# Pavement Engineering and Maintenance Management

12-13, November, 2007

Lecturer: Dr. T. F. Fwa

**Professor, Dept of Civil Engineering** 

**National University of Singapore** 

Organized by

Centre for Infrastructure Engineering and Management &

School of Engineering

Griffith University Gold Coast campus

## **Lecture Plan**

| Lecture 1  | Concept of Total Highway Management & PMS         |
|------------|---------------------------------------------------|
| Lecture 2  | Pavement Maintenance Management Systems           |
| Lecture 3  | Pavement Distress Survey and Evaluation           |
| Lecture 4  | Priority Rating and Pavement Maintenance Planning |
| Lecture 5  | Pavement Roughness Evaluation                     |
| Lecture 6  | Skid Resistance Evaluation of Pavement            |
| Lecture 7  | Nondestructive Deflection Testing of Pavement     |
| Lecture 8  | Structural Evaluation of Pavements                |
| Lecture 9  | Budget Planning and Optimal Programming           |
| Lecture 10 | Concept of Highway Asset Management               |

#### **Main Reference:**

T. F. Fwa

"The Handbook of Highway Engineering" published by CRC Press / Taylor & Francis Group, 2006.

#### Lecture 1

## Concept of Total Highway Management & PMS

T. F. Fwa

Center for Transportation Research
Department of Civil Engineering
National University of Singapore

### **Concept of Total Highway Management**

Three basic elements of a highway system:

| 1. Highway Facility                                                                                                                 | 2. Operational Function                                                                                                                                                                                                 | 3. System Objective                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Pavements</li> <li>Bridges</li> <li>Traffic control devices</li> <li>Structures</li> <li>Roadside appurtenances</li> </ul> | <ul> <li>Planning</li> <li>Design</li> <li>Construction</li> <li>Condition evaluation</li> <li>Maintenance</li> <li>Improvement/<br/>Rehabilitation</li> <li>Data management/<br/>Information<br/>management</li> </ul> | <ul> <li>Service</li> <li>Condition</li> <li>Safety</li> <li>Cost</li> <li>Socio-economic factors</li> <li>Energy</li> </ul> |

#### 3-D Matrix Structure of Highway Management System



Concept of Total Highway Management

## Performance Indicators for Highway System Objectives

The ultimate goal of a highway program is to satisfy the system objectives as closely as possible within the constraints of resources and other factors.

#### **Usefulness of Performance Indicators:**

- 1. Allow system objectives to be assessed quantitatively.
- 2. Provide indications of the degree of fulfilment of system objectives.
- 3. Priority ranking of facilities can be established based on the relative values of performance indicators.
- 4. Used for comparison of effectiveness or adequacy of alternative design schemes, or maintenance and improvement strategies.
- 5. They can be easily incorporated into a mathematical optimisation programming model.

Concept of Total Highway Management

Delay time

**Devices** 

### Performance Indicators for Highway System Objectives

| Periormance indicators for highway System Objectives |                                                                               |                                                                                                                            |                                                                                           |  |
|------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Objective Facility                                   | Service                                                                       | Condition                                                                                                                  | Safety                                                                                    |  |
| Pavements                                            | <ul><li>V/Cap ratio</li><li>Travel speed</li><li>Serviceability</li></ul>     | <ul><li>Structural cap.</li><li>Distress severity</li><li>Serviceability</li></ul>                                         | <ul><li>Skid resistance</li><li>Accident<br/>occurrences</li></ul>                        |  |
| Bridges                                              | <ul><li>Deck width</li><li>Vertical clearance</li><li>Traffic speed</li></ul> | <ul> <li>Load capacity</li> <li>Remaining<br/>service life</li> <li>Structural part<br/>deterioration<br/>index</li> </ul> | <ul><li>Load cap.</li><li>Clear deck<br/>width</li><li>Accident<br/>occurrences</li></ul> |  |
| Roadside<br>Facility                                 | <ul><li>Travel speed</li><li>Clear roadway width</li></ul>                    | <ul> <li>Structural cap.</li> <li>Remaining<br/>service life</li> <li>Deterioration<br/>index</li> </ul>                   | <ul><li>Vehicle impact performance</li><li>Night visibility</li></ul>                     |  |
| Traffic Control                                      | <ul> <li>V/Cap ratio</li> </ul>                                               | • Visibility                                                                                                               | <ul> <li>Sight distance</li> </ul>                                                        |  |

