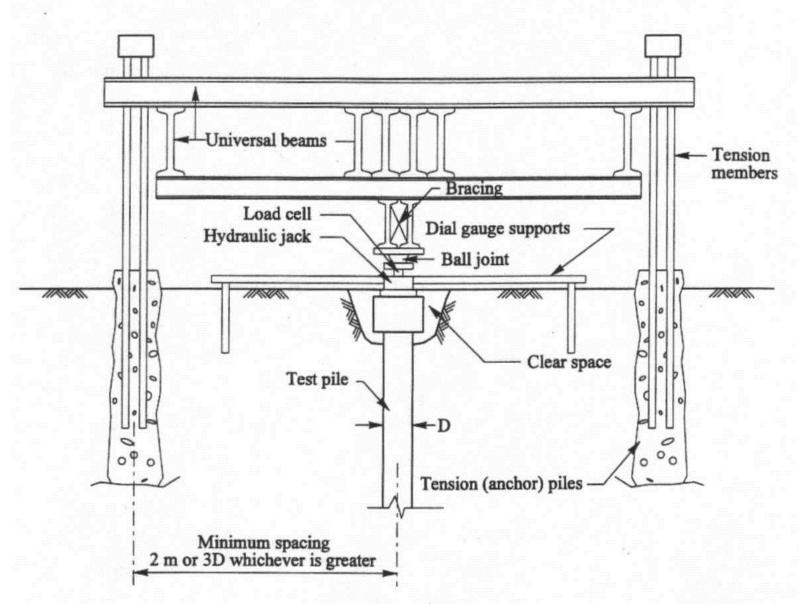

Founding level before 1973


- 1. First stiff clay
- 2. First sand layer

Pile Testing

Pile testing arrangement

Pile testing arrangement

Pile Fredoms

Site investigations, piling contracts, pile testing

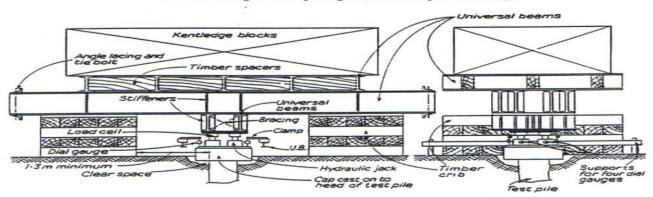


Fig. 11.8 Testing rig for compressive test on pile using kentledge for reaction

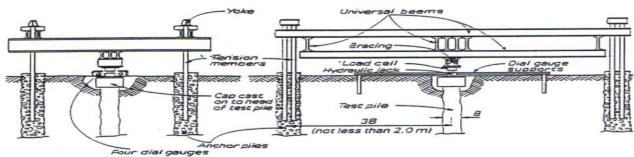
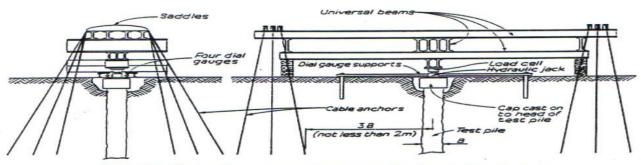
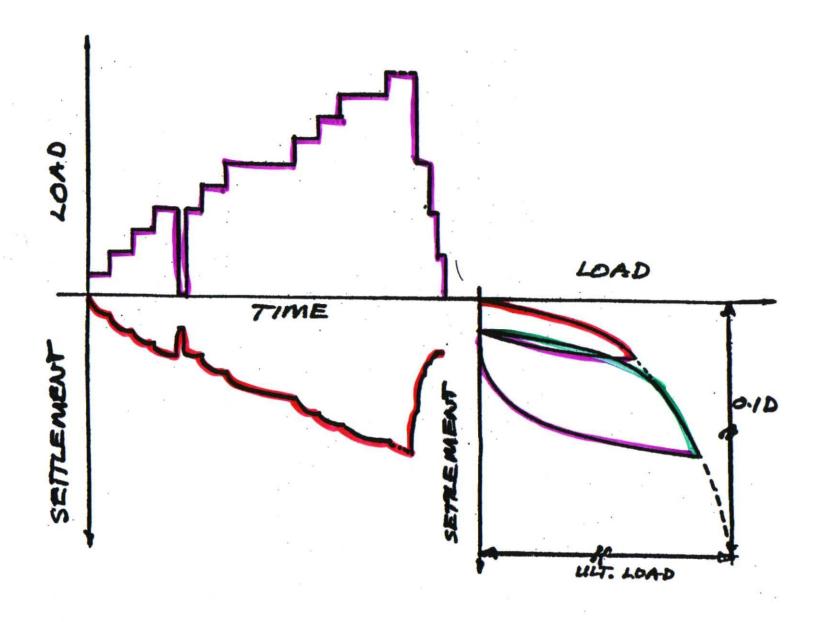
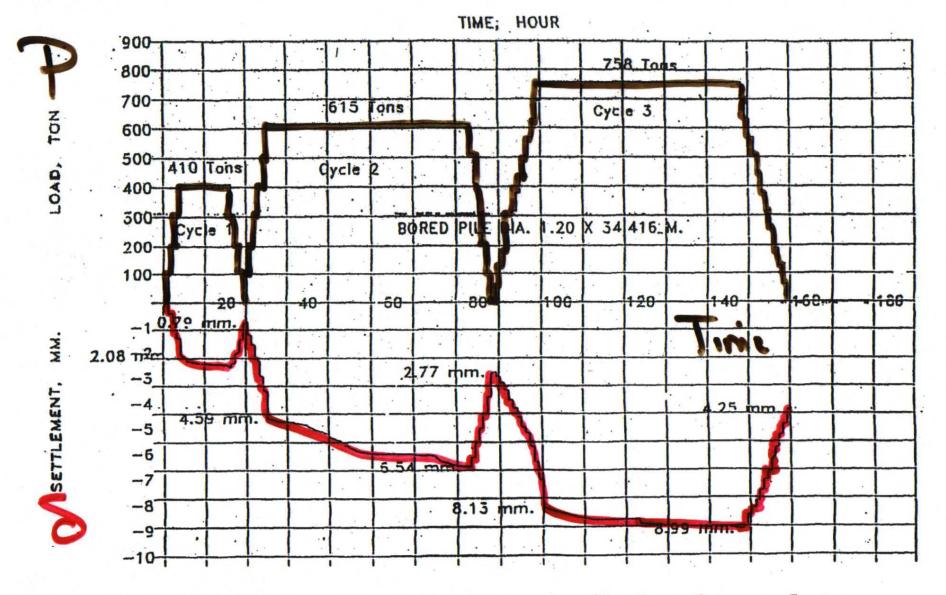
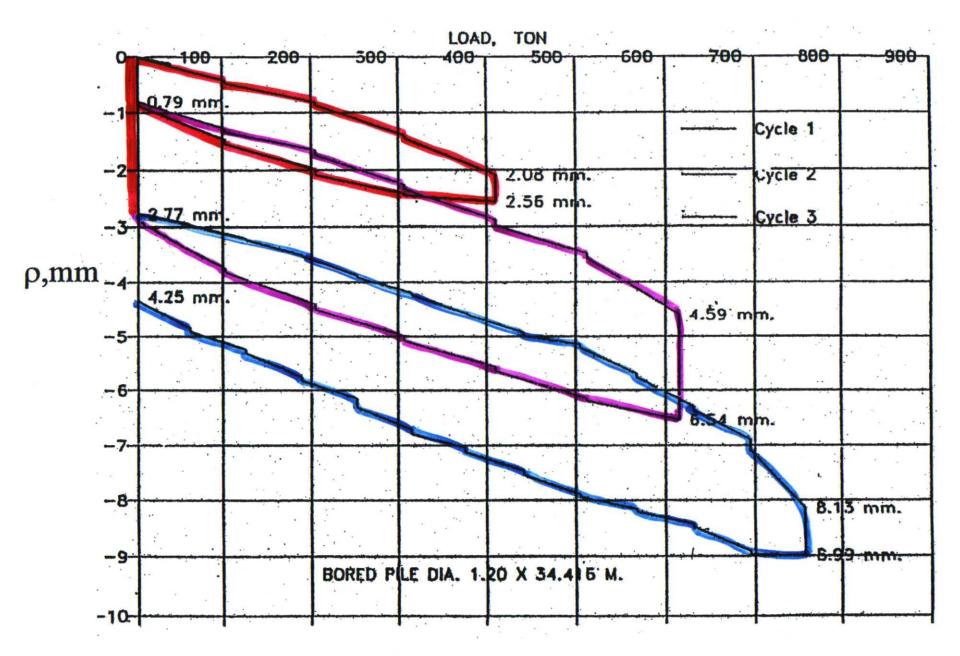


Fig. 11.9 Testing rig for compressive test on pile using tension piles for reaction


Fig. 11.10 Testing rig for compressive test on pile using cable anchors for reaction

Plotting load settlement curve

Second stage expressway-- pile load test data Load -settlement Details

Load-settlement data

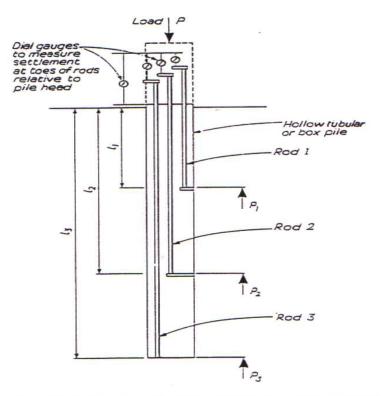


Fig. 11.12 Use of rod strain gauges to measure load transfer from pile to soil at various levels down pile shaft

Tell-tale rode

to measure Shain

and to compatible

transfer

Load testing of piles .

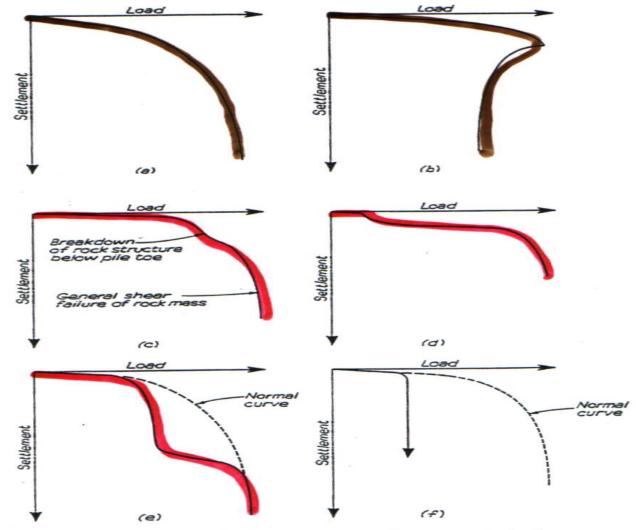
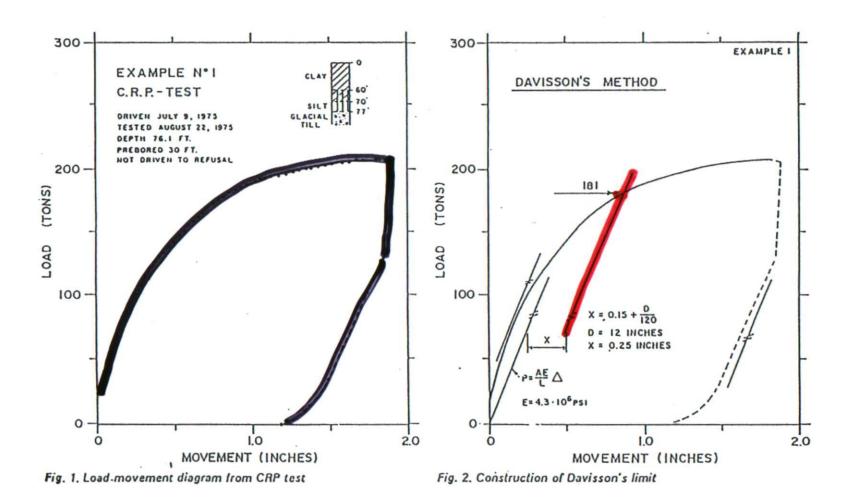
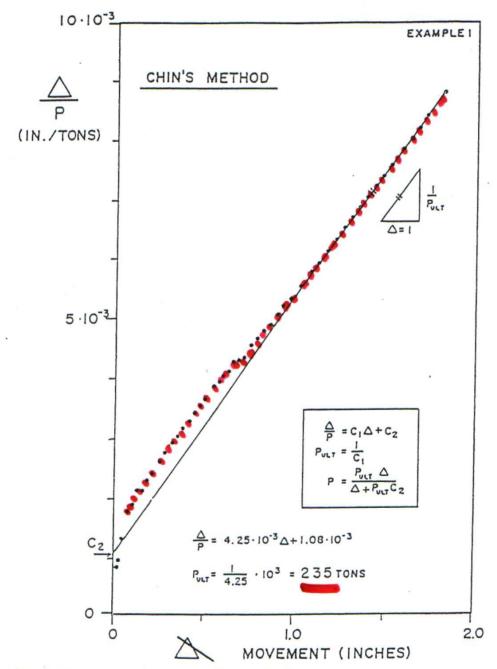
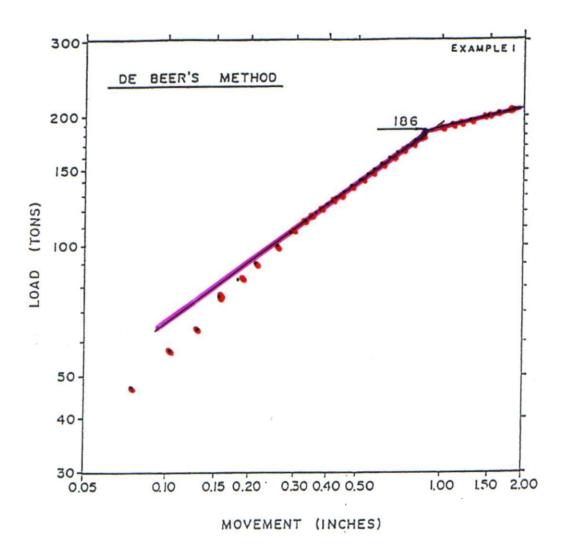



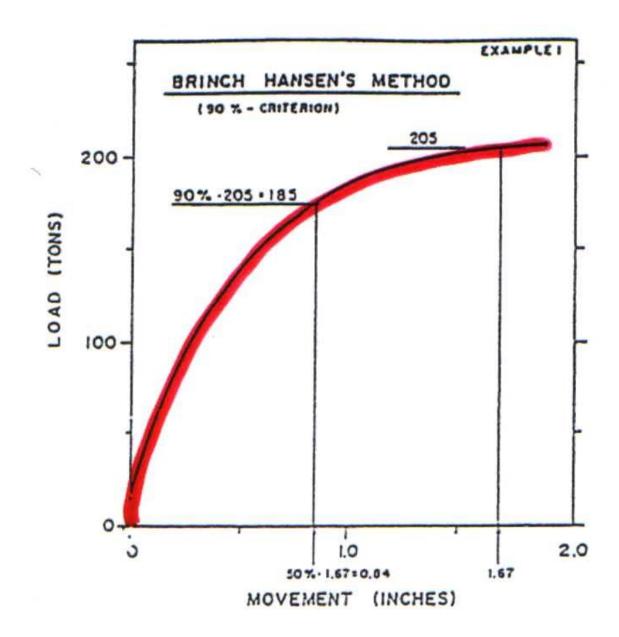
Fig. 11.14 Typical load-settlement curves for compressive load tests


- (a) Friction pile in soft-firm clay or loose sand
- (b) Friction pile in stiff clay
- (c) Pile end bearing on weak porous rock

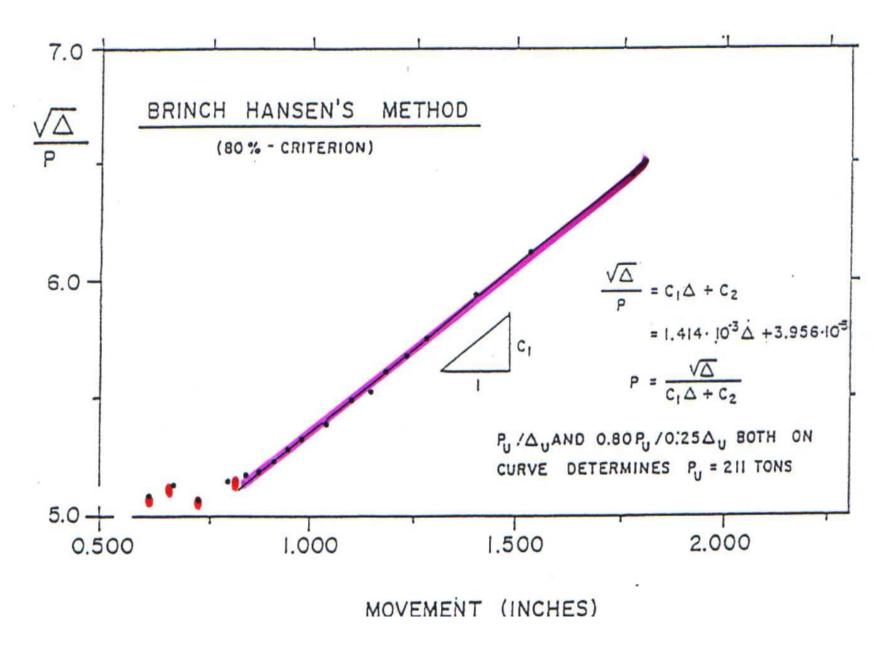
- (d) Pile lifted off seating on hard rock due to soil heave and pushed down by test load to new bearing on rock
- (e) Gap in pile shaft closed up by test load
- (f) Weak concrete in pile shaft sheared completely through by test load

