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Classification of Tunnelling Techniques  
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AFTES (2000) 

TUNNELLING 

TECHNIQUES

NONE

Tunnel reaming machine

Hard rock TBM

Roadheader

Digger type

Double shield 

Segmental shield

PERIPHERAL

Gripper shield

PERIPHERAL AND 

FRONTAL

Mechanical support

Mixed face shield

Compressed-air shield

Slurry shield

EPB shield
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Herrenknecht 

Earth Pressure Balance Shields (EPBS) 

Kawasaki 

Bangkok MRT Project 



EPBS 
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EFNARC (2005) 
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Earth Pressure Balance Technique 
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Settlement Components 
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z 

df 

ds 

dt 

EPB 

Shield 

df = Settlement due to face loss 

ds = Settlement due to shield loss 

dt = Settlement due to tail loss 

y 

Zone 3 Zone 2 Zone 3 



8 Centrifuge Test (Kimura and Mair, 1981) 
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Shield Loss 
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Over-cutting loss Pitching loss 

 Copy cutter  
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Empirical Method by Peck (1969) 
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Parameter (i) for Surface Settlement 
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Attkinson & Potts (1997) 

         (for loose sand) 

         (for dense sand) 

 

Clough & Schmidt (1981) 
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Parameter (i) for Surface Settlement 
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O’Reilly & New(1982) 

   (K = 0.4 to 0.7 for stiff clay) 

   (K = 0.2 to 0.3 for sand) 

 

Logangthan & Poulos (1998) 
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Parameter (i) for Subsurface Settlement 
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O’Reilly & New(1982) 

   (K = 0.4 to 0.7 for stiff clay) 

   (K = 0.2 to 0.3 for sand) 

 

Mair et al. (1993) 
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Analytical Methods in Analysis  
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Methods Sagaseta 

(1987) 

Verruijt & 

Booker (1996) 

Loganathan & 

Poulos (1998) 

Bobet  

(2001) 

Theory Basic solution Elasticity 

Ground 

condition 

Isotropic-homogeneous-elastic-weightless 

 

Isotropic-

homogeneous-

elastic 

Tunnel 

condition 

Circular Circular 

h/r > 1.5 

Ground 

property 

None n n E, n, g, K 

Liner property N/A N/A N/A Es, ns 

Ground loss Uniform Uniform Specified Uniform 



Analytical Method by Sagaseta (1987) 

16 

Step 2. Negative 
vertical image 
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Step 1. Ground 
loss (sink)

Step 3. Corrective 
surface tractions
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Analytical Method by  

Verrujit & Booker (1996) 
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Analytical Method by  

Loganathan & Poulos (1998) 
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  Area above tunnel 

springline (75%) 

Area below 

tunnel springline 

(25%) 
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R = Radius of the tunnel 

g = Gap parameter (Lee et.al., 1992) 

Short term 



Analytical Method by  

Loganathan & Poulos (1998) 
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where, 

g = Gap parameter (Lee et.al., 1992) 

n = Poisson's ratio 

For surface settlement 
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Analytical Method by Bobet (2001) 
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Bobet (2001) 
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Bobet (2001) 
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uo = Uniform radial soil deformation 

 r  = Radial distance from the center of the tunnel 

g   = Unit weight of ground 

Eu = Undrained Young’s modulus  

For very flexible and incompressible liner (F = C = 0)  



Summary of 2D Numerical Analysis 
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Program 

EPTUN 

- 

ICFEP 

ABAQUS 

FLAC 

K0 

0.6 

- 

1.5 

1.15 

1.15 

Z0 

(m) 

10.5 

11.5* 

10/35 

25 

25 

D 

(m) 

2.38 

2.9* 

4.75 

7.9 (h) 

9.2 (w) 

7.9 (h) 

9.2 (w) 

Method of   

Tunnelling 

 

EPB shield 

EPB shield 

NATM 

NATM 

Soil Model 

Linear elasto-plastic 

Modified Cam-Clay 

Linear/non-linear 

elastic perfectly plastic 

Modified Cam-Clay 

linear elastic perfectly 

plastic 

Material 

Isotropic/cross 

anisotropic 

Isotropic 

Isotropic/ 

anisotropic 

Isotropic 

Isotropic 

Project 

Thunder Bay sewer tunnel 

N-2 tunnelling project 

Jubilee Line Extension 

project 

Heathrow Express Trial 

tunnels 

Heathrow Express Trial 

tunnels 

Author(s) 

Rowe et al. (1983) 

Finno and Clough 

(1985) 

Addenbrooke et al. 

