \alpha_{0H}^3$$ ### EQUATIONS FOR LATERALLY LOADED GROUP #### 1. Lateral Deflections $$\{ \rho \} = [A_{\rho H}] \{H\} + [A_{\rho M}] \{M\}$$ #### 2. Rotations $$\{ \theta \} = [A_{\theta H}] \{H\} + [A_{\theta M}] \{M\}$$ #### 3. Equilibrium $$\mathbf{H}_{\mathbf{G}} = \Sigma \mathbf{H}_{\mathbf{i}}$$ $$\mathbf{M}_{\mathbf{G}} = \Sigma \mathbf{M}_{\mathbf{i}}$$ #### 4. Boundary Conditions For rigid cap: $$\{ \rho \} = \rho_G \{ 1 \}$$ $$\{\theta\} = \theta_G\{1\}$$ Note: These equations hold only for pinned - head piles or fixed - head piles, where lateral response can be de-coupled from the axial response. ### SIMPLIFIED APPROACH FOR ESTIMATING LATERAL GROUP DEFLECTION #### **FIXED HEAD GROUP** $$\rho_{hF} = \rho_{F1} \cdot H_{av} \cdot R_{\rho F}$$ #### where $\rho_{hF} = \text{single pile deflection} /$ unit load H_{av} = average lateral load $R_{\rho F}$ = group deflection factor $\approx n^{\omega L}$ # SOME PRACTICAL DIFFICULTIES WITH THEORETICAL LATERAL INTERACTION FACTORS - Elastic theory suggests that interaction between 2 piles is the same, for the same spacing & orientation - Experiments indicate this is NOT SO. - Interaction is smaller for $\zeta = 0^{\circ}$ than for $\zeta = 180^{\circ}$. # SOME PRACTICAL DIFFICULTIES WITH THEORETICAL LATERAL INTERACTION FACTORS Also, field tests indicate that interaction factors increase with increasing load level, but decrease with increasing number of cycles # SOME PRACTICAL DIFFICULTIES WITH THEORETICAL LATERAL INTERACTION FACTORS - The conventional interaction factors can be adjusted to produce more realistic group behaviour. - Scaling process described by Ochoa and O'Neill (1989). - Factor α_{ij} for $\zeta = 180^{\circ}$ should only be applied when pile j is in leading row of group. - Otherwise, use factor for $\zeta = 0^{\circ}$ when $\zeta = 180^{\circ}$. ## MEASURED & COMPUTED PILE LOADS IN 9-PILE GROUP (Ochoa & O'Neill, 1989) #### **Measured & Calculated Pile Loads** ### SUMMARY - In reality, the leading piles of a laterally loaded group tend to be stiffer and take a larger proportion of the lateral load than the inner or rear piles. - This effect can be reproduced by the theoretical analysis if the adjustments are made to the interaction factors, as proposed by Ochoa & O'Neill (1989).