Monday-4

Site Investigation Practice-Case studies

Location Map of the Lower Central Plain of Thailand Showing Approximate Location of Bangkok

Borehole numbers

Borehole layout and in-situ tests

Fig. 5 Locations of Bore Holes , Vane and Dutch Cone Tests

Fig. 7 Vane Strength Profile (Pom Prachul)

Vane Shear Strength , tons/ m^2 (After AIT 1973 a & b)

Sheet Pile Section

Sectional Area = 182 cm² Perimeter = 263.4 cm.

Fig. 3.3 Steel Pile HZ 600 SP

Fig. 3.4 Steel Pile HZ 360 SP

Measured and Predicted Excess Pore Water Pressure at Pile Surface

FIG. A.28: Service Gallery Movements

2) All piles are 450 m.m. square

concrete piles

Fig. 7.3 Case A Movements of Piles in East Quay Area due to Piling in A djacent Area

Measured and Predicted Excess Pore Water Pressure

Piling Practice in Sedimentary Soils-- Some Experiences

by

A.S.Balasubramaniam
Visiting Professor
Geotechnical and Transportation Engineering Division
School of civil and Environmental Engineering
Nanyang Technological University
Singapore

Higher load capacity with large diameter piles founded in deeper stiff layers

Load capacity of piles founded in different layers

Bored piles founded in second sand layer

Founding level before 1973

- 1. First stiff clay
- 2. First sand layer

CLAYEY SAND/SANDY CLAY

SAND

SOFT TO MEDIUM CLAY

Longitudinal section of soil profile in the second stage expressway project

Investigator		Q			λ				
	Soft Clay	Medium Stiff Clay	Stiff Clay	Sand	Clay	sand			
Pham, 1972	1.4	1.4	0.7		0.33	1.0			
Juta-Sirivongse 1972	1.0	1.0	1.0	1.0	0.33	1.0			
Chotivittaya- thanin, 1977	1.1	0.7	0.5	0.5	0.33	0.5			
Phota-Yanuvat	1.0	0.7	0.5	0.8	0.33	0.5			
Chukiat Phota- Yanuvat,1979	1.0	0.7	0.5	0.8	0.33	0.5			

Friction and end bearing factors for driven piles to be used with cone penetration test data

Pile
Driving
Resistance

FIG. F.3 DRIVING RESISTANCE V.S. DEPTH OF TEST PILES AT POM PRACHUL

(TP1, TP2, TP3)

Jacket friction in Cone penetration test

Cone resistance in t/m²

Cone Resistance

Fig. 3.5 CPT Profile for pile at 16+035 Don Muang Project (0.8 m X 37.5 & 24.6 m)

Founding level before 1973

- 1. First stiff clay
- 2. First sand layer

- * Cone resistance
- * Driving Resistance
- * Ultimate Load measured

PILE	Depth of Pile Tip (m)	Average cone Resistance q:c;(t/m²)	Driving Resistance Qo;(t-m/m)	Measured Ultimate: Pile Loads Qu;(tons)
TP1	25.26	545	330	210
TP2	25.32	525	280	165
ТРЗ	29.33	518	430	210
TP17	27.55	780	840	360
TP18	26.95	689	1,110	360
TP19	27 - 05	615	1,050	360
TP20	22,405	430	117	90
TP21	20.025	402	385	1.80
TP22	18.50	415	183	78
TP23	20.50	535	293	82.5
TP29	20.70	366	66	67 ⁻
TP:30	25.00	759	1,250	270
TP31	22.30	403	350	143
TP32	18.20	265	260	71
TP33	18.30	275	280	86
TP34	18.40	260	240	67
TP35	24.40	403	470	122