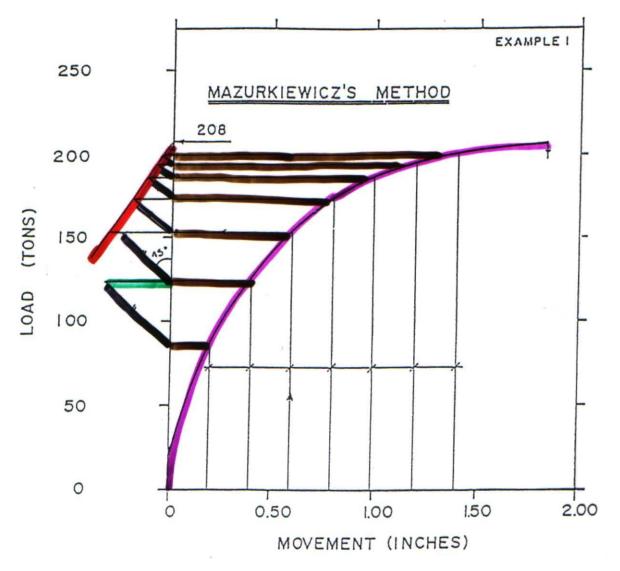


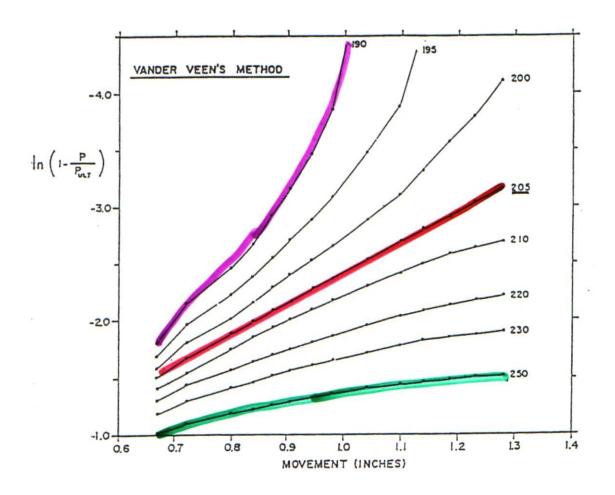
Fellenius on load settlementgraph

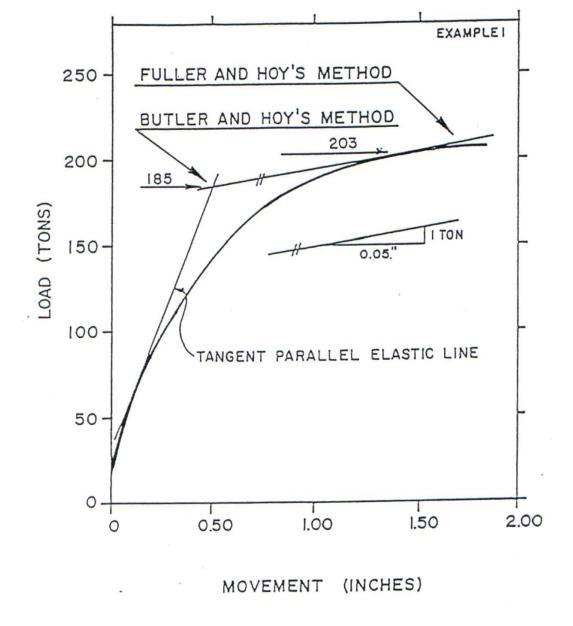


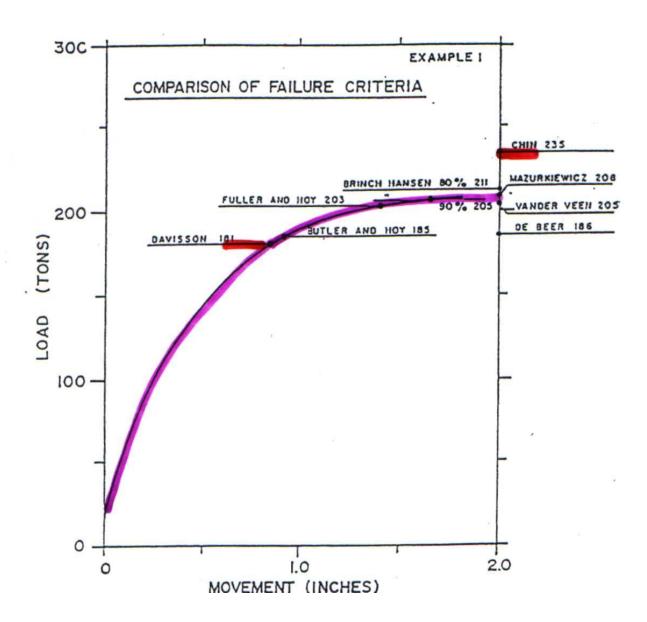
Chin method


Fig. 3. Ultimate failure according to Chin

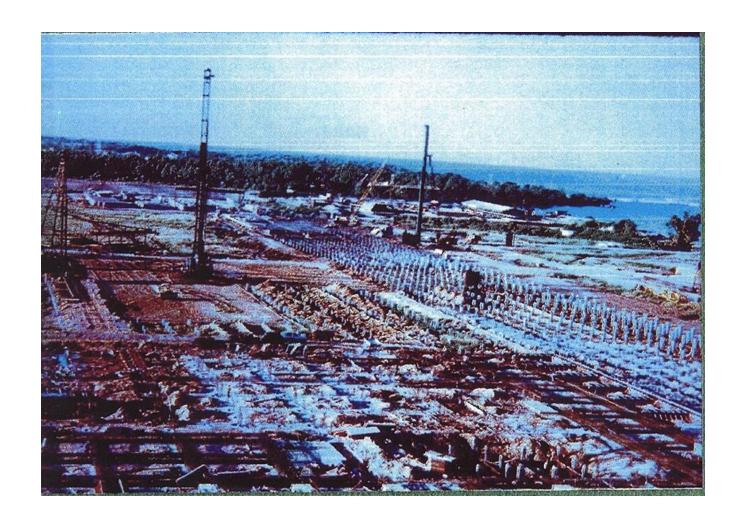

De Beer's method


Hanson's 90 percent criterion

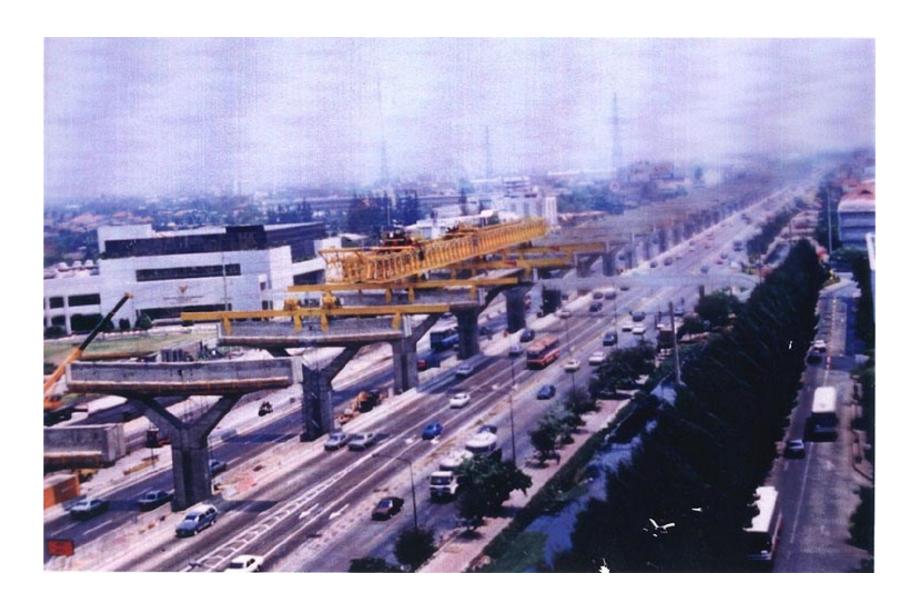

Hanson's 80 percent criterion


Mazurkiwicz method

Vander Veen method



Fuller & Hoy and Butler & Hoy methods



Comparison of failure loads

Tall buildings in Bangkok city

Twenty thousand or more driven piles in one site

Soil profile

- 1. Upper clay
- 2. First sand
- 3. Second clay
- 4. Second sand

Maximum load reached in each founding level

Tip	Drive	n Pile	Bored P	ile	Auger Pres	sed Pile
Elevation	Building	Expressway	Building	Expressway	Building	Expressway
Soft						
	12	-	8 – 7	_	-1	_
Clay	5		n a		ta ay	200 1000
Stiff						
	358	316	720	-	434	-
Clay					a	
lst Sand						
	387	360	1125	1073	443	_
Laver	Y 1000					3
2nd Stif				-		
	-	F .	1522	. –	300	_
Clay			6	er ee	v	2
2nd Sand						
	-	-	2855	2080	-	-
Layer	4.			e de la constanta de la consta	×	
Qmax						
	387	360	2855	2000	443	_
(tons)						

		Size and Shape	Length	X-sectional	Perimeter	
Longer	Type of Pile	(m)	(m)	area (m ²)	(m)	L
piles _		()				
founded in stiff clay -	Prestressed concrete pile	0.45	26.7	0.2025	1.80	
	67 1 11 511	0.009 110.012	26.7	0.0106	1 46	
	Steel H-P11e	[30.7	0.0106	1.46	
			6.05	_	1.445	
	Steel Pipe Pile	<u> </u>	12.10	-	1.445	
	**		6.0	0.018	0.471	
Short piles	a l	83	6.0	0.018	0.471	
founded in	Wooden Piles		6.0	0.018	0.471	
and sand layers Short piles		0.15	6.0	0.018	0.471	
medium			6.0	0,018	0.471	
	Reinforced concrete pile	O TIS	6.0	0.019	0.497	
	Wooden pile		6.0	0.018	0.471	

*Wooden piles
*Reinforced
concrete piles
*Pre-stressed
concrete piles
*Steel piles

Type of Pile	Size and Shape (m)	Length (m)	X-sectional area (m²)	Perimeter (m)
Reinforced concrete pile	O [0.15	6:0	0.019	0.497
wooden p1le	() [0.15	6.0	0.018	.0.471
wooden pile	◎ [o.17	7.8 7.8	0.022	0.523 0.523
Prestressed concrete pile	0.60	28 29 29	0.157 0.157 0.157	1.885 1.88 1.885
Prestressed concrete pile	2 I045	21	0.0404	1.190
Prestressed . concrete pile	I Jo. 26	21	0.048	1.36
Prestressed concrete pile	2.16 To 22	21	0.0414	1.29
Prestressed concrete pile	0.26	21 .	0.0414	1.29

Length up to 30 m

Type of Pile	Size and Shape	Length	X-sectional	Perimeter		
s	(m)	(m)	area (m²)	(m)		
Prestressed concrete pile	0.12 10.16	10	0.0193	0.72		
Prestressed concrete pile	[] Jo-10	10	0.0176	0.92		
Prestressed concrete pile	10-16 0-16	11	0.0176	0.92		
Prestressed concrete pile	0.15	13	0.0147	0.70		
Prestressed concrete pile	₩ [D-18	11	0.0225	0.85		
Prestressed concrete pile	0.1c	21	0.049	1.21		

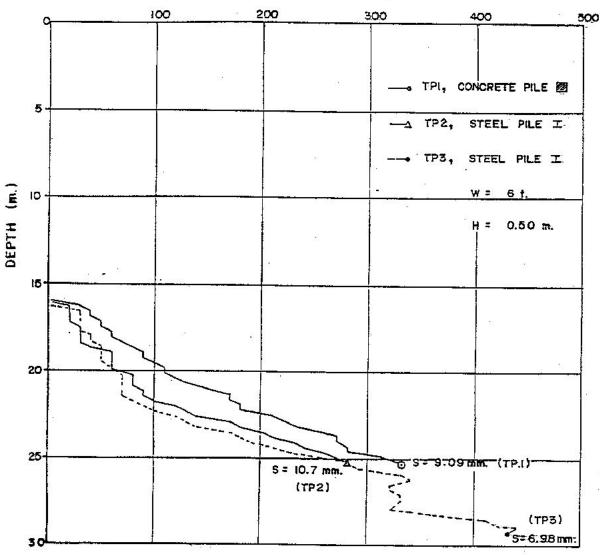
Pre-stressed concrete piles

Full Record

- 1. Type of test
- 2. Driven date
- 3. Date tested
- 4. Max. Load

	PILE	Depth of pile tip (m)	Type of Tesit	Date Driven	Date of Test	Resting time (days)	Measured Ultimate Load(tons)
-	TP21	20.025	ML & Quick- ML	11/ 7/77	24–28/7/ 77	44	80
	TP22	18.50	ML & Quick- ML	19/10/77	2-6/11/77	14	78
	TP23	20.50	ML & Quick- Ml	15/11/77	3-7/12/77	18	82.5
	TP24 TP25	9.90 9.60	ML ML	30/4/78 30/4/78	1-2/5/78 3-4/5/78	1 2	9.0
	TP26	10.60	ML & Quick- Ml	2/ 4/77	29-31/4/ 77	27	14.3
-	TP27 TP28	12.65 10.70	ML ML	8/ 3/78 8/ 3/78	27/ 3/78 14-15/4/ 78	19 37	12.0
	TP29	20.70	Quick- Ml	26/ 6/76	9/ 7/76	13	67.0

- * Cone resistance
- * Driving Resistance
- * Ultimate Load measured

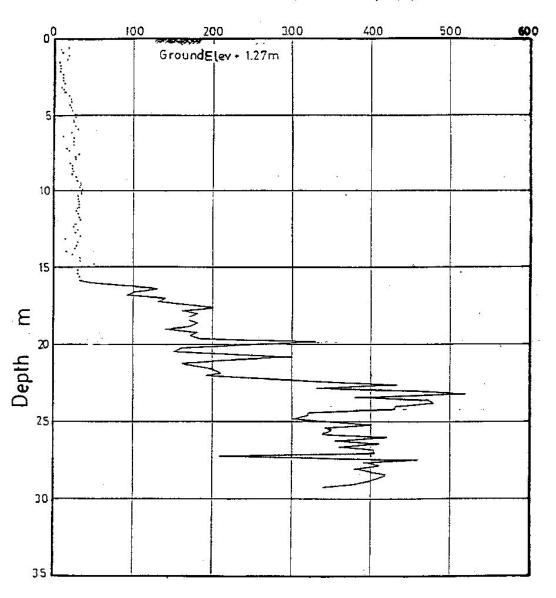

PILE	Depth of Pile Tip (m)	Average cone Resistance q:c;(t/m²)	Driving Resistance Qo:(t-m/m)	Measured Ultimate: Pile Loads Qu;(tons)
TP1	25.26	545	330	210
TP2	25.32	525	280	165
ТРЗ	29.33	518	430	210
TP17	27.55	780	840	360
TP18	26.95	689	1,110	360
TP19	27 - 05	615	1,050	360
TP20	22,400	430	117	90
TP21	20.025	402	385	1.80
TP22	18.50	415	183	78
TP23	20.50	535	293	82.5
TP29	20.70	366	66	67 ⁻
TP30	25.00	759	1,250	270
TP31	22.30	403	350	143
TP32	18.20	265	260	71
TP33	18.30	275	280	86
TP34	18.40	260	240	67
TP35	24.40	403	470	122

PILE	Pile Weight	Section area	Pile length	Hanmer weight	Hammer drop	Hammer Coefficient	Efficiency	of the blocky)	Temporary Compressi	y Elastic <u>ion (mm)</u>	Final Set(s
	(t)	(m ²)	(m)	(t)	(回)	{k}	Hiley	Janbu	Cp+Cq (am)	(#m)	(ma)
TP1	12.64	0.2025	26.7	6.0	0.50	0.9	0.38	0.70	7,5	6.3	9.09
TP2	3.36	0.0106	25,7	6.0	0.50	0.9	0.69	0.70	11.5	5.0	10.7
TP3	3,87	0,0106	30,7	6.0	0.50	0.9	0.67	0.70	13.0	5.0	6.9B
TP17	10.55	0.157	28	4,3	1.955	0.9	0.33	0.70	9.5	6.3	10.0
TP18	10.92	0.157	29	4.3	1.985	e.é	0.33	0.70	12.0	6.3	1.7
TP19	10.92	0.157	29	4.3	1.985	0.9	0.33	0.70	9.0	5.3	8.05
TP20,	2.04	0.0404	21	4.5	0.30	0.8	0.69	0.70	7.5	5.0	11.50
TP21	2.42	0.048	21	3.5	0.30	0.8	0.62	0.70	10.5	5.0	2.73
TP22	2.09	0.0414	21	4.7	0.20	8.0	0.69	0.70	8.0	5.0	7,69
TP23	2.09	0.0414	21	3.0	0.30	D.8	0.62	0.70	9.5	5.0	3,05
TP29	2.51	0.049	2	3.0	0.30	0.8	0.57	0.70	6.0	5.0	13.6

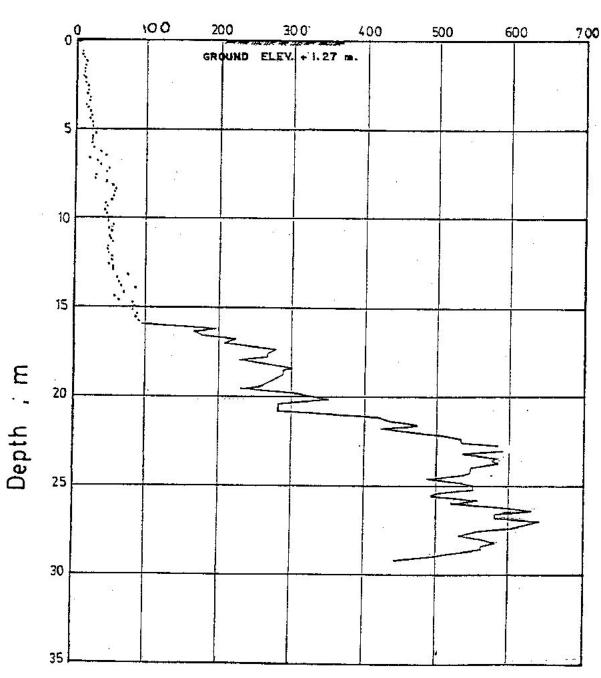
Pile driving details

PILE	Predicted	Ultimate	Loads, tons	14							
PILE	Hiley	Janb u	Danish	Measured Ultimate Loads (tons							
TP1	64	83	146	210							
TP2	- 98	81	114	165							
TP3	113	92	130	210							
TP17	139	155	267	360							
TP18	150	170	289	360							
TP19	161	167	285	360							
TP20	42	36	46	90							
TP21	50	52	68	80							
T P22	55	45	57	78							
TP23	43	43	57	82.5							
TP29	22	23	32	67							
			<u> </u>								

