Instrumentation, Data Acquisition and Computer Control – A brief Introduction

- 1. Instrumentation requirements/specifications
- 2. Data acquisition systems
- 3. Computer control hardware and software

Laboratory Instrumentation

Primary instrumentation are transducers = convert mechanical action into electric response

For geotechnical laboratory testing transducers include:

- force = load cell
- pressure = pressure transducer
- displacement = linear variable differential transformer (LVDT)

Other measurements:

- volume change
- temperature
- acceleration
- shear wave velocity

LVDT Operation

Displacement is proportionally converted to electrical signal

Strain gage based load cell and pressure transducer

S-Type Load Cell www.interface.com

Flush Diaphragm Pressure Transducer

www.omega.com

Volume change

Transducers:

Conversion of voltage to mechanical response (measurement)

$$R = CF(V - Z)$$

R = reading in mechanical units (kPa, KN, cm, etc.)

CF = calibration factor

V = voltage reading

Z = zero or reference reading

The voltage output (signal) from the transducer is <u>proportional</u> to the input (or excitation) voltage to the transducer, hence, typically normalize CF and readings by the input voltage (V_{in})

 $R = CF(V/V_{in} - Z/V_{in})$

where

CF = [mechanical units/ (V/V_{in})] e.g., kPa/ (V/V_{in}) or cm/ (V/V_{in}) Voltmeter - data acquisition

Power Supply

Transducer Properties:

- Full scale range
- Required input voltage
- Output (signal) voltage range (e.g., mV or V)

Accuracy = f(several characteristics):

- repeatability
- linearity
- hysteresis
- temperature stability

Calibrate transducers using known reference

Transducer Properties

<u>Ideally want transducer response to be</u>: linear and repeatable without hysteresis and zero drift

LVDT calibration - micrometer

Example LVDT calibration

Displacement (from micrometer) vs normalized LVDT signal voltage

Slope best fit linear regression = calibration factor

Pressure transducer calibration – hydraulic dead weight tester

Data Acquisition

Computer based "automated" acquisition of electrical signals from transducers and other instrumentation

Components:

- analog to digital (A/D) converter
- multiplexer (number of channels)
- signal conditioning
- power supply
- timer/frequency readings
- cabling
- software

Analog to Digital Conversion

Key issue is bit resolution – smallest significant digit

$$R = V/(2^n - 1)$$

where

R = resolution

V = full scale voltage range

n = numbers of bits

+ need adequate signal to noise ratio

Example – A/D resolution

14 bit data acquisition card with +/- 10V signal range

$$R = (20)/(14^2 - 1) = 0.0122 V = 1.22 mV$$

If use 16 bit card

$$R = 0.31 \text{ mV}$$

If use 16 bit card with +/- 1V signal range

$$R = 0.015 \text{ mV}$$

Full scale load voltage output:

LVDTs: ≈ 1 to 10 volts

Pressure Transducers: ≈ 10 to 200mV

Load Cells: ≈ 10 to 200mV

Use "auto-ranging" in A/D conversion to match required resolution and transducers

<u>Data Acquisition cards</u>: Higher bit resolution, reading frequency and number channels = higher cost

Computer connections = PCI, PXI, USB, etc.

Computer Control

Use "closed" feedback loop to control specimen state

Automated Triaxial Testing

Automated Triaxial Testing

- 1. Prescribe specimen set-up conditions, i.e., seating stresses
- 2. Automated application of back pressure + user determined B value checks
- Automated consolidation: stress or strain controlled + unload-reload if needed + creep phase

4. Automated shear: stress or strain controlled

Example – Automated CK₀ Consolidation

<u>Automated</u> Back Pressure **<u>Saturation</u>** and K₀ **<u>Consolidation</u>**:

- Apply consolidation strain rate (e.g., = 0.1%/hr) via load frame and maintain $\varepsilon_{\text{vol}} = \varepsilon_{\text{a}}$ (i.e., 1-D strain) via flow pump control of cell pressure

Obtain σ'_p and compressibility data as per regular oedometer test

22/26

Remarks regarding computer control

- Pumps, motors, instrumentation & software continuously improve
- 2. With IP address, remote access and control possible
- Instantaneous electrical (power) back up critical
- 4. Be aware of any "automated" decisions software makes
- 5. Temperature control is critical, especially for stress path cell
- 6. Sometimes the systems just go "crazy"
- 7. Need experienced personnel for trimming/specimen setup