Landslides and Slope Stability in Residual Soils

J. Sugawara
Golder Associates Pty Ltd

Landslides and Slope Stability in Residual Soils

Outline of Presentation

- 1. Landslides in Japan
- 2. Landslide Investigations
 - Preliminary investigations
 - Detailed investigations
- 3. Slope Stability Analysis
- 4. Landslide Mitigation Measures

Classification of Slope Movements in Japan

The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these.

(U.S. Geological Survey, 2004)

- ■Landslide ("Jisuberi(地すべり)" in Japanese)
- Rapid Slope Failure / Slope Failure ("Houkai(崩壊)" in Japanese)

Geology	4 SMN 25 D D D D	
	often influenced by geology and geologic structure	little or no influenced by geology and geologic structure
Soils	moves along slip surface(s) that consists of highly plastic clay	usually involves topsoil, residual soil and (highly weathered bedrock
Городгарһу	occur on gentle to moderate slopes of 5 to 30° the upper slopes often have flat-plateau like topography	usually occurs on slopes steeper than 30°
Nature of movement	continuous, ecurrence (repeatitive occurrence) duration of a single episode is generally long	occur suddenly short duration
Rate of movement	generally slow to very slow 0.01 to 10mm/day(most common)	very to extremely rapid 10 m/sec or faster
Nature of moving mass (blocks)	little disturbance within a sliding block often move while retaining the original shape and characteristics	incoherent move as highly disturbed mass
Causes, triggering mechanism	generally influenced by exess groundwater, elevated groundwater table	generally influenced by rainfall intensity
Size	surface area is often large ranges between 1 to 100 ha	surface area is generally small with an average volume of about 440m³
Warning signs	often develop cracks, depressions, upheavals, groundwater fluctuation, etc. prior to sliding	hardly any warning signs almost always fail suddenly

Landslide Investigations

Field Investigation

- Check points
 - Evacuation required?
 - degree of landslide damage
 - Possibility of secondary disaster
 - Size of landslide (extent, depth, & volume)
 - Landslide mechanism (Cause of landslide)
 - Emergency mitigation measures required?
 - Required detailed investigation
 - Possible landslide mitigation measures

Tips

- Predict phenomenon beforehand
- Need a good map & aerial photo
- Newness of crack
- Do not concentrate on one location
- Collect information from only actual landslide site but also surrounding area
- Phenomenon at crest but may not be at toe
- Muddy groundwater
- Colluvium from the past landslide
- Small failures at toe
- Depth of slip surface
 - $=1/5 1/8 \times \text{width (weathered rock failure)}$
 - $=1/10 \times \text{width (colluvial deposit slide)}$

Tips

- Leaning of trees
- Geological structures (dip, strike, etc)
- Slope surface angle = slip surface angle (?)
- Bamboo
 - Abundant groundwater
 - Many small failures
 - Weak geomaterials
 - Slope angle is gentle
- Steep slopes
 - (Thin layer of soil) + Hard rock
 - Strong geomaterials
 - No groundwater(?)
- Phenomenon on structures

