
Critical state soil mechanics 

in prediction of strains 



Elements of Critical State  

Soil Mechanics in Prediction  of  

Strains 

 1.  Definition of stress and strain parameters 

 

 2.  State parameters and the use of (q, p, e) and 

      applied stress paths and effective stress paths 

 

 3.  Normally consolidated and over-consolidated states 

 

 4.  Stress strain behavior and strength 



Elements of Critical State  

Soil Mechanics in Prediction  

  of  Strains (contd.) 

5.  Elementary concepts in theory of elasticity and 

      plasticity 

 

6.  Theories for normally consolidated clays 

 

7.   Natural deposits and over-consolidated states 

 

8.   Numerical analysis 

 



Classical contributions  

 

 1. Rendulic (1936)  

         (on constant voids ratio contours) 

 

 2. Hvorslev (1936)  

         (on mean equivalent pressure) 

 

 3.    Roscoe, Schofield & Wroth (1958) 

  (on state boundary surface) 

 

 4. Drucker (1959) 

  (Stability criterion 



5. Poorooshasb (1961) and  

 Roscoe & Poorooshasb (1963) 

 (Incremental drained strain as incremental 

 undrained and anisotropic consolidation  

 strains) 

 

6. Thurairajah (1961) 

(Energy Balance equation)  

 Calladine (1963) 

 (on elastic wall concept)  

         Roscoe, Schofield  &Thurairajah (1963) 

 



7. Burland (1965) 

 Roscoe & Burland (1967) 

 ( Modified energy balance equation  

  & constant q yield loci) 

 

8. Wroth & Loudon (1967) 

 Pender (1970) 

 (on modeling over-consolidated clays ) 

 



1 Stresses and Strains 
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Shear Strength of Soils 
Triaxial setup 

Cell pressure 

back pressure pore pressure 

1. Force  axial stress (1) 

2. Axial deformation  axial                         
       strain (a) 

3. Pressure  cell (1), back, 

       pore (u) 

4. Volume 

1. Specimen preparation 

2. Saturation 

3. Consolidation 

4. Compression   

    (shearing) 



Local Axial, Radial and Pore Pressure Transducers 









In terms of the stress 

invariants the parameters are 
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For Odeometer  type of 

consolidation  
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For other type of consolidation 
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Also during consolidation 

the stress paths are radial 

in nature  passing through 

the origin in the  

 

(q, p), ( 
1

', 
3

') plots.  
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The shearing process can best be 

described as a process in which  

the soils are subjected to stress 

paths, which seek failure both in 

 compression and in extension 

and for these cases      
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In terms of total stresses 
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In terms of effective stresses 
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t  = t'           s' = s - u 

 With respect to the Mohr- circle stress 

parameters total and  effective stress 

paths can be plotted as desired. In 

addition to  (q,p), (t' , s' ) plots some 

authors also prefer the 
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For axi-symmetric conditions 

 

  

 



For plane strain conditions  



Strain Increment  



The incremental axial strain  

is given by  

l

l
1


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 is the increment in  height 

and l is the current height. 
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When integrated we have  

l

l
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 l
0 
 is the initial length and l is 

the current length.  



Similarly the incremental radial 

strain  is given by  

r

r
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r is increment in the radius  

and r is the current radius. 



When integrated we have  

r

r
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 is the initial radius and r is 

the current radius.  



Similarly the incremental 

volumetric strain 
v

is given by 

V

V
v


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V is the increment in volume and  

V is the current volume. 



The incremental volumetric 

strain is also same as  
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e is the increment in voids ratio 

and e0  is the current voids ratio. 



The volumetric strain 
v
 can be 

integrated as  
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The incremental volumetric 

and shear strains are related 

to the incremental axial and 

radial strains As in the next 

slide 
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Work Equation  
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Elastic Stress Strain 

Relationship  



For axi-symmetric conditions 

Atkinson & Bransby have derived 

the following relationships 



For plane strain conditions the 

relationship becomes  



For plane strain conditions  



For axi-symmetric conditions 

 

  

 











Volumetric dilation in heavily overconsolidated  

clays in drained case and large excess negative  

pore pressure in undrained case 



Volumetric strain in drained test and excess pore  

pressure in undrained test (NC state) 















Undrained tests 

Roscoe, Schofield 

& Wroth way of 

Interpretation 

Use of 

(q,p) plot - stress  

path & 

Voids ratio or water  

content or specific  

volume with q and p 

 plots 

Failure 

Failure 



Roscoe 

Schofield & 

Wroth 

contribution 

State boundary surface  

in (q,p, e or v or w 



Hvorslev’s  mean  

equivalent pressure,p e 

When sample A is sheared  

to B, at B the mean equivalent 

pressure is the same as the 

consolidation pressure 

corresponding to point D.  