Adhesion factor \alpha

Vane strength used

α Method short piles

		···	1	1 5		T T		·	1	T -	
PILE	Ap (m ²)	c (t/m ²)	Nc	Qp (t)	P (m)	Embedded	α	Su (t/m ²)	Qs (t).	Qu (t)	Qu Load Tests
-		Vane:				(m)		8.			(t)
TP4	-	_	-	7	1.445	5.33	1.0	1.20	9.2	9.2	4.7
TP5	-	-	-	-	1.445	11.3	0.97	1.73	27.4	27:4:	10.3
TP6	0.018	2.65	-10	0.47	0.471	6.0	0.88	2.42	6.0	6.47	3.5
TP7	0.018	2.65	10	0.47	0.471	6.0	0.88	2.42	6.0	6.47	3.5
TP8	0.108	2.65	10	0.47	0.471	6.0	0.88	2.42	6.0	6.47	4.5
TP9	0.018	2.65	10	0.47	0.471	6.0	0.88	2.42	6.0	6.47	4.5
TP10	0.018	2.65	10	0.47	0.471	6.0	0.88	2.42	6.0	6.47	4.5
TP11	0.019	2.60	10	0.49	0.497	4.0	0.89	2.31	4.1	5.59	2.24
TP12	0.018	2.60	10	0.49	0.471	4.0	0.89	2.31	3.9	4.39	2.10
TP13	0.019	2.60	10	0.49	0.497	4.0	0.89	2.31	4.1	4.59	2.16
TP14	0.018	2.60	10	0.49	0.471	4,0	0.89	2.31	3.9	4.39	2.10
TP15	0.022	2.65	10	0.58	0.523	7.5	0.85	2.56	8.5	9.08	615
TP16	0.022	2.65	10	0.58	0.523	6.0	0.88	2.42	6.7	7.28	5.5
TP24	0.0193	2.0	10	0.40	0172	9.9	1.0	1.30	9.3	9.70	9.0
TP25_	0.0324	2.0	10	0.65	0.92	9.6	1.0	1.25	11.0	11.65	9.0
TP26	0.0324	3.9	10	1.26	0.92	10.6	0.87	2.46	20.9	22_16	14.3
TP27	0.0225	2.2	10	0.50	0.70	12.65	0.95	1.95	16	16.90	12.0
TP 28	0.0324	2.15	10	0.70	0.85	10.7	0.96	1.90	16.6	17.30	.2.0
					8.						

	Depth of			BASE			SHAFT																Qu	Ö ni			
PILE	Pile Tip	Ар	N _C	0	:	Ģр	Р	5	oft C1	дy		Medi	um St	iff i	Clay		Sti	ff Clay				Sand	****		Total	(t)	(e)
	(m)	(m ²)		(t/	m ²)	(t)	(m)	Su	α	Ł	.Qs	Su	æ	L	Qs	Su	α	L	Qs	K	Avg.ā	6	L	Qs	Qs		Load
<u> </u>								(t/m²)		(m)	(t)	(t/n^2)		(m)	(t)	(t/m ²)		(m)	(t)		(t/m ²)	(deg)	(m)	(II)	(t)		Test
771	25.26	. 2025	10	38		77	1.80	1.6	0.98	8.6	24.8	3.à	0.80	7.5	33.2	20,9	0.35	9.16	120.6	_	_	_	_	-	178	255	210
TP2	25.32	. 133	10	38	ı	51	1.46	1.6	0.98	8.6	20.1	3.0	0.60			20.9					-	_			l		1
TP3	29.33	. 133	10	42		56	1.46	1.6	0.98	8.6	20,1	3.0	0.80	7.5	27	24.0	3 3	3(65)	157,3		_	-	_			202000	210
1721	20.025	.0576	10	18	.6	12.5	1,36	2.1	0.92	13.6	36	5,5	0.48	3.0	11	15.5	0.39	90393500	28	_		-		_	76	88	80
1722	18.50	.0676	10	16	.0	11.4	1,29	3.2	0,76	10	31	4.5	0.57	5.0	17	16.8	0.37	3.5	20	_	-	_	_		76	87	78
1923	20,50	.0676	10	. 18	.4	12.4	1,29	1.25	1.0	13	21	5.4	0.49	4,0	14	18.4	0.37	3.5	31	-	_	-		-	66	78	82.
7729	20.70	.0676	19	15	.0	10,0	1,21	2.4	0.67	13	33	5.0	0.53	4.5	14	15.0	0.38	3,2	22	1	-	-	-		69	79	67
		· ·	δζ, (t/m²)	á (deg)	. Nq					I		<u> </u>		200	5.5	2763.20						;					
T# 67	27.55	. 157	23.0	34	45	162	1.885	2,16	٠.٥	11.0	40.	.8	0.54	4.0	19.5	15.8	0.38	10,2	115	1,0	22,0	25.5	2/35	46	221	383	360
TPER	26.95	. 157	11.5	34	45	159	1,805	2.16	0.91	11.0	10.8	4.8	0.54	4.0	19.5	15.8	0.3B	10.2	115	50 mm	22.0	53555 - 11 5345038856				369	360
1719	27.05	.157	19.0	36	56	167	1,885	2.6	0.85	11.5	46	5.1	0.53	1.5	7.6	10.2	0,40	8.2	63	1,0	16.5	27.0	5.85	93	212	379	360
TP20	22.40	.0404	15.5	35	43	27	1.19	2.7	0.84	15.0	41	-	-		-	7.1	0.42	3.8	14	1.0	14.5	26.3	1:6	31	A 6	113	90