Deterioration

index

Luminance

#### **Performance Indicators for Highway System Objectives**

| Objective Facility      | Cost                                                                | Socio-Economic Factors                                                                                           | Energy                               |
|-------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Pavements               | <ul><li>Agency costs</li><li>User vehicle operating costs</li></ul> | <ul><li>Noise level</li><li>Visual quality</li><li>Travel time saving</li><li>Material recycling level</li></ul> | • Fuel consumption                   |
| Bridges                 | <ul><li>Agency costs</li><li>User costs</li></ul>                   | <ul><li>Travel time saving</li><li>Visual quality</li></ul>                                                      | <ul> <li>Fuel consumption</li> </ul> |
| Roadside<br>Facility    | <ul><li>Agency costs</li><li>User costs</li></ul>                   | <ul><li>Accident reduction</li><li>Visual quality</li><li>Noise reduction</li></ul>                              | • Fuel consumption                   |
| Traffic Control Devices | <ul><li>Agency costs</li><li>User costs</li></ul>                   | <ul><li>Travel time saving</li><li>Accident<br/>reduction</li><li>Driver satisfaction</li></ul>                  | • Fuel consumption                   |

#### Activities in a Highway Facility Management System



Concept of Total Highway Management

#### Requirements of Highway Management Systems

| Comprehensiveness | •All aspects addressed •Balanced solutions                             |
|-------------------|------------------------------------------------------------------------|
| Flexibility       | •To accommodate varying demand, future development, new situations     |
| Applicability     | •System to meet the need at different management levels and localities |
| Sensitivity       | •Responsive to impacts and changes                                     |

The primary function of a highway management system is to serve as a decision making tool for highway agencies.

#### **Characteristics of Total Highway Management**

- 1. Multi-element facilities, each forming a subsystem. All compete for the same pool of funds and resources.
- 2. Overall effectiveness of a highway system depends on the levels of services provided by the individual subsystems.
- 3. Resources are limited, need for optimal allocation based on relative importance.
- 4. Systems approach required to carry out different operational functions to achieve optimal operational effectiveness and efficiency. (e.g. Design vs. Maintenance vs. Rehabilitation)
- 5. Multi-objective problem
  - Maximize level-of-service
  - Maximize facility condition
  - Maximize safety
  - Minimize agency and/or user costs
  - Minimize use of environmental and energy resources
  - Maximize socio-environmental benefits

Not all objectives can be achieved simultaneously.

## Pavement Management System (PMS)

Objectives: Programming of pavement investments for a network of roads to achieve optimal results with the available funds.

#### Why Pavement Management?

- Provide necessary information to decision makers
  - how much, where and when money should be spent
  - consequences of different alternatives
- Save costs to users of roads
- Save costs to owners of roads
- Funds are limited

Pavement Management System (PMS)

#### Trend and Implication of Road Quality Variation



#### **Definition of PMS**

- A comprehensive, coordinated set of activities associated with the planning, design, construction, maintenance, evaluation and research of pavements. (Haas & Hudson 1978)
- ◆ The process of co-ordinating and controlling a comprehensive set of activities to provide and maintain pavements, so as to make the best possible use of resources available (i.e. maximize the benefit for society) (OECD 1987)
- ♦ A systems engineering approach to the problem of planning, design, construction, maintenance, rehabilitation and reconstruction of pavements in an optimal manner of resource utilization to best satisfy a desired set of objectives.