(1997) 

Karakus and Fowell 

(2003) 

Karakus and Fowell 

(2005) 

EPB shield 



Summary of 3D Numerical Analysis 
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Program 

n./a 

CRISP 

Abaqus 

Plaxis 

FEM3D 

Lexc 

(m) 

Varies* 

2.0* 

5.0, 10.0 

2.0 

n/a 

(gap) 

Tunnel 

Length 

(m) 

n/a 

40.0 

5.0D 

67.5* 

7.8D 

80.0 

10D 

20.0 

8D 

Length 

(m) 

59.0 

8.8D 

50.0 

6.3D 

95.0 

11.1D 

100.0 

12.5D 

37.0 

15D 

Mesh or Grid 

Width 

(m) 

35.0 

5.2D 

40.0 

5.0D 

80.0 

9.5D 

55.0 

6.9D 

19.5 

7.8D 

K0 

0.8 

1.0 

1.5 

0.66 

0.85 

Z0 

(m) 

15.2 

25.0 

25.0 

2.0 

8.0 

D 

(m) 

6.7 

8.0 

8.6 

8.0 

2.5 

Method of   

Tunnelling 

NATM 

NATM 

NATM 

NATM 

EPB shield 

Material 

Non-linear 

elastic 

Non-linera 

elastic 

perfectly 

plastic 

Elastic 

perfectly 

plastic/Cros

s-anisotropy 

Elastic 

perfectly 

plastic 

Elastic 

Perfectly 

Plastic 

Author(s) 

Katzenbach and 

Breth (1981) 

Desari et al. 

(1996) 

Tang et al. (2000) 

Vermeer et al. 

(2002) 

Lee and Rowe 

(1991) 
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Bangkok MRT Blue Line project (completed route) 

• 22 km of underground twin bored tunnel 

• 18 Cut and Cover underground stations 

• 6.3 m in outer diameter 

• North and South tunnel sections 

 

Bangkok MRT Blue Line Extension project (under design stage) 

• 5 km of underground twin bored tunnel 

• 4 underground stations (2 combined Cut and Cover and NATM, 

and 2 Cut and Cover stations) 

 

Bangkok MRT Projects 



Bangkok MRT Blue Line Project 
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Depot

Hua Lamphong
Samyan

Silom

Lumphini

Bon Kai Sirikit Centre

Sukhumvit

Phetchaburi

Phra Ram 9

Bang Su Mo Chit

Kamphaeng Phet

Phahonyothin

Lat Phrao

Ratchada

Sutthisan

Pracharat Bumphen

Thiam Ruam Mit

N

S

EW

Centre Platform

Stacked Platform

Side Platform

Side-by-side Tunnel

Stacked Tunnel

Section A

Phra Ram 9 – Ratchada 

Section B

Ratchada – Bang Su

Section C

Phra Ram 9 – Sirikit 

Section D

Sirikit – Hua Lamphong

Centre 

Platform 

Side 

Platform 

Stacked 

Platform 



Construction Methods of Underground Stations 

    Tunnel constructed through 

the uncompleted station box 
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Uncompleted station 

box 

Temporary segmental 

rings 

 

  Completed station 

box 

Shift the shield to  

the far end of station 

box 

North Alignment 

South Alignment 

     Station box constructed 

prior to tunnelling 

process 



North Alignment Subsoil Condition  
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Blue Line Extension Project 
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Itsaraphap
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Sanam Chai

Station

Wat Mungkorn
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Wang Burapha
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Hua Lamphong
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Blue Line Extension Subsoil Condition 
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2D Numerical Analysis 
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Author Main Findings 

Chanchaya (2000) 

(Plaxis 2D) 

Back calculation using 2D FE analysis has been conducted. 

The parameters Eu/Su from back calculations suitable for soft and 

first stiff Bangkok clays layers are 240 and 480, respectively and 

these values are comparable to the pressuremeter test results from 

Teparaksa (1999) 

Timpong (2002) 

(Flac 2D) 

Reasonable agreement between 2D FD analysis and field 

observations can be obtained if an appropriated ground loss 

expressed in percent relaxation is adopted. 

The values of percent relaxation are ranging from 30 to 80 percent. 

Du (2003) 

(Plaxis 2D) 

Plaxis interface element is used to simulate the redial contraction 

between the shield and surrounding soil. 

The reduction factor (R) for interface element property varies from 

0.5-0.9 with the average of 0.7. 

Tavaranum (2004) 

(Plaxis 2D) 

Back calculated percentage ground loss from Plaxis analysis and 

analytical solution by Loganathan and Poulos (1998) are compared. 