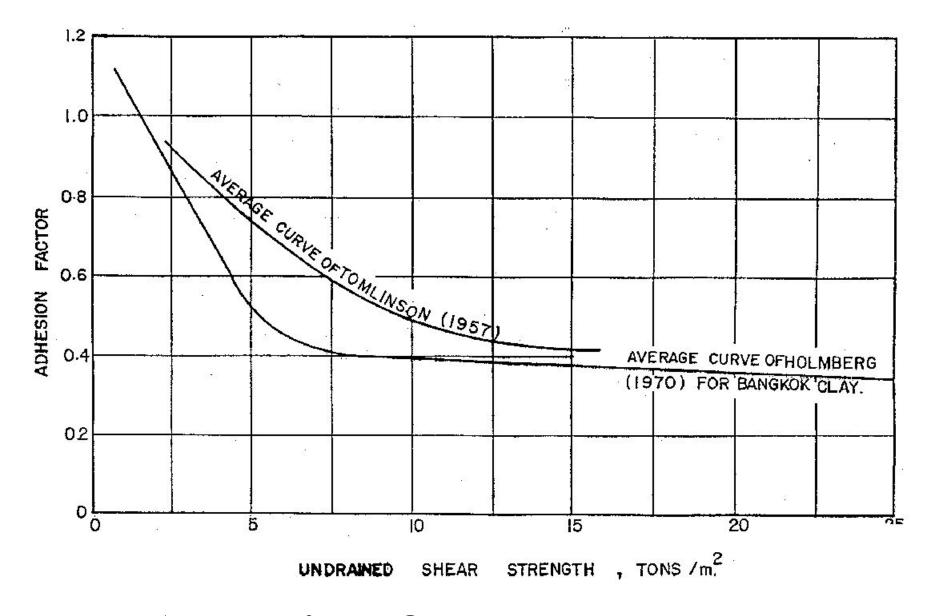
Use of pile driving Formulae



Pile
Driving
Resistance


FIG. F.3 DRIVING RESISTANCE V.S. DEPTH OF TEST PILES AT POM PRACHUL

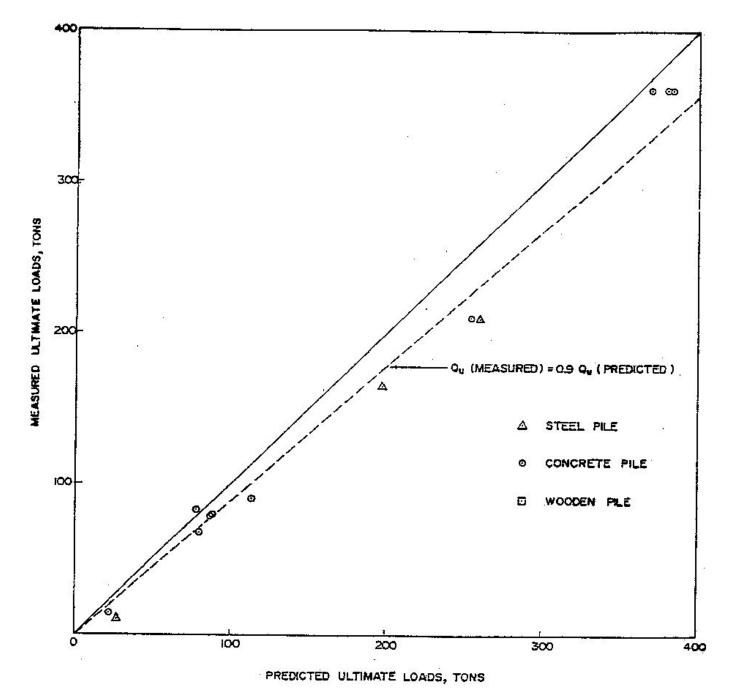
(TP1, TP2, TP3)


Jacket friction in Cone penetration test

Cone resistance in t/m²

Cone Resistance

Adhesion factor α


Vane strength used

α Method short piles

	1		1	10 - 5		T	.1 .		-		
PILE	Ар (m ²)	C (t/m ²) Vane	Nc	Qp (t)	p (m)	Embedded	α	Su (t/m²)	Qs (t)	Qu (t)	Qu Load Tests (t)
TP4		_			1.445	5.33	1.0	1.20	9.2	9.2	4.7
TP5	_			7	1.445	11.3	0.97	1.73	27.4	27:4	10.3
TP6	0.018	2.65	10	0.47	0.471	6.0	420 2000000		ļ		
TP7	0.018	2.65		0.47		×	0.88	2.42	6.0	6.47	3.5
			10		0.471	6.0	0.88	2.42	6.0	6.47	3.5
TP8	0.108	2.65	10	0.47	0.471	6.0	0.88	2.42	6.0	6.47	4.5
TP9	0.018	2.65	10	0.47	0.471	6.0	0.88	2.42	6.0	6.47	4.5
TP10	0.018	2.65	10	0.47	0.471	6.0	0.88	2.42	6.0	6.47	4.5
TP11	0.019	2.60	10	0.49	0.497	4.0	0.89	0.89 2.31		5.59	2.24
TP12	0.018	2.60	10	0.49	0.471	4.0	0.89	2.31	3.9	4.39	2110
TP13	0.019	2.60	10	0.49	0.497	4.0	0.89	2.31	4.1	4.59	2,16
TP14	0.018	2.60	10	0.49	0.471	4.0	0.89	2.31	3.9	4.39	2,10
TP15	0.022	2.65	10	0.58	0.523	7.5	0.85	2.56	8.5	9.08	625
TP16	0.022	2.65	10	0.58	0.523	6.0	0.88	2,42	6.7	7.28	5.5
TP24	0.0193	2.0	10	0.40	0172	9.9	1.0	1.30	9.3	9.70	9.0
TP25_	0.0324	2.0	10	0.65	0.92	9.6	1.0	1.25	11.0	11.65	9.0
TP26	0.0324	3.9	10	1.26	0.92	10.6	0.87	2.46	20.9	22.16	14.3
TP27	0.0225	2.2	10	0.50	0.70	12.65	0.95	1.95	16.4	16.90	12.0
TP 28	0.0324	2.15	10	0.70	0.85	10.7	0.96	1.90	16.6	17.30	.2.0
					81						

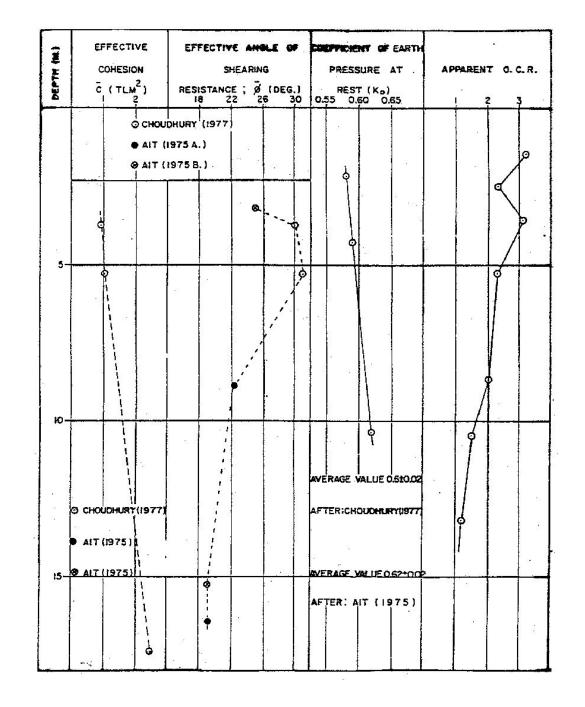
	Depth of			BASE				SHAFT														Qu	Qui				
PILE	Pile Tip	Ap	N _C	C		Qр	р		ioft C1	ay		Medi	um St	iff	Clay		Sti	ff Clay				Sand			Total	(t)	
	(m)	(m ²)		(t/	m ² }	(t)	(m)	5u (t/m²)	α	(m)	.Qs (t)	Su (t/m²)	×	L (m)	(t)	Su (t/m ²)	α	L (an)	Qs (t)	K	Avg.đ (t/m²)	1		Qs (1)	Qs (t)	. 8	Loa
771	25.26	. 2025	10	38		77	1.80	1.6	0.98		24.8	3.0			33.2		0.35		120.6		_			-		255	
TPZ	25.32	. 133	10	38		51	1.46	1.6	0.98	8.6	20.1	3.0	0.80				0.35	9,22			-	_			146		1
FP3	29.33	. 133	10	42		56	1.46	1.6	0.98	8.6	20,1	3.0	0.80	7.5	27		0.34	8(00)	157.3		_		_	_		260	
1541	20.025	.0576	10	18	.6	12.5	1,36	2.1	0.92	13.6	36	5,5	0.48	3.0	11	15.5	0.39	3.43	28	_	_	-		-	76	88	80
722	18.50	.0676	10	16	.0	11.4	1,29	3.2	0.76	10	31	4.5	0.57	5,0	17	16.8	0.37	3.5	20	_	-	-	-		76	87	70
F23	20,50	.0676	10	, 18	.4	12.4	1,29	1.25	1.0	13	21	5.4	0.49	4,0	14	18.4	0.37	3.5	31	-	-	-		-	66	78	8
1729	20.70	.0676	19	15	.0	10,0	1,21	2,4	0.87	13	33	5.0	0.53	4.5	14	15.0	0.36	3,2	22	1		-	-		69	79	67
		· ·	δζ, (t/m²)	á (deg)	. Nq	2				!			•	200	5.	7000 20		200	A.			lj				82	
F 67	27.55	. 157	23.0	34	45	162	1.885	2,16	٥.٠	11.0	40.	.8	0.54	4.0	19.5	15,8	0.38	10,2	115	1,0	22.0	25.5	2/35	46	221	383	360
*11	26.95	. 157	11.5	34	45	169	1,805	2.16	0.91	11.0	40.8	4.8	0.54	4.0	19.5			200000000	115	600 m	22.0					369	36
719	27.05	.157	19.0	36	56	167	1,885	2.6	0.85	11.5	48	5.1	0.53	1.5	7.6	10.2	0,40	8.2	63	1,0	16.5	27.0	5.85	93	212	379	36
F26	22.40	.0404	15.5	35	43	27	1.19	2.7	0.84	1 5 .0	41		_			7.1	0.42	3,8	14		14.5	1				113	9

Total stress method-- long piles

Total stress method long piles

Investigator		a				አ
	Soft Clay	Medium Stiff Clay	Stiff Clay	Sand	Clay	sand
Pham, 1972	1.4	1.4	0.7		0.33	1.0
Juta-Sirivongse 1972	1.0	1.0	1.0	1.0	0.33	1.0
Chotivittaya- thanin, 1977	1.1	0.7	0.5	0.5	0.33	0.5
Phota-Yanuvat	1.0	0.7	0.5	0.8	0.33	0.5
Chukiat Phota- Yanuvat,1979	1.0	0.7	0.5	0.8	0.33	0.5

Friction and end bearing factors for driven piles to be used with cone penetration test data


	Depth of		8	ASE		<u> </u>			20000					SHAFT			5005001000							Weigh		Qu
PILE	Pile Tip	Aρ	q _c	λ	Qp	P		Soft	Clay		Ме	edfum :	Stifi	Clay		Stiff	Cla	у		\$	and			of	Qu	
- 	(ar)	(a: ²)	(t/m ²)		(t)	(m)	(m)	q _{TF} (t/m)	2.0000000	qs (t)	(m)	9 ₇ , (t/m)		(t)	1. (m)	q _{Tf} (t/m)	α	Qs (t)	(E)	''		(e)	- Qs (t)	Pile (t)	(t)	Test (t)
771	25.26	. 2025	545	0.33	36.4	1.80	8.6	10	1.0	18	7.5	15	0.7	18.9	9.16	164	0.5	147.6	-		-		184.5	12.64	208	210
772	25.32	.113	525	0.33	23.0	1.46	8.6	11	1.0	16	7.5	20.5	0.7	21	9,22	144	0.5	105	-	-	-	-	142	3.36	162	165
123	29.33	. 133	518	0.33	22.7	1,46	8.5	11	1.0	16	7.5	17	0.7	17.4	13.2	242	0.5	175.6	-	-	-		510	1.87	229	210
TP21	20.025	.0676	402	0.33	8.9	1,36	13.5	19.5	1.0	26.5	3.0	14.5	0.7	13.8	3.43	50	0.5	34			-		74.3	2.42	81	80
TPZZ	18.50	.0676	415	0.33	9.3	1.29	10	16	1.0	20.6	5.0	18	Q.7	16,3	3.5	52	0.5	33.5			-		J0.4	2.09	78	78
1553	20.50	.0678	535	0.33	11.9	1.29	13	15	1.0	19.4	4.0	9	0.7	9.1	3.5	71	0.5	45.8	_		-		73.3	2.09	83	82.
TP29	20.70	.0676	366	0.33	8.2	1.21	13	18	1.6	21.8	4.5	32	0.7	27.1	3.2	26	0.5	15.7		_	-		64.6	2.61	70	67
TP L7	27.55	. 157	780	0.5	61	1.885	11	16	1.0	30.1	4.0	9	0.7	11.9	10.2	159	0.5	150	2.15	72	0.8	108.6	3,00,6	10.55	351	160
1918	26.95	. 157	689	0.5	54	1,885	11	12	1.0	22.5	4.0	31	a.7	40.9	10,2	190	0.5	179	1.75	53	0.0	80	122.5	10.92	366	360
TP19	27.05	.157	615	0.5	48	1.885	11.5	15	1.0	28.3	1.5	2.5	0.7	3.3	6.2	100.5	0.5	94.7	5.85	132	o.p	199	125.1	10.92	362	360
TP 20	22.40	0404	430	ó.5	8.7	1.19	15	24.5	1.0	29.2	-	-	-	-	3,8	30.5	0.5	18.1	3.6	40	0.8	38.1	85.4	2.04	92	90
							1			. Į													1			

Dutch cone test used in pile capacity determination

Only few sets of c' and ϕ '

No definite pattern of variation

β method
Effective stress
analysis

Effective stress analysis β -method

Very few test data for c' and \(\phi' \)

			Effect	ive Stre	ngth Para	meter
Type of	Stress	Average	at(ढ , -	وع) ^{mex}	at(ਨੂੰ/	ธ์₃) _{max}
Tests	history	depth	Ĉ (t/m²)	₹ (deg)	て (t/m ²)	ब्र (deg)
CID.	NC	8.9	0	22.4	-	-
CID	NC .	16.4	0	19.3	* -	-
CID	NC	3.2	0	24.9	=	-
CID	NC	15.2	0	19.2	-	-
CK _O U	N€C	8.1	0 .	28.7	0	32.7
ск_ои	NC	436	0	27.8	0	31.0
	NC	3.75	0	29.9	0	32.4
ck _ê u	NC	5.25	0	30.9	0	33.0

Effective stress analysis

More c's and \$\phi\$'s at AIT Campus but unfortunately no pile test data to analyze

		11		69 	7000 1	u si v zv see
			Effect	ive Stre	ngth Par	ameters
Type of		Average	at(5,-	63) max	at(S _t /	
Tests	history	depth	₹ (t/m ²)	ब्रे (deg)	₹ (t/m²)	ब्र (deg)
<u>cu</u> .	NC	5.4	0	22.6	0	23.9
<u>CI</u> U	NC	7.5	0	21.4	0	22.6
CIOU	NC	7.5	0	21.4	0	22.6
CIU	NC	11.4	0	22.5	0	22.5
18	NC	1.05	0	20.2	0	20.2
cro	NC	2.45	0	-21.9	. 0	21.9
	NC	3.90	0	20.2	0	20.2
	NC	5.25	0	21.4	0	23.2
CAU	ИС	1.5	0	24.8	0	26.2
cu	NC	9.0	0	22.0	.	_
CAU-V	NC	5.25	0	23.2	0	24.4
CIU	NC	9.25	0	23.0	_	