Total stress method-- long piles

Total stress method long piles

	Depth of			ASE							36			SHAFT								100		Weigh	t	Qu
	Pile Tip	Ар	ا م	\ \ \	Qp	P		Soft Clay			Ме	Medfum Stiff Clay				Stiff Clay				S	and			of	Qu	1
	(ar)	(an ²)	(t/m ²)		(t)	(m)	(m)	q _{TF} (t/m)	7 3000000	Qs (t)	(m)	97F (t/m)		Qs (t)	l. (m)	qrf (t/m)	α	Qs (t)	L (E)	9 ₇₁		(e)	- Qs (t)	Pile (t)	(t)	Tes (t
			10,000				 			-		 	1			(4,5,	†	1	(1.7	1	<u>''/</u>	(6)	1	 ``	1,17	
771	25.26	.2025	545	0.33	36.4	1,80	8.6	10	1.0	18	7.5	15	0.7	18.9	9.16	164	0.5	147.6	-	-	-	-	184.5	12.64	208	210
772	25.32	.133	525	0.33	23.0	1.46	8.6	11	1.0	16	7.5	20.5	0.7	21	9,22	144	0.5	105	-	-	-	-	142	3.36.	162	165
123	29.33	. 133	518	0.33	22.7	1,46	8.5	11	1.0	16	7.5	17	0.7	17.4	13.2	242	0.5	175.6	-	-	-		510	3.87	229	210
TP21	20.025	.0676	402	0.33	8.9	1,36	13.5	19.5	1.0	26.5	3.0	14.5	0.7	13.8	3.43	50	0.5	34	-	_			74.3	2.42	81	80
TPZZ	i3.50	.0676	415	0.33	9.3	1.29	10	16	1.0	20.6	5.0	18	Q.7	16,3	3.5	52	0.5	33.5					70.4	2.09	78	78
1253	20.50	.0678	535	0.33	11.9	1.29	13	15	1.0	19.4	4.0	g	0.7	9.1	3.5	71	0.5	45.8			-		73.3	2.09	83	82
FP29	20.70	.0676	366	0.33	8.2	1.21	13	18	1.6	21.8	4.5	32	0.7	27.1	3.2	26	Q.; \$	15.7		_			64.6	2.61	70	67
TP 1.7	27.55	. 157	780	0.5	61	1.885	11	16	1.0	30.1	4.0	9	0.7	11.9	10.2	159	0.5	150	2.15	72	0.8	108.6	300.6	10.55	351	160
PIB	26.95	.157	689	0.5	54	1,885	11	12*	1.0	22.5	4.0	31	a.7	40.9	10.2	190	0.5	179	1.75	53	0.0	80	122,5	10.92	366	360
TP 19	27.05	. 157	615	0.5	48	1.885	11.5	15	1.0	28.3	1.5	2.5	0.7	3.3	6.2	100.5	0.5	94.7	5.85	132	0.0	199	125.1	10.92	362	360
FP 20	22.40	. 0404	430	ó.5	8.7	1.19	15	24.5	1.0	29.2	-	-	-	-	3,8	30.5		ı		_ × [38.1	85.4	2.04	92	90
	-									. [- 1								100					

Dutch cone test used in pile capacity determination

Sand Drain

Fig. 4 Soil Profile for Pom Prachul Site

Water Pressure Declines in Surface Clay Layer