Generally, good agreements are obtained from the two method 

with the values varying from 0.3-2.9% 



3D Numerical Analysis Literatures on 

Bangkok MRT Project 

• FDA using FLAC 3D 

• MC model was adopted 

• Parametric study has been 

conducted on shield face 

pressure, effective coefficient 

of earth pressure at rest , soil 

types, initial ground pore 

pressure and soil strength 

parameters  
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Hong (2005); Phien-wej et al. (2006) 



3D Numerical Analysis on Bangkok MRT 

Project 
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Soil Models 

• Linear-elastic perfectly plastic Mohr-

Coulomb (MC) soil model 

• Non-linear elastroplastic Hardening Soil 

(HS) soil model 

35 



Mohr-Coulomb Soil Model 

• Assume elastic behaviour in 

initial elastic range 

• Perfectly plastic behaviour 

after yield point is reached 

• Young’s modulus (E) is 

governing both loading and 

unloading behaviours 
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Parameters for MC Model 

 

E   Young’s modulus   [kN/m2] 

n   Poisson’s ratio   [-] 

c’   (effective) cohesion  [kN/m2] 

’  (effective) friction angle [º] 

   Dilatancy angle   [º] 

 



Hardening Soil Model 
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Soil behaviour includes:  

• Difference in behaviour for primary loading - 

reloading/unloading 

• Nonlinear behaviour well below failure conditions  

• Stress dependent stiffness 

• Small strain stiffness (at very low strains and upon 

stress reversal) 

• Influence of density on strength and stiffness 

 



Hardening Soil Model 
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E
ref
50

E
ref
oed

E
ref
ur

secant modulus from triaxial test (controls deviatoric hardening) 

tangential modulus from oedometer test  
(controls volumetric hardening) 

m power for stress dependency of stiffness 

unloading / reloading modulus 

   ´ friction angle   

   c´ cohesion    

   ´ dilatancy angle   

Parameters for HS Model 
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Poisson ratio for unloading / reloading (default n ur = 0.2) 

pref reference stress  
 (default  pref = 100 stress units) 

K0-value for normal consolidation  (default  = 1-sin) 
(controls volumetric hardening) 

nur 

K0
nc 

Parameters for HS Model 



Results 

• Laboratory and field test data interpretations  

• Predictions of ground movements by analytical 

methods 

• Superposition technique to estimate volume loss 

• Contraction method for 2D FE analysis 

42 



Laboratory and Field Test Data 

Interpretations  
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Unconsolidated Undrained 

Triaxial Test Back-Calculation  

• Axisymetric model of 1x1 m 

• HS model is adopted for 

back-caluating undrained 

parameters 

• MC model is adopted for 

drained parameters 
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σ1 - σ3 

 σ
3

 



Typical Results from  

Back-Calculation 
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Typical Results from  

Back-Calculation 
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HS Model Back-Calculation MC Fitting Process 

Bore Log 
Depth 

(m) 
Cu 

(kPa) 

Eu50 

(kPa) 

Eu50/Cu 
50E  

(kPa) 

c  

(kPa) 

  

(
o
) 

BS-08.1 24.0 247.3 21000 85 15000 150 26 

BS-08.2 37.5 1.8.1 21620 200 1700 65 23 

BS-09.1 18.0 73.0 14600 200 12000 45 26 

BS-09.2 39.0 109.0 21800 200 20000 71 23 

 



Analytical Methods  

(Single Tunnel) 

47 

• Verruijt & Booker (1996) 

• Loganathan & Poulos (1998) 

• Bobet (2001) 
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Analytical Methods  

(Twin Tunnels) 
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• Verruijt & Booker (1996) 

• Loganathan & Poulos (1998) 

• Bobet (2001) 
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Superposition Technique 
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Back-Calculation of Twin 

Tunnels Volume Loss 
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Back-Calculation of Twin 

Tunnels Volume Loss 
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 i 

(m) 

Sv, (max) 

(m) 

D 

(m) 

Vs 

(m
2
) 

VL 

(%) 

NB (1
st
 pass) 12 0.08 6.43 0.241 0.78 

SB (2
nd

 pass) 10 0.03 6.43 0.075 0.23 
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Parameter Name 
Made 

Ground 
Soft Clay 

Medium 

Clay 

Clayey 

Sand 
Stiff Clay Unit 

Material 

Model 
Model MC MC MC MC MC - 

Material 

Behaviour 
Type Undrained Undrained Undrained Undrained Undrained - 

Unsaturated 

Unit Weight 
gunsat 18 16.5 17.5 17 17 kN/m

3
 

Saturated 

Unit Weight 
gsat 18 20 17.5 20 20 kN/m

3
 

Young’s 

Modulus 
refE  10800 5000 15400 52800 52800 kN/m

2
 

Poisson’s 

Ratio 
 0.3 0.33 0.3 0.33 0.3 - 

Cohesion 

 
cref 1 1 1 1 1 kN/m

2
 

Friction 

Angle 
φ 25 23 23 27 23 Degree 

Dilatancy 

Angle 
 0 0 0 0 0 Degree 

Interface 

Strength 
Rinter 1 1 0.7 0.7 0.7 - 

 