Cluster of values around 0.33 for β

Back calculated β values from full scale pile load tests

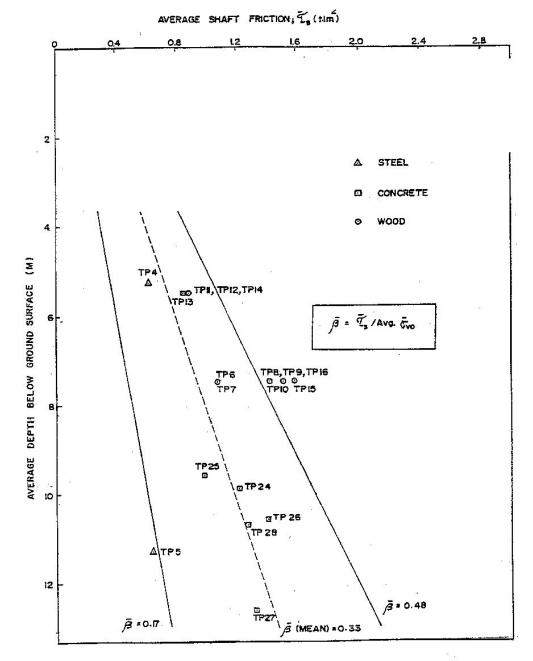
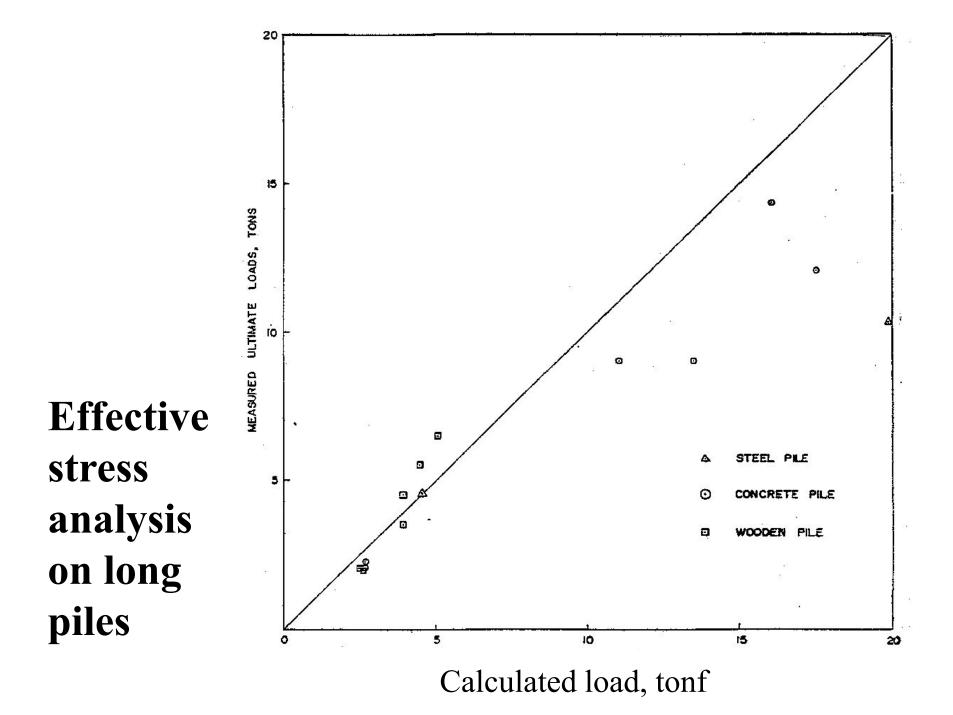


FIG F.10 RELATIONSHIP BETWEEN AVERAGE SHAFT FRICTION (T) AND

Effective stress analysis- β method

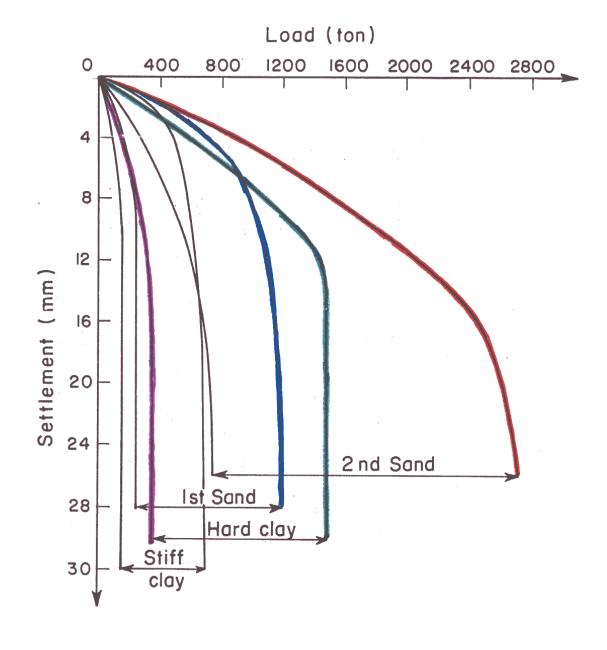
File	TP4	TP5	TP6	TF7	TP8	TP9	TP 10	TP11	TP12	TP13	<u>ተ</u> ጀ14	TP 15	TP16	TF24	TP25	TF26	TP27	TP28
₹, (\/ d)	9.61	0.63	1.07	1.07	1.42	1.42	1.42	0.38	0.87	0.84	0.67	1.51	1.58	1.21	0.98	1.40	1,32	1,-27
449. ā.₀ (₹/₩)	1.80	3.70	3-37	3.37	3-37	3-37	3-37	3-05	3.05	3.05	3-05	3.20	3-37	4.02	3-66	3-97	5 . 05	4.67
Avg. depth (m)	5.33	11.3	7-5	7.5	7-5	7-5	7.5	5.5	5-5	5-5	5.5	7-5	7.5	9.9	9.6	10.6	12.65	10.7

Estimated β values from full scale pile load tests

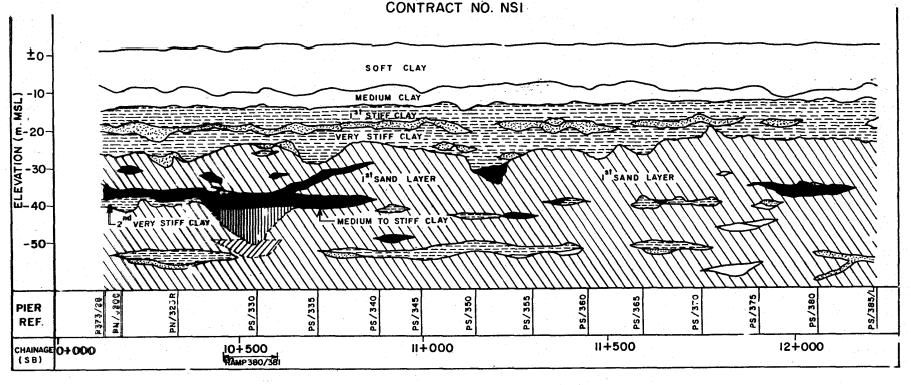

Effective stress analysis short piles

	P CO.		1	4	7		· · · · ·					20 30 39 50
PILE	Depth of	Ap	इ	Ng	δνο		P	Embedded	Avg Gvo	Qs	Qш	Qu
	pile tip	(m ²)	deg		t/m ²	(t)	(m)	length	(t/m ²)	(t)	(L)	load
	(m)	,						(m)	is .			tests
			-	-	-							(t)
TP4	5.33	-		-	-	-	1.445	5.33	1.80	4.6	4.6	4.7
TP5	11.3	-	2	-	-	-	1.445	11.3	3.70	19.9	19.9	10.3
TP6	7.5	.018	21.5	9	4.8	.78	.471	6.0	3.37	3.14	3.92	3.5
177	7.5	.018	21.5	9	4.8	.78	.471	6.0	3.37	3.14	3,92	3.5
TP8	7.5	.018	21.5	9	4.8	.78	.471	6.0	3.37	3.14	3.92	4.5
TP9	7.5	.018	21.5	9	4.8	.78	.417	6.0	3,37	3.14	3.92	4.5
TP10	7.5	.018	21.5	9	4.8	.78	.047	6.0	3.37	3.14	3.92	4.5
TP11	5.5	.019	22.5	9.5	3.9	.70	.497	4.0	3.05	2.0	2.7	2.24
TP12.	5.5	.018	22.5	9.5	3.9	.67	.471	4.0	3.05	1.9	2.57	2.10
TP13	5.5	.019	22.5	9.5	3.9	.70	.497	4.6	3.05	2.0	2.7	2.16
TP14	5.5	.018	22.5	9.5	3.9	.67	.471	4.0	3.05	1.9	2.57	2.10
TP15	7.5	.022	21.5	9.0	4.8	.95	.523	7.5	3.20	4.15	5.10	6.5
TP16	7.5	.022	21.5	9.0	4.8	.95	.523	6.0	.37.37	3.5	4.45	5.5
TP24	9.9	.019	25	15	6.0	1.74	.72	9.9	4:62.	9.4	11.1	9,0
TP25	9.6	.032	25	15	5.8	2.8	.92	9.6	3.56	19.7	13.5	9.0
TP26	10.6	.032	25	15	6.8	3.3	.92	10.63	3.97	12.8	16.1	14.3
TP27	12.65	.022	25	15	8.2	2,8	.70	12.65	5.05	14.8	17.6	12.0
TP28	10.7	.032	25	15	7.4	3.5	.85	10.7	4.67	14.0	17.5	12.0
<u></u>			ik .	.								ş

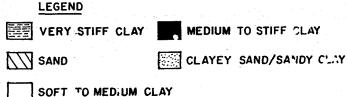
β method

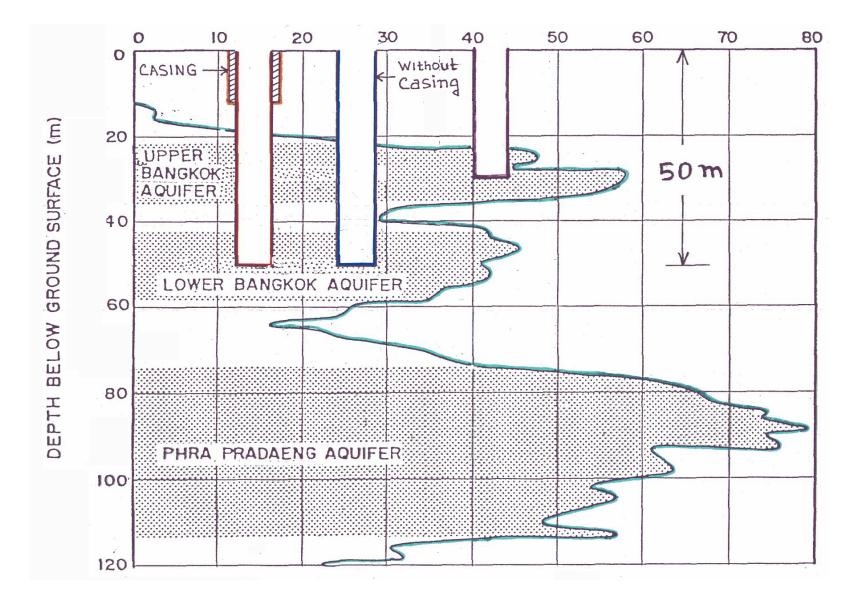

	Depth of			BASE								13.	\$H.	AFT					10 10 10 10 10 10 10 10 10 10 10 10 10 1					
MLE	Pfla Tip								Şaf	t Clay			\$ t 1	ff Clay			830.	3.0	Sand			Qs.	65.	Qu(s)
	(=)	Ap (m ²)	(deg)	Hq	द्र, (t/m²)	Фр (t)	(w) b	Ā	L (m)	Ayg: K _{yq}	C	Ko	j (deg)	Avg.K _{vq} (t/m ²)		Ģ (≟)		۸vg.گره (t/m ^Z)	500 0	L (m)	(t)	(t)	(t)	Load Tes ta
₩ı	25,26	. 2025	19.25	7.5	31.0	47	1.60	0.33	16.1	6.96	67	0.72	19.25	23	9.16	95	-	_	-	-	-	162	209	218
18P2	25,32	.133	19.25	7,5	31.0	31	1,46	0.33	16.1	6.96	54	0,72	19.25	\$3 ¹⁷	1 9.22	78	•	-	-	-	-	132	163	166
TP3	29.33	.133	19.25	.7.5	38,0	38	1.46	0.33	16.1	6,96	54	0.72	19.25	26.5	13.2	126			-	_	-	182	220	210
3P21	20.025	.0676	21	8:5	15.0	1,6	1,36	0,33	13,6	5.4	33	0,72	23	12.2	6.43	29	-	-	-	-	-	62	71	84
M.S.S.	18.50	.0676	21	6.5	13.5	17.B	1,29	0.33	10.0	3.9	17	0.72	21	9.6	9.5	59	-	-	-	-	-	45	54	78
` TP23	20.50	.0676	21	8.5	14.5	8.3	1.29	0.33	13.0	5.1	28	0.72	21	11.5	7.5	31	-	-	-	-	-	59	67	\$2.5
TP 17	27.56	.157	34	4	23,0	162	1.805	0.33	15.0	7,4	63	0.72	21	15.8	10.2	84	1,0	22.0	25.5	2.35	46	199	361	350
TPIR	26,95	, 157	34	5	22.5	159	1.805	0.33	15.0	7.4	59	0.72	21	15.8	10.2	84	1,0	22.0	25.5	1.75	35	188	347	310
TP19	27.05	. 157	36	5	19.0	167	1,005	0.33	13.0	4.26	34	0.72	21	10.1	8.2	43	1.0	16.5	27	5.85	93	170	337	· 386
TP20	22,40	,0404	35	٠,	16.5	27	1,19	0.33	15	5.7	34	0.72	21	11.5	8.8	14	1.0	14.5	26.3	3.6	31	78	106	g .30
<u>L</u>	<u> </u>	<u> </u>			1			<u> </u>	<u> </u>	<u> </u>	<u>L.</u>	<u> </u>		<u> </u>				<u> </u>	ـــنـا				<u> </u>	<u> </u>

Effective stress analysis on long piles- \beta method



Higher load capacity with large diameter piles founded in deeper stiff layers


Load capacity of piles founded in different layers



SOIL PROFILE ALONG MAINLINE (SOUTH BOUND)

Longitudinal section of soil profile in the second stage expressway project

Bored piles founded in second sand layer

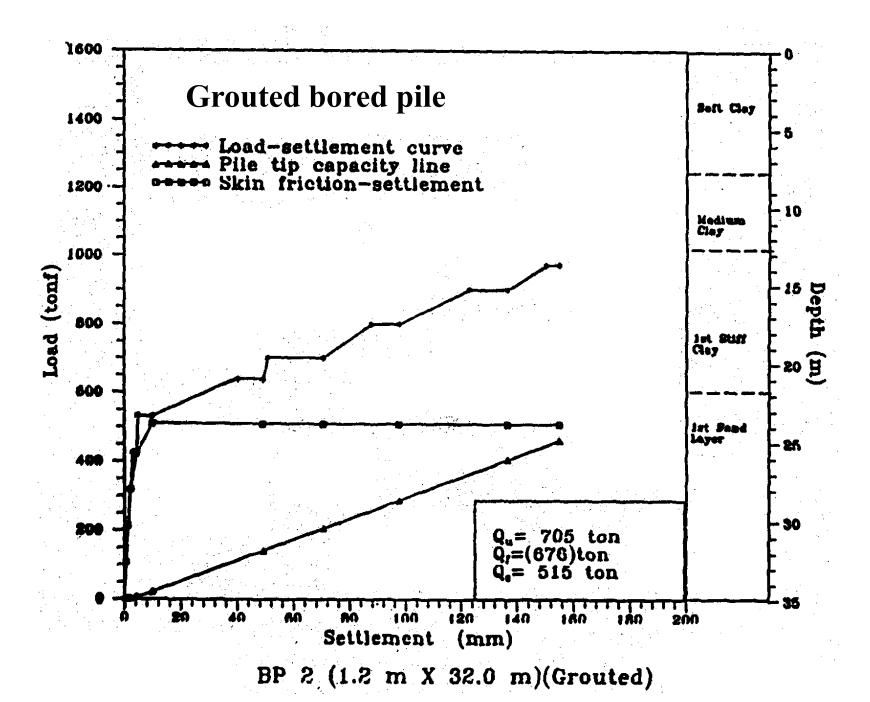
Skin friction in bored piles mobilized in small pile movements of 1 to 13 mm

Name of	Pile No	Depth	Skin Load Transfer	Average Su	Adhesion Factor	Mobilized Displacement
Investigators		m	ton/m²	ton/m ¹	α	mm
CHIRUPPAPA (1968)	·	-		2.3	0.41	" - "
SUWANAKUL (1969)	-	-	-	3.4	1.22	-
BANDEKAR (1980)	В5	2.6	2.00	1.85	1.08	-
		7.8	9.80	3.2	3.06	· - ,
		13.0	4.20	7.0	0.60	-
		18.2	4.00	8.5	0.47	-
		23.4	4.10	15.6	0.26	
	B6	7.95	4.73	1.85	2.56	e de la 🛨
		13.25	4.70	7.0	0.67	-
		18.55	12.10	8.5	1.42	.
		23.95	4.00	15.6	0.26	- · · · · · · · · · · · · · · · · · · ·
	В9	2.55	2.00	1.5	1.33	grafia e 🕳 e 💮
		7.65	2.00	1.5	1.33	-
		12.75	2.10	5.0	0.42	-
		17.85	4.20	8.3	0.51	
		22.95	12.50	16.5	0.76	-
PROMBOON (1981)	_			2.5	0.80	4-8
	_ :	_	_	15.0	0.50	10
NG (1983)	BP2	11.0	6.23	14.5	0.43	2.20
, , , , , , , , , , , , , , , , , , , 		28.00	5.81	25.5	0.23	2.00
	BP3	14.80	8.40	21.0	0.40	3.60
		19.80	5.80	24.0	0.24	4.00
	BP4	15.75	11.00	24.0	0.46	4.50
	- T	40.00	4.90	28.0	0.18	2.20
	BP5	14.80	6.90	21.0	0.33	2.20
		19.8	4.10	24.0	0.17	1.10
	1	38.00	6.20	28.0	0.22	1.30
	BP6	37.50	6.80	28.0	0.24	3.00
	BP8	37.50	6.20	28.0	0.22	1.00
	BP10	20.60	8.00	8.5	0.94	1.10
	2	39.50	8.50	20.0	0.43	2.30
	BP11	22.50	5.80	10.0	0.58	2.00
	D1 11	38.50	2.00	17.0	0.12	1.20
CHIEWCHARNSILP	TP1	30.30	1.40	1.5	0.93	5.10
CHILDWCHARMDIDI	11.1		4.60	6.2	0.74	12.90
			8.30	13.2	0.63	10.20
	TP2		4.10	6.20	0.66	5.50
	174		10.80	13.20	0.82	11.00
	mp 3	<u>-</u>	4.70	4.60	1.02	4.50
	TP3	· · · · · ·				4.50
	WD E	· · -	5.40	6.50	0.83 0.87	6.20
	TP5	-	5.70	6.50		
		-	3.30	7.00	0.47	4.10
			10.10	21.80	0.46	10.10