DBE is an undrained stress path 

Loosest packing 

Densest state for 

NC clays 



Same as 

Rendulic’s 

work 

Not 

necessarily  

a straight 

line 

State Surface in 2-D 

overconsolidated 

Fundamental theories 

only for states on AB 





Undrained tests 

Roscoe, Schofield 

& Wroth way of 

Interpretation 

Use of 

(q,p) plot - stress  

path & 

Voids ratio or water  

content or specific  

volume with q and p 

 plots 

Failure 

Failure 



Stress-strain 

behaviour 
 



Undrained behaviour 
 



Figure 3.7  Pore pressure, shear strain and deviator stress stress  

                   ratio shear strain relationships in undrained shear  



Figure 3.8:  Pore pressure parameter A  



Figure 3.9:  Normalized deviator stress and pore pressure relationships  



Figure 3.5:   Effective stress paths under undrained tests  



Figure 3.6:  Normalized undrained stress paths 



Figure 3.10:  Critical state line in (q,p) plot from undrained test data  



Figure 3.11:  Critical state line in (e, ln p) plot  



Fully drained behavior 



Figure 3.17:  State path followed by full drained test specimens  



Figure 3.18:  Stress strain behavior of full drained test specimens  



Figure 3.19: Volumetric strain shear strain plot of drained test specimens  



The stress ratio strain 

relationships are shown in Fig. 

3.20.  The peak stress conditions 

and the water content log stress 

 relationships are shown in Fig. 

3.21 and  3.22. They support the 

 critical state concept. 



Figure 3.20:  Stress ratio strain relationship for fully drained tests  



Figure 3.21: Critical state line from constant p and fully drained tests in (q,p) plot  



   Figure 3.22: Water content Stress projection of critical  

                        state line from  constant p and fully drained tests  



Overconsolidated clay 

behaviour  



Figure 3.23:  Undrained stress paths and constant shear strain contours  



Elasto-plastic 

Behaviour of Soft 

Clays 



Elementary concepts in 

Elasto-plasticity  



Elastic and plastic strains  

Elastic strains are strains recovered 

 in a close cycle of stress without any 

 appreciable hysteresis loop. Plastic 

 strains are ir-recoverable strains. 

 The strains due to any increment of 

 stress for an elasto-plastic material 

 are divided into an elastic 

 component and a plastic  component. 
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Yield surface 

An yield surface is defined in the stress 

space as one which divides the regions 

of stress for which the strains are 

elastic from those which include a 

plastic component. For conditions of 

stress inside the yield locus an 

infinitesimally small increment of 

stress can cause only elastic strains.  



If the stress conditions correspond to a 

point on the yield surface and if the 

material is stable ( as defined by 

Drucker, 1959), an infinitesimal 

increment of stress directed outside 

the yield surface produces only plastic 

strains for a perfectly plastic material 

and additional elastic strains if the 

material work hardens.  



Flow rule 
   

The flow rule provides a relationship 

between the strain rate vector during 

plastic deformation and the imposed 

stress vector. As stated before for 

increment of plastic deformation to 

occur, the stress point should lie on 

the yield surface and the stress 

increment be directed outside the 

surface. 



Formulation  

of Cambridge 

Theories 



Assuming the slope of the isotropic 

consolidation line as l  and the 

isotropic swelling as  k , it can be 

shown that 















h

h



















l

k


=




2

M

1

1

d

d 22

s

v



Dilatancy ratio
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Figure 5.1: Observed and predicted dilatancy ratio 



We will then have the equation of the 

volumetric yield locus as 
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Volumetric yield loci
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Fig. 5.2 Volumetric yield loci  



Incremental 

volumetric strain 
 



The shifting of the volumetric yield 

locus will give the plastic volumetric 

strain increment. Differentiating the 

volumetric yield locus in equation 

(5.23), We have 
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Using the consolidation and swelling 

lines as 
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where ea is the voids ratio under 

virgin consolidation and at unit 

pressure. 



Differentiating (5.25) and (5.26),  We 

have 
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Using (5.24) and (5.29), the 

incremental plastic volumetric strain 

can now be obtained as 
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The incremental elastic volumetric 

strain is given by 
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Undrained stress path 
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Shear strain increment 



The elastic shear strain increment is 

assumed to be zero. Therefore the total 

shear strain increment is the same as 

the plastic shear strain increment.  

Therefore, 
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Use of Double yield loci 





(  hh= d)(d
q.consts

where dh is the increment in stress 

ratio under the loading conditions. 

Thus the actual shear strain 

increment is givenin the next slide 
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The addition of such shear 

strain from the constant q yield 

loci will make the flow rule 

non- associated in a global sense. 

The predicted and the observed 

strains are shown in Fig. 5. 5. 
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Pender model for 

overconsolidated clay 
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Figure 5.6: Undrained shear strains in overconsolidated clay  



Figure 5.7:  Pender prediction of undrained shear strain in overconsolidated clay  