MC Model Prediction  

after 1st Shield Passed 
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MC Model Prediction  

after 2nd Shield Passed 
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Converting MC Model Parameters to 

HS Model Parameters 
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m

ref

ref

pc

c
EE 


















sincos

sincos 3

5050

ref

oed

ref EE 50

0/10 KEE ref

oed

ref

ur 

Smoltczyk (2002)  

0/3 KEE ref

oed

ref

ur 

 for normally consolidated clay  

for normally consolidated sand  
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Parameter Name 
Made 

Ground 
Soft Clay 

Medium 

Clay 

Clayey 

Sand 
Stiff Clay Unit 

Material 

Model 
Model HS HS HS HS HS - 

Primary 

Loading 

Modulus 

refE50  15431 8380 16122 120005 55278 kN/m2 

Oedometer 

Modulus 

ref

oedE  15431 8380 16122 120005 55278 kN/m
2
 

Unloading/ 

Reloading 

Modulus 

ref

urE  46293 134088 257964 276012 884448 kN/m2 

 



HS Model Prediction  

after 1st Shield Passed 
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HS Model Prediction  

after 2nd Shield Passed 
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Conclusions from MC and HS 

Models Analyses 

    Similar conclusions as presented in literatures 

(Addenbrooke et al, 1997; Franzius, 2003) can 

be drawn as follows: 

• The linear-elastic perfectly plastic model (MC) 

gives an under-estimate settlement profile, 

especially in Greenfield condition 

• By using non-linear model (HS) itself without 

adjusting soil parameters, the settlement profile 

prediction can be improved 
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Components of Ground Loss 
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Tail void 

Grouting  
material 

ZONE 3 ZONE 2 ZONE 1 

Shield loss 

Face loss 

Tail loss 

Sv 

y 



Empirical Parameter (i) 
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Surface Settlement 

Authors Formula Remarks 

Atkinson and Potts 

(1997) 
 00.25 0.5oi z D   Loose sand with surcharge 

Atkinson and Potts 

(1997) 
 00.25 1.5 0.25oi z D   

Dense sands and OC clays 

without surcharge 

Clough and Schmidt 

(1981) 

0.8

0

2
o

zD
i

D

  
    

   
 Tunnelling in soft ground 

O’Reilly and New 

(1982) 
0oi K z   

K  

0.4 – 0.7 for stiff – soft, stiff clay 

0.2 – 0.3 for granular materials 

Loganathan and Poulos 

(1998) 

0.9

00.575oi z

D D

 
  

 
 Saturated clays 

 



2D Numerical Analysis 
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Author Main Findings 

Chanchaya (2000) 

(Plaxis 2D) 

Back calculation using 2D FE analysis has been conducted. 

The parameters Eu/Su from back calculations suitable for soft and 

first stiff Bangkok clays layers are 240 and 480, respectively and 

these values are comparable to the pressuremeter test results from 

Teparaksa (1999) 

Timpong (2002) 

(Flac 2D) 

Reasonable agreement between 2D FD analysis and field 

observations can be obtained if an appropriated ground loss 

expressed in percent relaxation is adopted. 

The values of percent relaxation are ranging from 30 to 80 percent. 

Du (2003) 

(Plaxis 2D) 

Plaxis interface element is used to simulate the redial contraction 

between the shield and surrounding soil. 

The reduction factor (R) for interface element property varies from 

0.5-0.9 with the average of 0.7. 

Tavaranum (2004) 

(Plaxis 2D) 

Back calculated percentage ground loss from Plaxis analysis and 

analytical solution by Loganathan and Poulos (1998) are compared. 

Generally, good agreements are obtained from the two method 

with the values varying from 0.3-2.9% 



Verrujit & Booker (1996) 
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Verrujit & Booker (1996) 
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22

2

0 2
Hx

H
Ru oz


 

For surface settlement  

where 

o = Uniform radial ground loss parameter 

H  = Depth of the tunnel axis from ground surface 

R  = Radius of the tunnel 

z   = Depth measured from ground surface 

x   = Lateral distance from tunnel center line  



Loganathan & Poulos (1998) 
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Above Springline: 

75% of the total  

void area 

Below Springline: 

25% of the total  

void area 

Void Area:  

100% ground loss 

Loganathan and Poulos (1998) 

u0

Uniform Radial 

Ground Loss

2

2

0
4

4

R

ggR 


  














 2

2

2

2

22

2

0
)(

38.1
exp

4
)1(4

RH

x

R

ggR

xH

H
RU z n

R

u0

0 

where, 

H = Depth of the tunnel axis from ground surface 

R = Radius of the tunnel 

g = Gap parameter (Lee et.al., 1992) 

z = Depth measured from ground surface 

x = Lateral distance from tunnel center line 
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Singapore MRT Project 

Earth Pressure Balance Shields (EPBS) 

Bangkok MRT Project 


