

LECTURE SERIES AND WORKSHOPS ON GEOTECHNICAL ENGINEERING IN PRACTICE

European Experience of Deep Mixing Method

K. Rainer Massarsch, Sweden Michał Topolnicki, Poland

The European Setting

Geological and Geotechnical Conditions

Dry Mixing – Nordic Method

Wet Mixing – Central European Methods

Drilling down

Homogenizing, moving up and down

Wet Mixing – Central European Method

Recently developed wet Mixing Methods

Installation Patterns

Important EU-regulations & Activities

- European Standard on Deep Mixing, (EN14679 - 2005) prepared by EFFC & CEN.
- European Spatial Planning Observatory Network (ESPON).
- Swedish Deep Stabilization Research Centre (SD).
- Stabilisation/Solidification Treatment and Remediation Network (StarNet).
- European Water Framework Directive (EWFD).
- Landfill Directive (LFD).

Areas of application and major users

- Foundation Support (Poland, Germany)
- Retention systems, slope stab. (Germany, Scand.)
- Ground Improvement (Scandinavia)
- Hydraulic Cut-off Walls (Germany, Poland)
- Environmental Remediation, Active/Passive barriers (UK)

Use of mixing processes

- Dry mixing (Scandinavia, Poland, UK)
- Wet mixing (Germany, Poland, UK, Italy)

Road embankment Södertälje/Nynäshamn, Sweden

Dry mixing

Road embankment, Sweden

Courtesy of LCM

Trasa Zielona in Lublin, Poland

Load Transfer Platform design:

- 2402 columns, diameter 0.8 m
- average column length 6,5m, total 15,538 lin. m
- area improvement ratio 14%
- column load 185 to 260 kN
- design compressive strength 480-670 kPa,
 (for reduced column diameter of 0.7 m)

13

Fiumicino Airport Highway, Rome, Italy

Excavation control: Execution and Design Principle

MIP- wall, Karlsruhe

Wet mixing

Courtesy of Bauer

MIP- cross wall, Karlsruhe

wall thickness 0.4 m

Cut-off walls, Germany

Cut-off walls, Germany

Courtesy of Bauer

Foundation support: MEGAPLEX, Katowice, Poland

typ 12 typ3 771 501.5 X107,71 X100 X115,395 X126,545

Wet mixing

2007-01-20

Courtesy of Keller Polska

MEGAPLEX, Poland

MEGAPLEX - Exposed columns

2007-01-20

22

MEGAPLEX, Poland

Courtesy of Keller Polska

Bridge supports on DM columns – A2, Poland (ca 80 bridges)

A2: Loading test of a single DM column

Problematic applications

Dry mixing

Problematic applications

Wet mixing

Problematic applications

Wet mixing

Conclusions

- Growing interest for Soil Mixing in Europe
- Noticeable development in equipment and QC
- Ongoing research activity
- Progress in standardisation
- Troubleshooting QA hamper wider SM acceptance
- Need for sufficiently flexible QA control programs to respond to variable characteristics of soil mix and different design requirements