Table 2.2 Recommended Ks Values by BROMS (1966)

Pile Types	Low Relative Density	High Relative Density
Steel piles	0.5	1.0
Concrete piles	1.0	2.0
Wood Piles	1.5	4.0

Table 2.3 - The Angle of Friction (&) between Pile and Soil (AAS, 1966)


Pile Types	Angle of Priction
Steel Piles	20 degree
Concrete Piles	3/4 Ф*
Wood Piles	2/3 Φ'

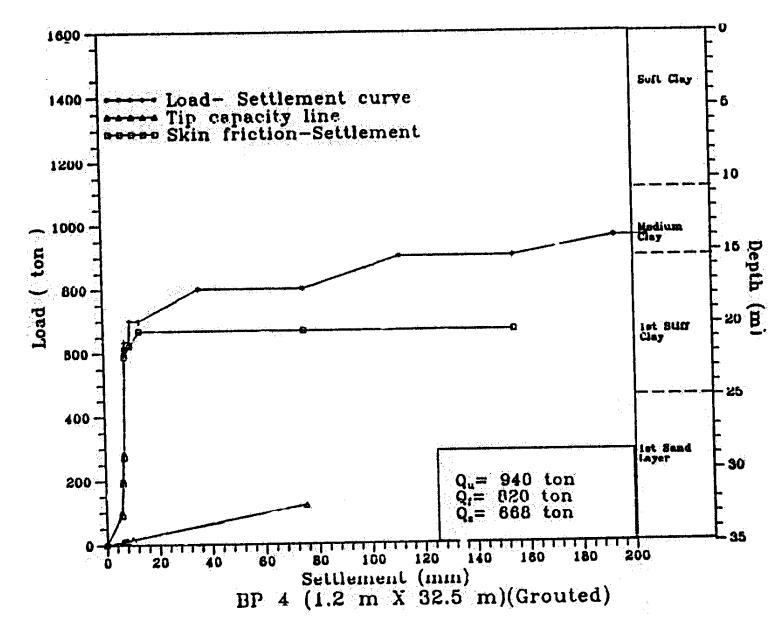
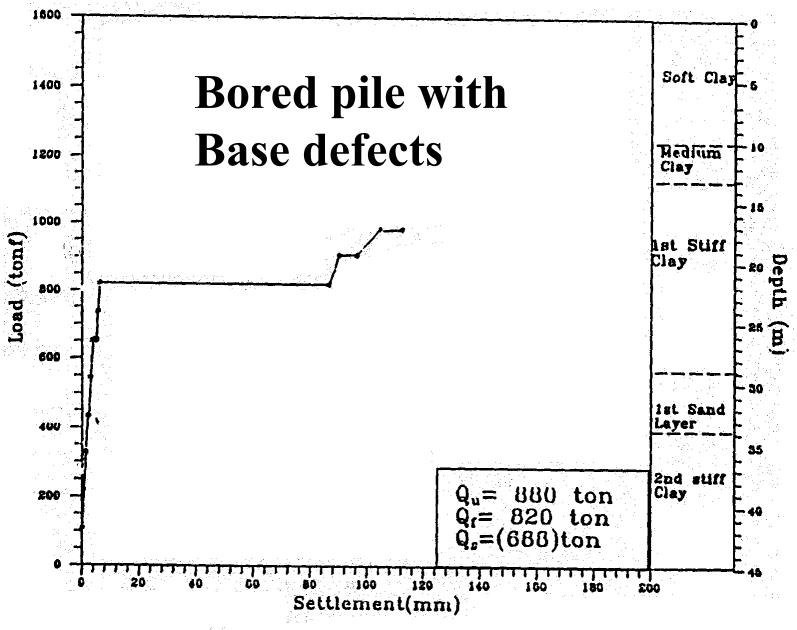
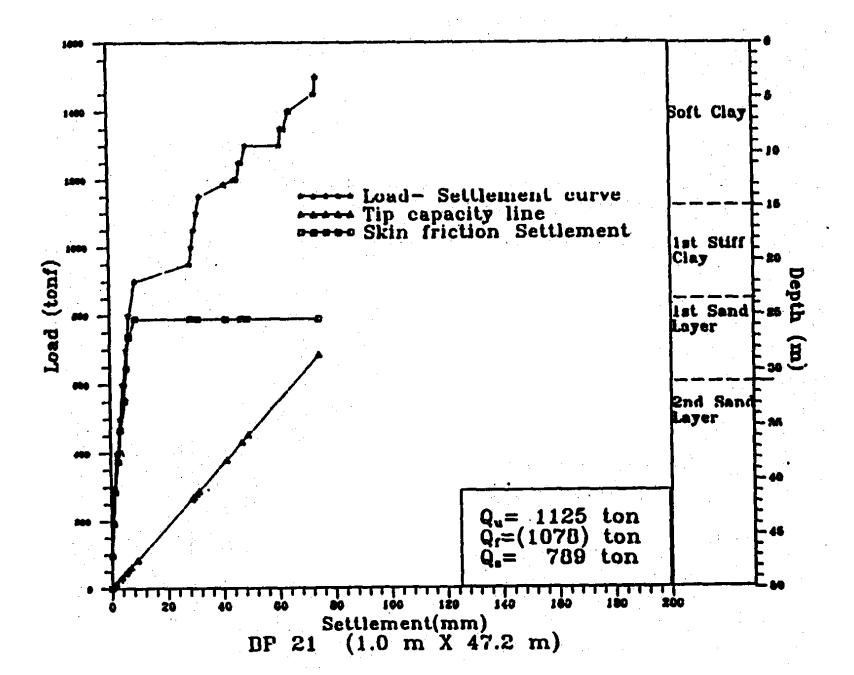

Recommended values of K_s and δ

Table 2.4- Bearing Capacity Factor, N₄ of bored piles in sand under Bangkok Subsurface Condition


Investigators	Pile No.	o'1) ton/m²	Φ¹	N _q
NG (1983)	В8	36.9	34	6.5
	В9	38.0	31	5,9
	B11	45.9	31	4,2
1	B12	47.5	33	7.9
1	B13	44.9	36	10.2
	B14	44.9	38	6.5
CHIEWCHARNSILP	TP1	54.3	35	4.6
	TP3	49.1	34.5	8.7
(1988)				

Recommended values of N_q for bored piles bearing in sand



Grouted pile with low performance in end bearing

BP 8 (1.2 m X 42.5 m)

 K_s tan δ for skin friction in Bored piles

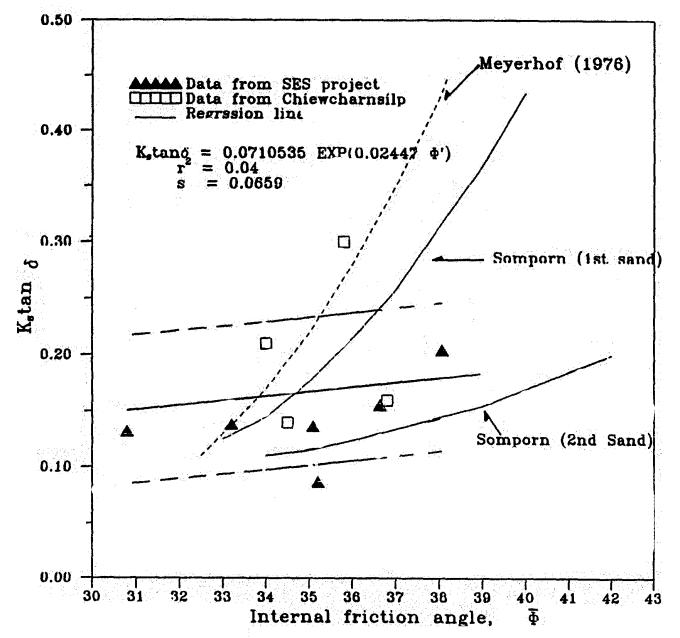


Fig 4.17- Relation between K,tanô & internal friction angle \$\Phi\$ in SES project

Bearing capacity factor N_q in end

bearing

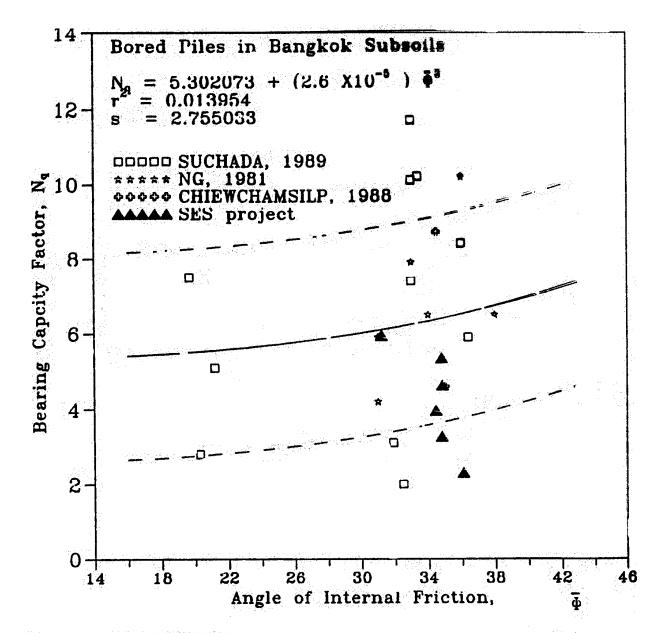
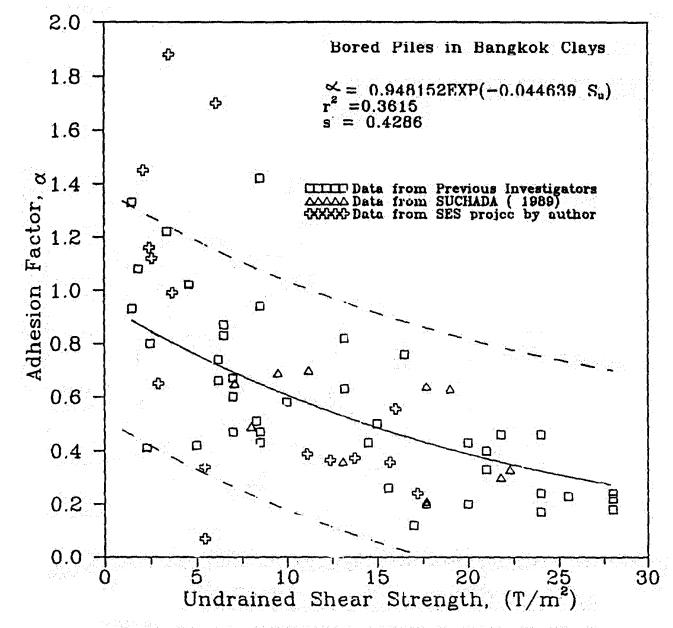
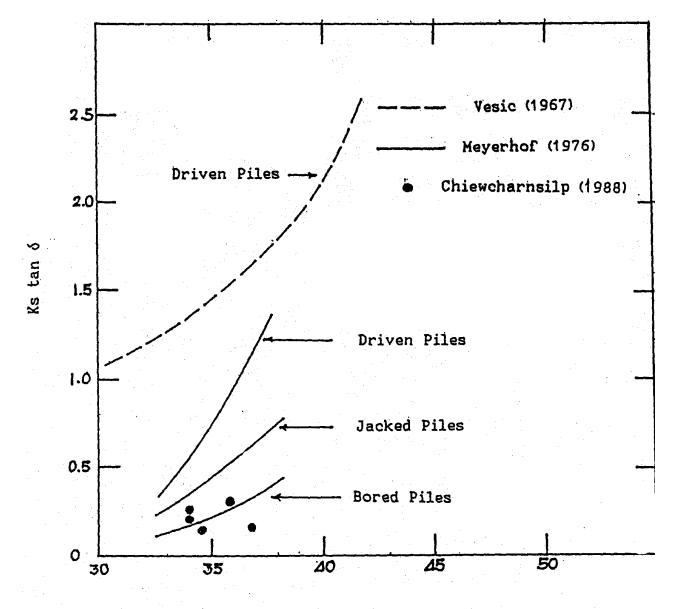
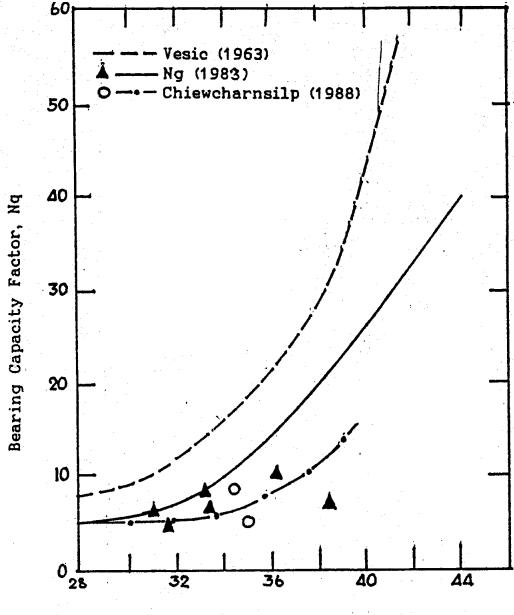
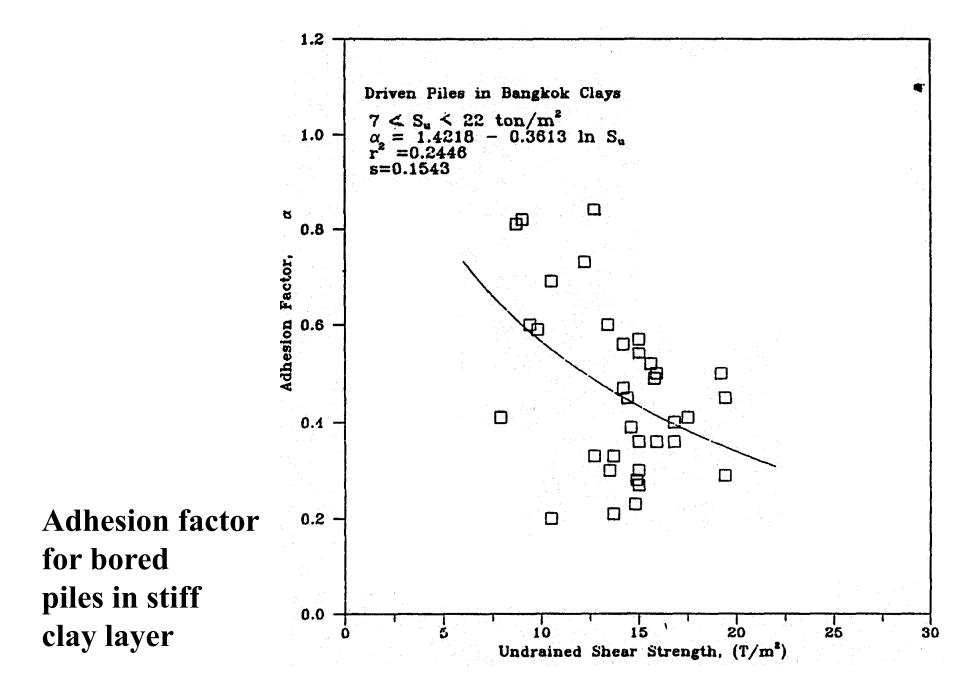




Fig.4.18- Relationship between Bearing Capacity Factor, N_q, and Angle of Internal Friction, Φ, of Bored Piles

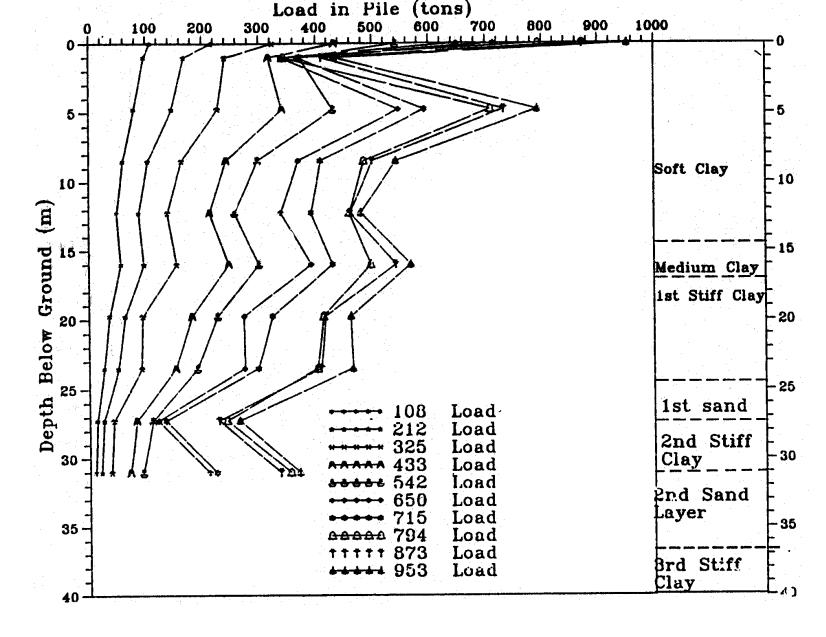
Adhesion factor for Bored piles


Fig.4.15- Relation between Adhesion Factor (α) & Undrained Shear Strength for Bored Piles