Resources: materials manpower, equipment, time, fund

Objectives: service, condition, safety, cost, energy, socio-

economic factors

#### **Functional Phases of a PMS**

- Planning
- Design
- Construction

- Maintenance
- Rehabilitation
- Reconstruction

#### **Planning**

- Program
- Budget
- Allocation of funds
- Revenue (e.g. user tax structure)

#### Design

- Structural design
- Traffic capacity
- Service life
- Service quality

#### Construction

- Costs
- Specification
- Quality control
- Schedule

## Functional Phases of a PMS (cont'd)

- Planning
- Design
- Construction

- Maintenance
- ◆ Rehabilitation
- Reconstruction

#### **Maintenance**

- Type of treatment
- Frequency
- Level of maintenance
- Programming
- Scheduling

#### Rehabilitation

- Strategy
- Maintenance-Rehab trade-off
- Programming
- Scheduling

#### Reconstruction

- Widening
- Re-alignment
- Reconstruction vs overlay

## PMS, PMMS and MMS

| Facility Highway   | Pavement |  | Bridge | Roadside | Traffic<br>Control |
|--------------------|----------|--|--------|----------|--------------------|
| Planning           |          |  |        |          |                    |
| Design             |          |  | 19     | 7        |                    |
| Construction       |          |  | PMMS   |          |                    |
| Evaluation         |          |  |        |          |                    |
| Maintenance        |          |  |        | MMS      |                    |
| Improvement        |          |  |        |          |                    |
| Data<br>Management |          |  |        |          |                    |

#### Requirements for Effective Pavement Management

- Availability of good and up-to-date information
- Good use of the state-of-the-art technology
- Tailored to fit into existing highway agency administrative structure
  - Computer
  - Test methods and equipment
  - Engineering knowledgement
- Continuous feedback and periodic evaluation
- Coordination between different levels of pavement management





## Levels of Pavement Management

**Project level PMS** deals with the management of a single highway pavement, such as a toll road, an access road, or a car park.

**Network level PMS** handles a road network that typically comprises different road classes and pavement types.

A third level, variably known as **planning level**, **policy level** or **central office level**, is sometimes identified to highlight the budgeting process and fund-allocation decision making at the highest level of the management structure.

## Levels of Pavement Management

#### Questions asked at **Planning Level**:

- What is the needed fund?
- What is the available amount of fund?
- What are the consequences of different funding levels?
- What are the impacts on users and non-users?

#### Main concerns at **Network Level**:

- Current network pavement condition
- Current level of service
- Priority setting of maintenance and rehabilitation
- Programming of activities
- Future level of service at given budget

## Levels of Pavement Management

#### Main concerns at **Project Level**:

- Current pavement condition
- Type of maintenance
- Level of maintenance
- Rehabilitation strategy
- Overlay or reconstruction
- Future performance at given budget

#### **Activities in a PMS Process**

Consider the management of a single highway pavement (i.e. management at <u>project level</u>) beginning from the time when approval and funds to build the facility are given. Activities involved are:

#### (A) Planning

- Goals definition
- Data acquisition (terrain, traffic, soil, climate, materials, land use, facility & resources, inventories)
- Determination of broad route requirements (highway class, control points, constraints)
- Identification of major alternatives
- Evaluation & selection of 'best' plan
- Project schedule/program and budget

#### Activities in a PMS Process (cont'd)

(B) Design

(Systems approach to pavement design)

- Route location/alignment analysis
- Alternative design strategies
- Pavement type selection analysis
- Material mix design (surface layer)
- Material selection/treatment (other pavement layers)
- Pavement thickness design
- Economic evaluation/optimisation -- Life cycle analysis (Construction policy, maintenance/ rehabilitation policy, performance prediction)

#### Activities in a PMS Process (cont'd)

#### (C) Construction

- Develop specifications
- Schedule construction operation
- Quality controls
- Construction records and documentation

#### (D) Evaluation & Monitoring of Pavement Conditions

- Pavement distress survey
- Pavement serviceability survey
- Skid resistance survey
- Structural condition survey
- Performance prediction model
- Remaining service life analysis

#### Activities in a PMS Process (cont'd)

#### (E) Maintenance & Rehabilitation

- Develop standards
   (Performance standards, effectiveness of repair)
- Trade-off analysis/optimisation/priority ranking
- Scheduling/programming of repair activities

### <u>References</u>

- Chapter 18 "Pavement Management Systems" in The Handbook of Highway Engineering, edited by T. F. Fwa. (2006)
- Sinha K. C. and Fwa T. F. (1987) On the Concept of Total Highway Management. Transportation Research Record, No. 1229, pp. 79-88.