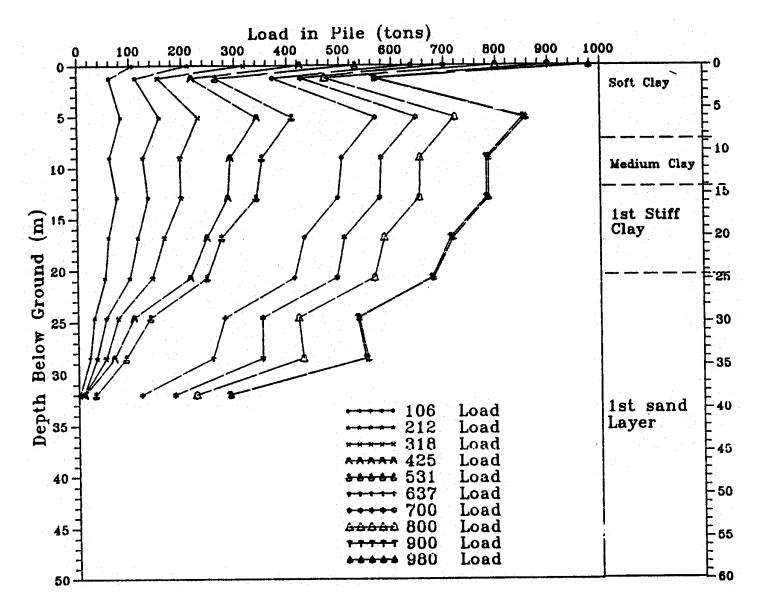

 K_s tan δ for bored piles in estimating skin friction in sand

Angle of Internal Friction, of

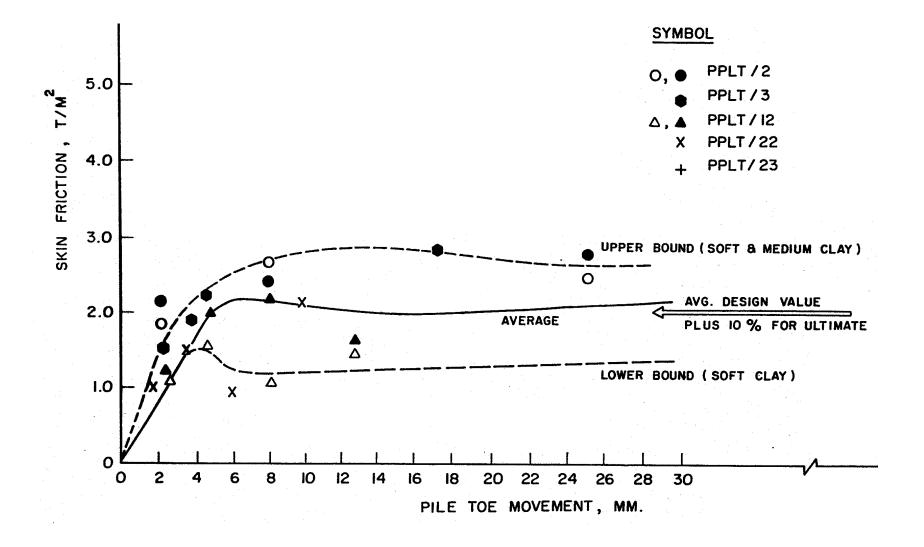
Bearing capacity factor N_q for bored piles bearing in sand layer

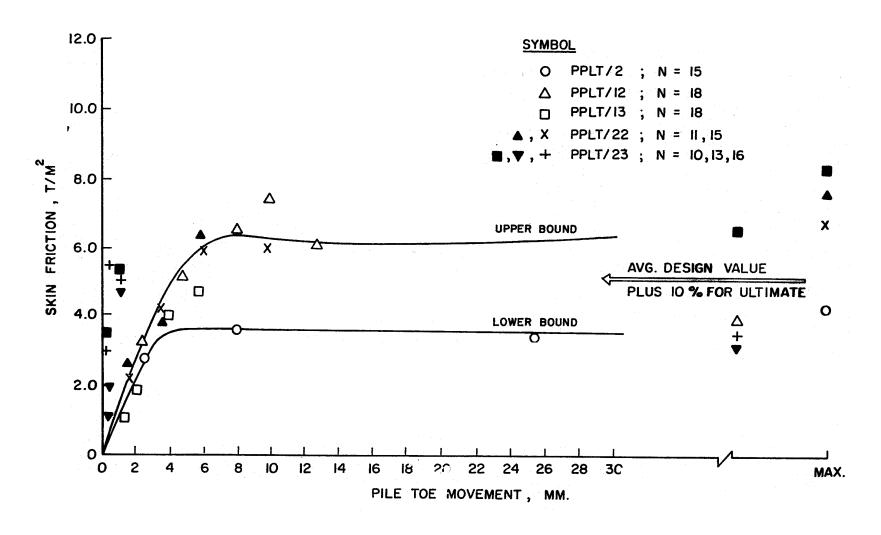


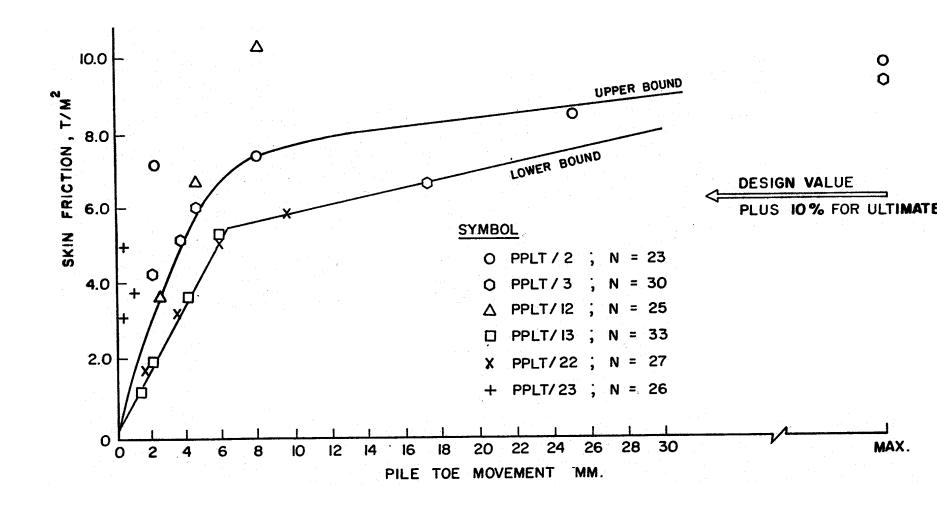
Angle of Internal Friction, &

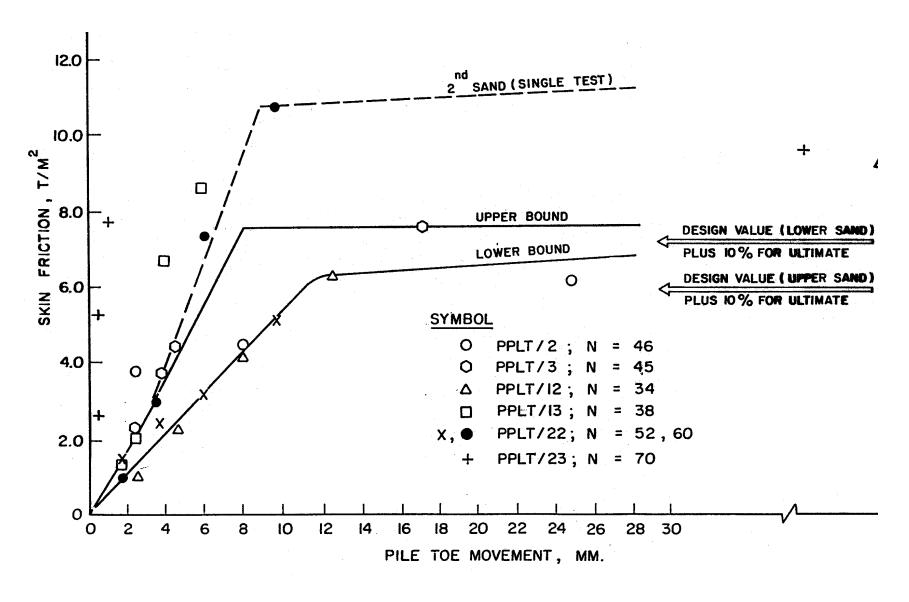


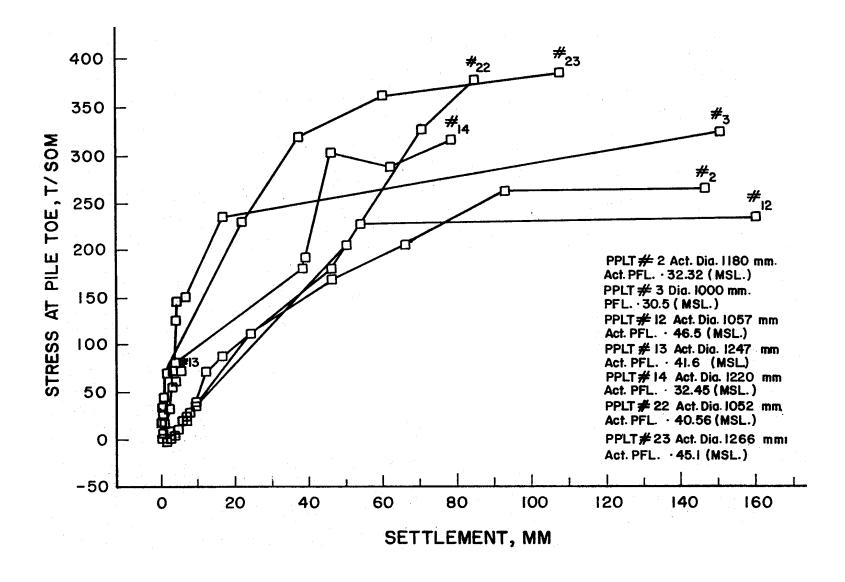
No.	Contact	Piling Contractor	Туре	Design Pile Dia. (mm.)	Avg. Actual Pile Dia. (mm.)	Actual P. F. L. (MSL.)	Working Load (tons)	Calc. Ultimate Load (tons)	Load at IO%D (tons)	Max. Carrying Load	Instru – mentation	Acceptance Criteria	Remark
PPLT# I	NSI	THAI BAULR	Bored	600	618	·26.04	120	335	>>320	>>320	Х	/	Time Grouting - Max Ibieffore Yield
PPLT#2	NSI	THAI BAUER	Bored	1200	1180	· 32.32	425	917	900	980		ж	Noe Grouling
PPLT#3	NSI	THAI BAUER	Bored	1000	,,	(-30.5)	325	727	916	1000	/	1	Time Grouting
PPLT#4	NSI	THAI BAUER	Bored	1200	39	(-32.5)	425	1004	891	960		x	Noe Grouting - Retest
PPLT#5	NSI	THAI BAUER	Bored	1200	11	(.30.0)	(425)	914	19	10	1	X	Time Grouting
PPLT#6	NSI	THAI BAUER	Bored	800	19	(-30.0)	225	510	520	545	X	/	
PPLT#7	EWI	KIN SUN	Bored	1000	17	(-31.5)	321	730	` 600	721	X	х	
PPLT#8	EWI	KIN SUN	Bored	1200	17	(-42.5)	425	966	971	971	7	/	
PPLT#9	EWI	KIN SUN	Bored	800	893	-31.90	225	524	530	582	X	/	
PPLT#10	EWI	KIN SUN	Driven	600	600	·27.75	120	381	>400	>400	X	/	Max before Yield
PPLT#11	EWI		Driven	600	600	·40.50						L	
PPLT#12	EW2	KIN SUN	Bored	1000	1057	·46.50	425	1170	1425	1425	/	/	
PPLT#13	EW2	KIN SUN	Bored	1200	1247	·41.60	425	971	1250	1250	/	/	
PPLT#14	EW2	KIN SUN	Bored	1200	1220	· 32.45	433	959	>953	953	/	X	Max befor 10 % Pile Dia. Sell.
PPLT#15A	EW2	KIN SUN	Bored	1200	1224	-44.17	433	942	0E1K<	>1130	/	/	Methest-Max befor Yileki
PPLT#16	EW2	KIN SUN	Bored	600	667	·32.04	120	354	>327	>>327	X	1	Mark before Yieldi
PPLT#17	EW2		Bored	1200		(-30.0)	(410)	940					
PPLT#17A	EW2	KIN SUN	Bored	1000	1084	·47.25	433	1209	>963	>>963	X	/	Mikes before Yielki
PPLT#18	NIS3	THAI BAUER	Bored	1200		(.30.5)	406	934	>983	983	X	/	Micor before 10% Pile Dia. Sell.
PPLT#19	NS3	THAI BAUER	Bored	1200] · · · · · · · · · · · · · · · · · · ·	(.34.5)	388	1094	985	985	X	1	
PPLT#20	NS3		Driven	600	600	77	·						
PPLT#2I	NS5	ITALTHAI TREVI	Bored	1000	1029	49.60	400	1273	×1500	1500	X	1	Max before 10%/Pile Dia. Sell.
PPLT#22	NS3	ITALTHAI TREVI	Bored	1000	1052	40.56	405	1041	>1150	1150	/	1	Max before 10%/Pile Dia. Sell.
PPLT#23	NS3	ITALITHAI TREVI	Bored	1200	1266	·45.10	400	928	>1500	1500	1	/	Max before 10% Pile Dia. S
PPLT#24	NS3	MPAC ENG.	Auger Press Driven	800	800	· 29.30	225	660	>>600	>600	X	12	Max before Yileld
PPLT#25	NS5/6												
PPLT#26	NS5/6			T				1	ľ				
PPLT# 27	NS5/6			1				1	1			1	
PPLT#28	NS5/6												
PPLT# 29	NS5/6												
PPLT# 30	NS5/6												
PPLT # 34													


Instrumented pile load test program

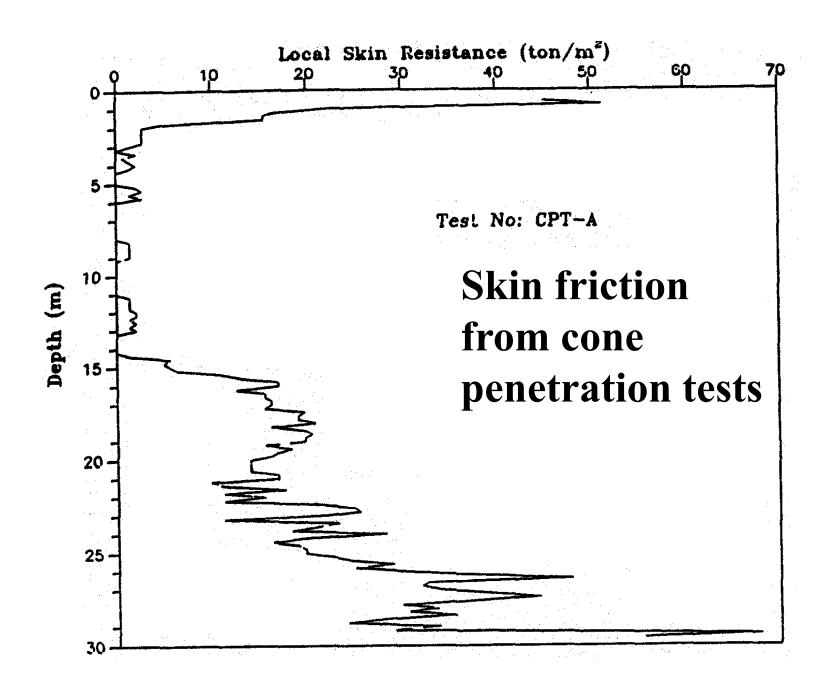

Load transfer graph for BP 14


Load transfer graph for BP2


Skin friction in soft and medium stiff clay layer


Skin friction mobilization in stiff clay

Mobilization of skin friction in stiff clay


Skin friction parameter first sand layer

Development of bearing capacity at pile toe

Pile No.	Туре	Location (km)	Dia. (m)	Length (m)	T.L. (tonf)	Tip Layer	Remarks
TP2 TP10 TP3 TP1	Driven Driven Driven Driven Driven Driven Driven Driven Driven	km 16+035 km 16+035 km 21+100 km 12+400 Chatuchak km 16+035 km 12+400 km 21+100	0.8 0.8 0.8 0.8 0.6 0.6	24.6 37.5 26.0 28.1 30.0 37.5 30.0 36.0	840 872 900 900 872 690 600	lst sand 2nd Stif 1st sand 1st sand 1st sand 2nd stiff 1st sand 1st sand	Lot 6 Dong Muang Lad Prao Dong Muang

Details of pile load tests data for driven piles from Ding Daeng - Dong Muang Tollway Project

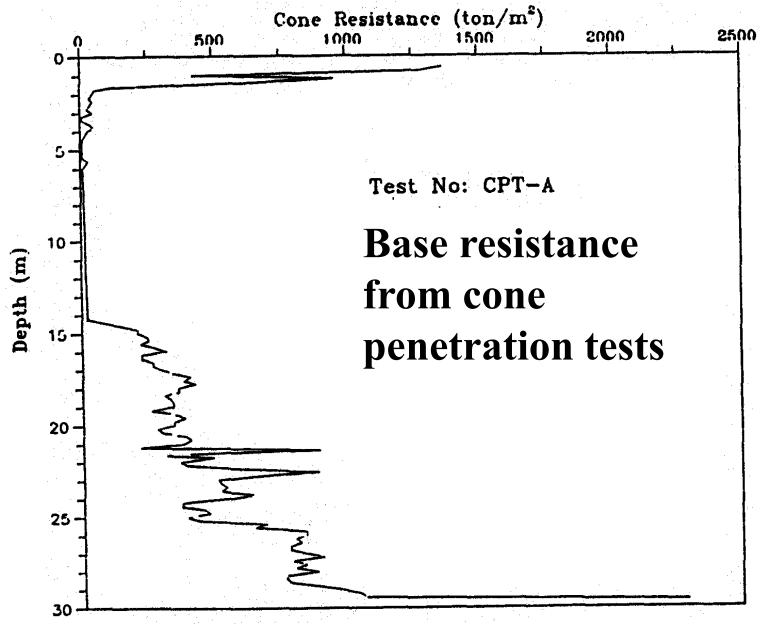
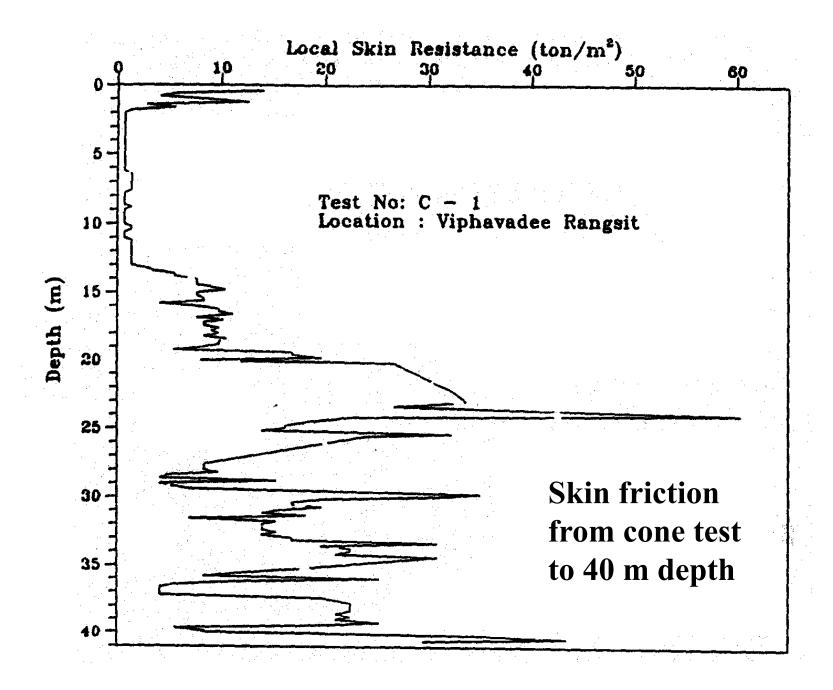



Fig.3.3 CPT Profile for TP10 at Chatuchak Park Don Muang Project (0.8 m X 30 m)

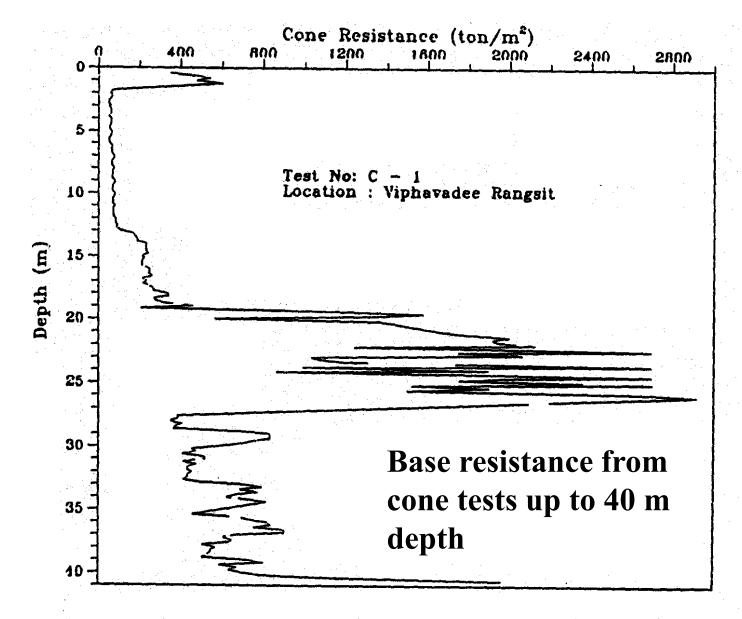
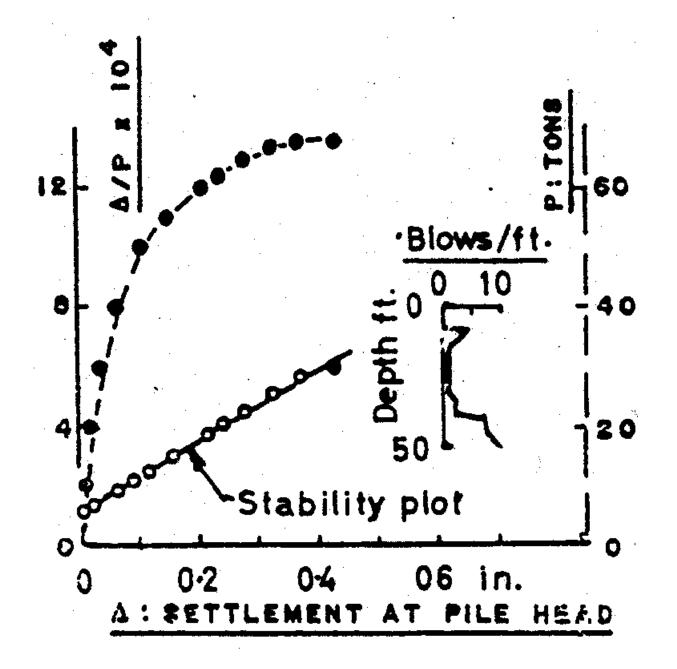



Fig. 3.5 CPT Profile for pile at 16+035 Don Muang Project (0.8 m X 37.5 & 24.6 m)

Chin's
Stability
Plot

Chin's method for ultimate load

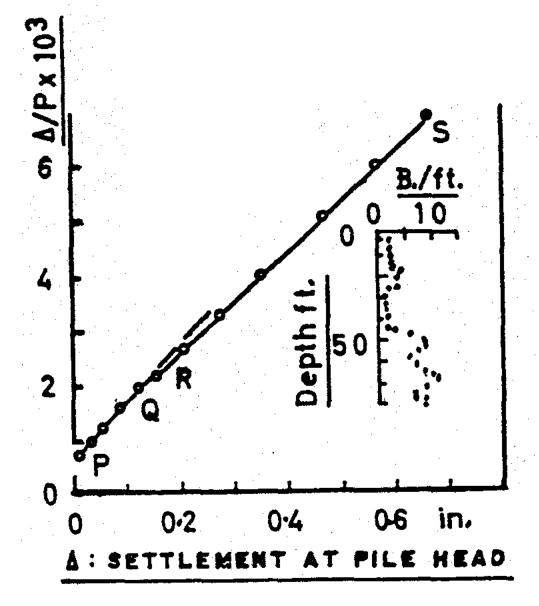
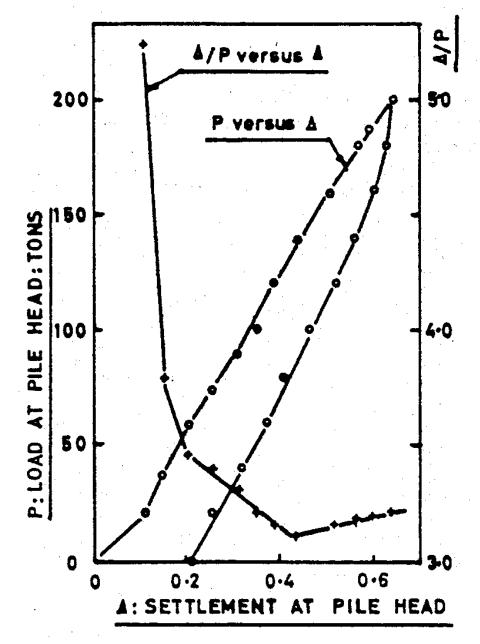



Fig. 2. Stability plot-the bearing capacity of pile is skin friction plus end bearing.

Chin's method for damaged reinforced concrete pile

Stability plot; reinforced concrete pile damaged at joint.

Chin's method for pile diagnosis; steel pile with toe badly crushed

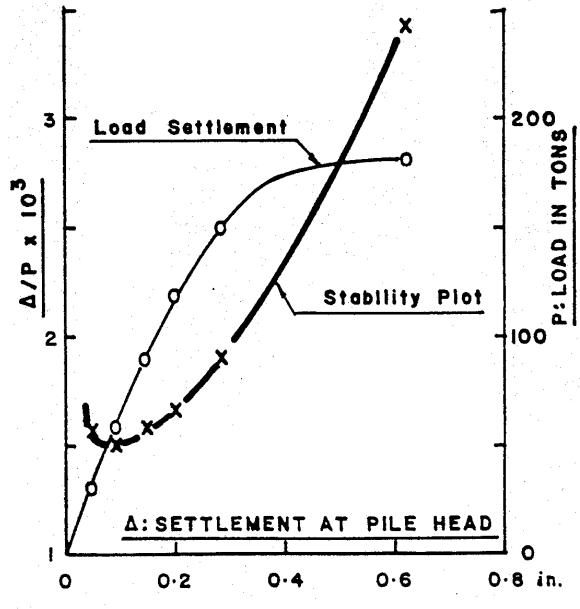


Fig. 4. Stability plot; steel pile toe badly crushed.

Fellenius paper on interpretation of load settlement curves

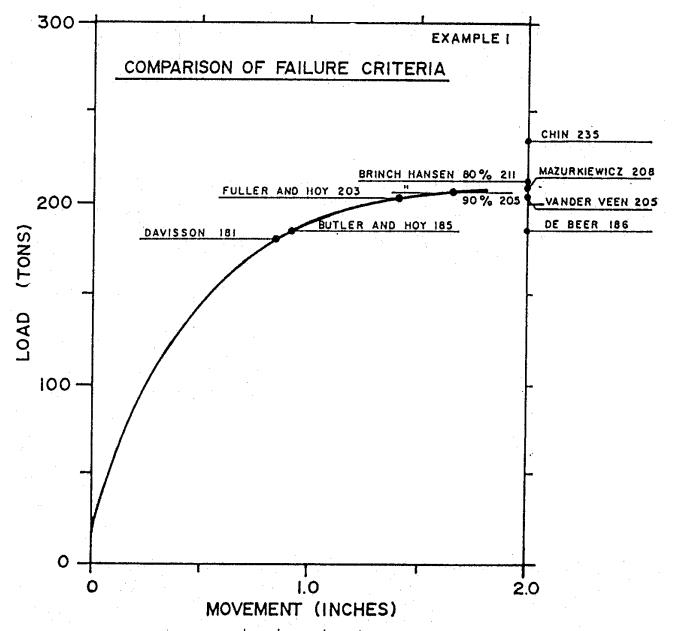
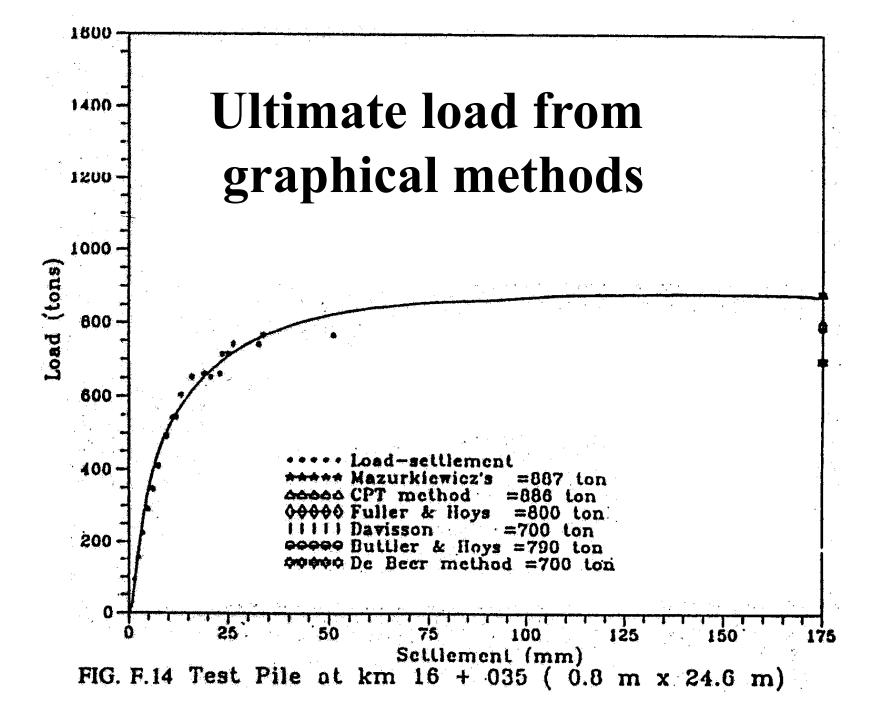
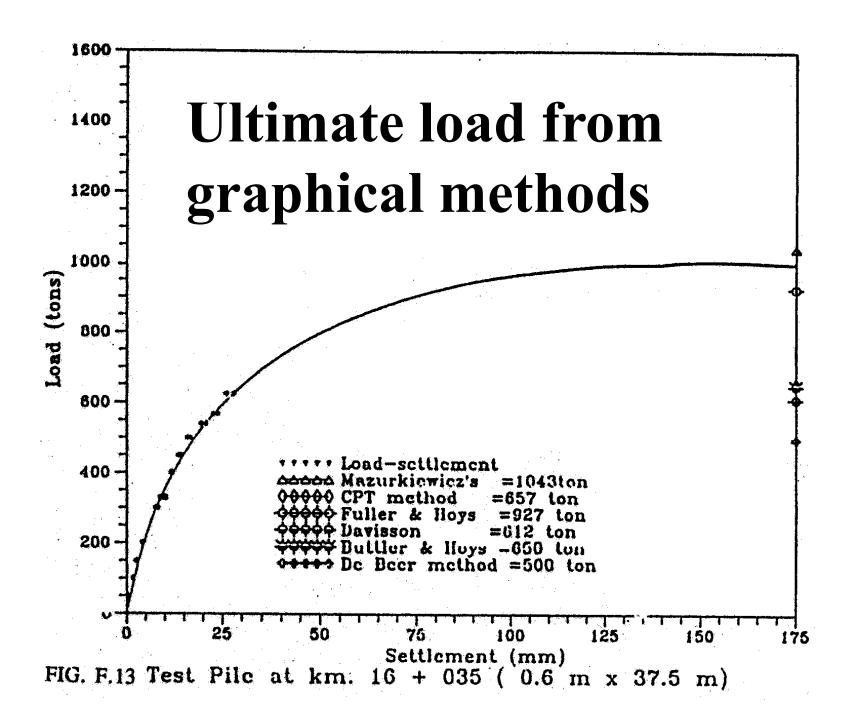
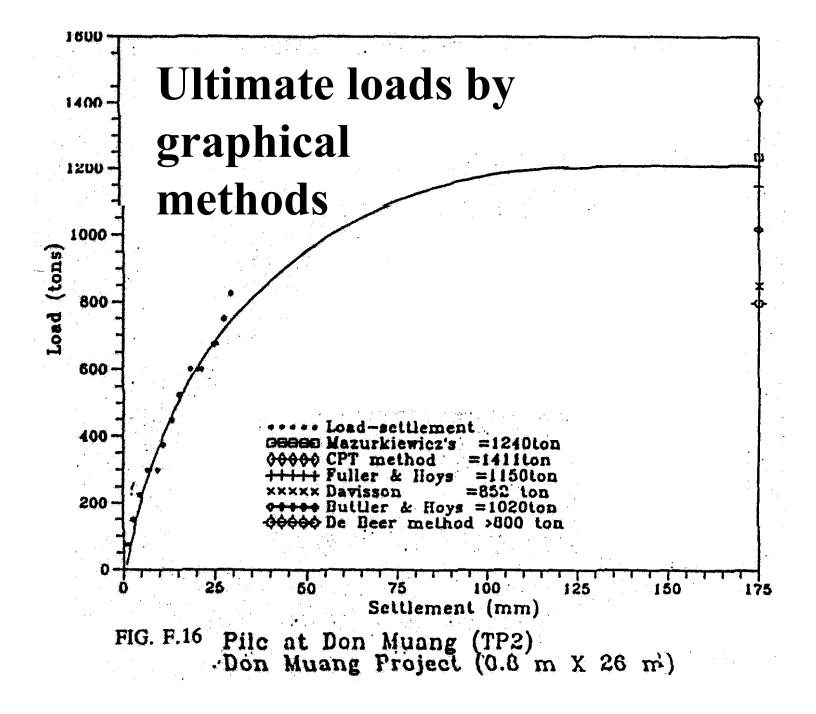





Fig. 10. Comparison of nine failure criteria

0.8m diameter spun piles

Skin friction per linear meter in medium stiff to stiff clay

N Value (Measured)	Qs(CH) (tonf/m)	Qs(CL) (tonf/m)		
8	15.7	12.9		
10	18.1	15.1		
12	20.4	17.0		
14	22.3	18.8		
16	24.2	20.4		
18	25.8	21.9		
20	27.3	23.3		
22	28.7	24.7		
24	29.9	25.9		
26	31.0	27.0		
28	32.1	28.1		
30	33.0	29.1		

Depth of	Skin Friction (tonf/m)						
Pile Tip	Penetration Thickness in sand layer (m)						
(m)	. 2	4	6	8	10	12	14
20	32.1	31.2	30.3	29.4	28.4	27.5	26.6
22	33.9	33.0	32.1	31.2	30.3	29.4	28.4
24	35.7	34.8	33.9	33.0	32.1	31.2	30.3
26	37.5	36.3	35.7	34.8	33.9	33.0	32.1
28	39.3	38.4	37.5	36.3	35.7	34.8	33.9
30	41.1	40.2	39.3	38.4	37.5	36.3	35.7
32	42.8	42.0	41.1	40.2	39.3	38.4	37.5
34	44.6	43.7	42.8	42.0	41.1	40.2	39.3
36	46.4	45.5	44.6	43.7	42.8	42.0	41.1
38	48.2	47.3	46.4	45.5	44.6	43.7	42.8
40	50.0	49.1	48.2	47.3	46.4	45.5	44.6

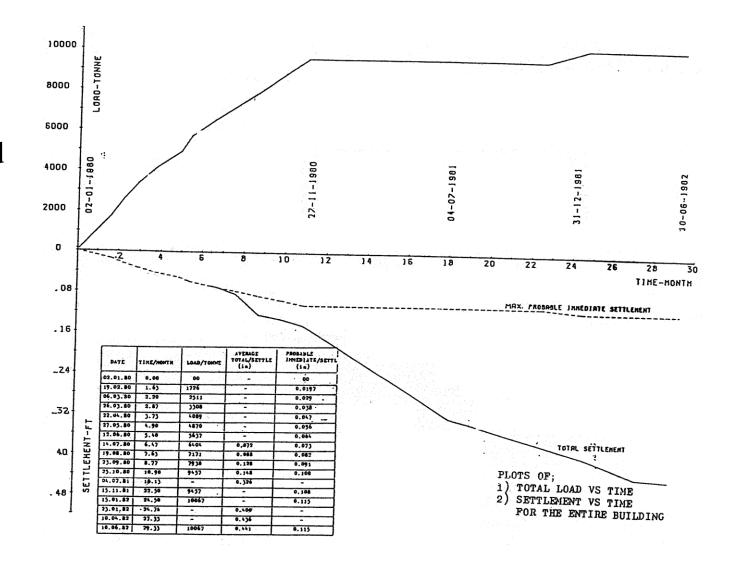
Skin friction per linear meter in first sand layer for 0.8 m spun piles

Base resistance of 0.8m diameter spun piles with tips in the first sand layer

N Value	End Resistance (tonf)							
(Measured)	Depth of Pile Tip (m)							
	15	16	17	18	19	20	21	22
20	241	244	258	267	269	277	285	290
22	247	255	262	272	278	283	291	300
24	255	265	269	279	287	289	296	303
26	262	272	276	286	292	296	304	310
28	275	281	284	294	296	303	312	321
30	281	287	296	303	304	315	319	330
32	294	301	301	306	316	323	331	337
34	302	309	315	319	324	329	338	341
36	312	322	326	339	341	344	350	360
38	326	338	336	358	347	359	365	374
40	347	357	357	375	368	373	377	387
42	366	370	376	394	382	396	394	406
44	378	385	389	399	398	410	414	422
46	385	391	403	410	420	424	428	433
48	408	419	418	422	427	438	452	456
50	425	445	442	458	444	450	460	464
52	472	467	477	468	478	482	478	491
54	493	498	503	497	499	501	507	512
56	539	533	525	537	530	522	540	546
58	561	559	550	568	560	554	583	561
60	582	586	575	592	590	580	596	605

Franki piles in Penang

Defects in enlarged Pile base


7. Number of Piles Required

For Solution A we assumed 50, 30 and 20% of the working load on rows M, K and J respectively. The analysis performed gave the results for Solution B :-

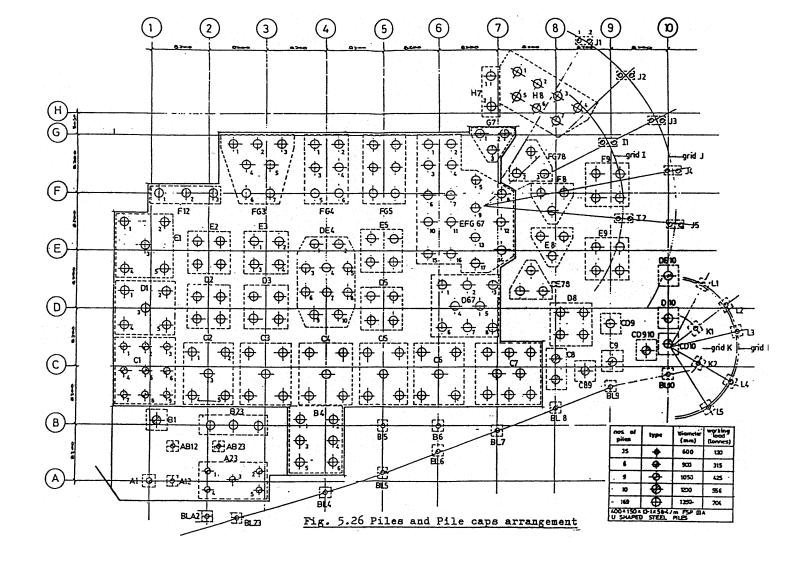
Column	Working Load	Allowable Load on Existing Piles	Number of Micropiles each with 50 t Working Load
J3 J5 J7 + J8 J10 + J11 J12 J13 K3 K5 K7 K8 + K10 K11 K12 K13 M3 M5 M7 + M8 M10 + M11 M12	566 525 1123 1124 521 567 666 534 546 1919 526 529 668 512 503 764 751 497	360 320 670 670 320 360 450 320 320 320 450 360 320 450	4 x 50 t 4 x 50 t 9 x 50 t 9 x 50 t 4 x 50 t 6 x 50 t 6 x 50 t
M13	543	320 360	4 x 50 t 4 x 50 t

Shaft load and end bearing calculated as straight shafted pile. *Balance load* to be carried by micro-piles

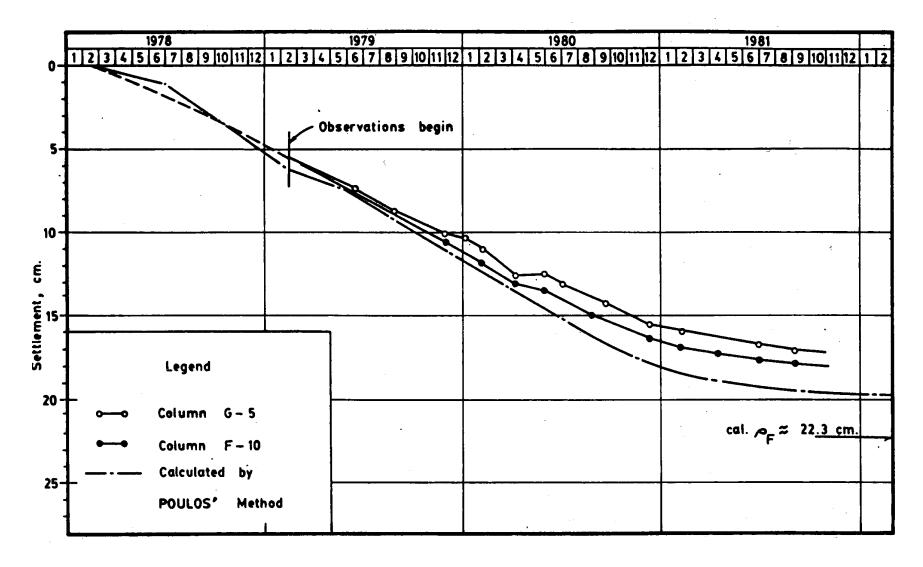
Building underpinned with micro-piles in Penang

Excessive column settlement 150 mm

Case history with Y.S. Lau in Penang

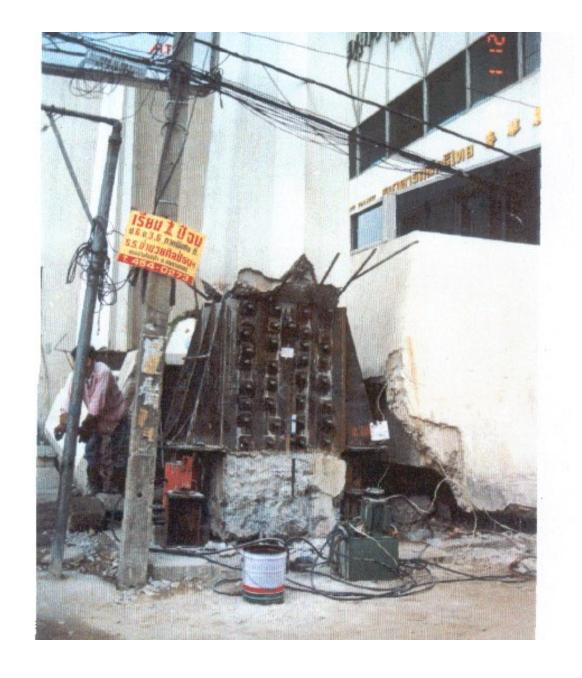

Structural defects due to foundation failure

Defects in enlarged pile base


- (1) 1st Floor: Vertical hair cracks in beams J12-J13, K12-K13.
- (2) 2nd Floor: Vertical hair cracks in beams K3-K5, J12-J13.
- (3) 3rd Floor: Vertical hair cracks in beams M3-M5, J12-J13, K12-K13.

 Diagonal hair crack in beam K7-K8.
- (4) 4th Floor: Veritcal hair cracks in beams M3-M5, K11-K12, J12-J13, K12-K13, M12-M13
- (5) 5th Floor: Vertical hair cracks in beams J3-J5, M3-M5, K7-K8, K8-M8, J12-J13, J13-K13, M12-M13.
- (6) 6th Floor: Vertical hair cracks in beams J3-J5, K3-K5, M3-M5, J5-K5, M5-M7, J12-K12, K12-M13, J12-J13, J13-K13.
 Near vertical hair crack near K8 in beam K8-M8.
 Near vertical crack up to 0.7 mm wide in beam M5-M7 (at a "cold joint").
- (7) 7th Floor: Vertical hair cracks in beams K3-M3, J3-J5, M3-M5, M5-M7, J12-K12, J12-J13

 Diagonal crack up to 0.4 mm wide starting from slab soffit near K8 in beam K8-M8.
- (7) 8th Floor: Vertical hair cracks in beams K3-M3, J3-J5, K3-K5, M3-M5, M5-M7, J11-J12, K11-K12, J12-K12, J12-J13, M12-M13.
- (8) 9th Floor: Vertical hair cracks in beams J3-J5, K3-K5, J5-K5, K5-M5, K11-K12, J12-J13, K12-K13.
- (9) 10th Floor: Vertical hair cracks in beams J3-K3, K3-M3, K3-K5, M3-M5, J5-K5, J12-J13.


Bored piles and pile caps arrangement

Observed settlement of columns 180 mm

Bored piled Foundation bearing in sand with clay layer below

Correcting tilt and raising a building by 500 mm with underpinning techniques.
In-adequate pile capacity

Building on hydraulic jacks and being raised, while the staff are busy working inside

Sophistication must go hand in hand

Theory while Standard penetration test is used to obtain soil parameters

 $C_{i} = \frac{4Q}{4T_{i}} \cdot C_{i}'; \quad C_{2} = \frac{4Q}{FT_{i}} \cdot C_{2}' \qquad (18^{1})$ where $A_{i} = \frac{exp(-\lambda_{i}T_{i}) \cdot T_{i}^{-p}}{f \cdot \lambda_{m}}; \quad B_{i} = F(\lambda_{i}, \chi_{i});$ $A_{2} = \frac{exp(-\lambda_{i}T_{i}) \cdot T_{i}^{-p} \cdot \frac{exp(-\lambda_{i}T_{i}) \cdot A_{m}}{(f + A_{m})^{2}}; \quad C_{i} \cdot C_{m}}{(f \cdot \lambda_{m})}; \quad D_{i} = G(\lambda_{i}, \chi_{i});$ $B_{2} = F(\lambda_{i}, \chi_{i}X_{i}) \cdot PT_{i}^{-1} \cdot PF(\lambda_{i}, \chi_{i}); \quad D_{2} = G(\lambda_{i}, \chi_{i}X_{i}) \cdot PT_{i}^{-1} \cdot PG(\lambda_{i}, \chi_{i}X_{i});$ $C_{1} = \frac{4Q}{FT_{i}} \cdot C_{i}'; \quad C_{2} = \frac{4Q}{FT_{i}} \cdot C_{2}' \qquad (18^{1});$ Di=G(4,x,)(2+PT,)+G(4,y,x)+(700) G(4,x); Bi=F(6,x,x)+PT,)+F(4,y,x)+(100) F(6,x) Thus the final solution is U(5,T)= 40 5/ 517 \frac{\overline{F0.5}}{2} (C, F66, x,) + C. 6(6, x, x) \ F (19) The settlement of a layer of thickness H is found by the equation S(t)= (e(t)-e(t, 5) d 5 (20)Substituting equation (2) we obtaine \$4)-1-0(2) [(am 6/4)-[6/2) = {am +9/2)[1-e-10]}]dt]ds Then substituting the obtained solution into the last equation, combining with the equation of equilibrium (6) and introducing the notation we obtain, after integrating, the following equation for the degree of consoli- $U(T) = \frac{S(T)}{S_{\phi}} \cdot 1 - \frac{8}{T^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \left\{ C_{i} \cdot F(d, p, w, T) + \right\}$ (22) + C, G(d, y, w, T))exT T + { de + da He } [1-e N(-T)]-- 8CV = 1/2 (1) - 1/2 (1) - 1/2 (1) + 1/3 (1) + 2 (1) where $J_{\epsilon}(T) = \frac{1}{\chi^{\sigma-\epsilon}} \left\{ \left\{ C_{\epsilon} + C_{\epsilon} \frac{\Gamma(1-\epsilon)}{\Gamma(d-\epsilon+1)} \right\} \left\{ \left[\Gamma(P,\chi,T) - \frac{1}{2} \right] \right\} \left\{ \left[\Gamma(P,\chi,T) - \frac{1}{2} \right] \right\}$ - [(P, X, T,)+ e x (x, T) - e x (x, T,) /7 +

where $J_{i}(T) = \frac{1}{X^{p-i}} \left\{ \left\{ C_{i} + C_{i} \frac{\Gamma(i+j)}{\Gamma(i+j+1)} \right\} \left\{ \left[\Gamma(P,X_{n}T) - \frac{1}{P} + \frac{1}{X^{p-i}} \left(\frac{1}{X^{p}} - \frac{1}{P} + \frac{1}{X^{p}} - \frac{1}{P} + \frac{1}{X^{p}} \right) - \frac{1}{P} + \frac{1}{X^{p}} \left[\Gamma(P,X_{n}T) - \Gamma(P,X_{n}T_{i}) \right] + \frac{1}{X^{p}} \left[\frac{1}{P} + \frac{1}{Y^{p}} - \frac{1}{X^{p}} - \frac{1}{P} + \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} + \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{X^{p}} - \frac{1}{X^{p}} - \frac{1}{Y^{p}} - \frac{1}{X^{p}} \right] \left[\frac{1}{X^{p}} - \frac{1}{X^{p}} - \frac{1}{X^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{X^{p}} - \frac{1}{X^{p}} - \frac{1}{X^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{X^{p}} - \frac{1}{X^{p}} - \frac{1}{X^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{X^{p}} - \frac{1}{X^{p}} - \frac{1}{X^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{X^{p}} - \frac{1}{Y^{p}} - \frac{1}{X^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} - \frac{1}{Y^{p}} \right] \left[\frac{1}{Y^{p}} - \frac{1}{Y^{p$

J (T) = + P-1 (C+C2 (1(2))) { [(1/2)] } { [(1/2) + 1) - (1/2) + [1/2] + + e - to T (+ T) P - e - to T (+ T) P + to to to T (+ T) P + to to T (+ T) P + to + (1+dn-+)(2+dn-2)(3+dn-2)(0, 4-2) (2-+)(3-+)(4+)3! +, 4-2 [[(2,4,7)-(2,4,7)]+ (+tdn-+)(2tdn-+)(3tdn-+)(4tdn-+) Wn 5-+ (2-+)(3-+)(4-+)(5-+)4! +n5-+ * [[(P+3, 4, T)-[(P+3, 4, T,)]+ ... }); $\mathcal{J}_{3}\left(T\right)=\frac{\mathcal{Q}^{-\beta T}}{\psi_{n} P^{++}}\left(\left\{C_{n}+C_{2}\frac{\Gamma\left(1-\delta\right)}{\Gamma\left(d_{n}-\gamma+1\right)}\right\}\left\{\left[\Gamma\left(P+1,\psi_{n}\right.T\right)-\right.\right.$ - [(P+1, 4, T,)] + dn wn [[(P+2, 4, T)- $-\Gamma(P+1, \forall n, I, I) + \frac{1}{d_{n}(d_{n} + I)} \frac{1}{d_{n}(d_{n} + I)}$ (2-8)(3-8)(4-8)(5-8)4145-8 ${ \Gamma(P, \forall_n, T) - \Gamma(P, \forall_n, T_i) + \frac{d_n U_n}{J_n + 1} \underbrace{f(P + 1, \psi_n T) - f(P + 1, \psi_n T_i) + \frac{d_n (d_n + 1) \underbrace{w_n^2}_{J_n + 1} \underbrace{f(P + 2, \psi_n T_i) - f(P + 2, \psi_n T_i) + \frac{d_n (d_n + 1) \underbrace{d_n^2}_{J_n + 1} \underbrace{f(P + 2, \psi_n T_i) - f(P + 2, \psi_n T_i) + \frac{d_n (d_n + 1) \underbrace{d_n^2}_{J_n + 1} \underbrace{f(P + 2, \psi_n T_i) - f(P + 3, \psi_n T_i) + \frac{d_n (d_n + 1) \underbrace{d_n^2}_{J_n + 1} \underbrace{f(P + 2, \psi_n T_i) + \frac{d_n^2}_{J_n + 1} \underbrace{f(P + 2, \psi_n T_i) - \frac{d_n^2}_{J_n + 1} \underbrace{f(P + 2, \psi_n T_i) + \frac{d_n^2}_{J_n + 1} \underbrace{f(P + 2, \psi_n T_i) + \frac{d_n^2}{J_n + 1} \underbrace{f(P + 2, \psi_n T_i) - \frac{d_n^2}{J_n + 1} \underbrace{f(P + 2, \psi_n T_i) + \frac{d_n^2}{J_n + 1}$ + (11dn-1)(21dn +) w,3+ [[1/2,4,T)-[2,4,T,)]+ + (1+dn-+)(2+dn-+)(3+dn-+)Wn+ [1(3,4,T)--[(3,4,7,)]+ (1 td, +)(2td,-+)(3td,-+)(4td,-+)(0,5+)
(2-+)(3+)(4-+)(5-+)4/4,5-+ *[[(4, 4, T) - [(4, 4, T,)]+... (