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PVD in Ground Improvement 



Equivalent Drain Diameter for Band Shaped Drain  

Hansbo (1981) introduced the equivalent diameter for a 

prefabricated band-shaped drain, as given in Equation 
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Rixner et al., (1986) suggested that the more appropriate dw 

is given by the less complex relationship as in Equation 2.2 
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where, a = the width of the PVD and b = the thickness of the PVD  



Pradhan et al. (1993) suggested that the equivalent 

diameter of band-shaped drains should be estimated by 

considering the flow net around the soil cylinder of 

diameter (de). The mean square distance of their flow 

net is calculated as: 
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Equivalent diameters of band-shaped vertical drains 



Typical values of vertical discharge capacity (Rixner et al., 1986) 



The drain material (sand drain) and the filter jacket of PVD have 

to perform two basic but contrasting requirements, which are 

retaining the soil particles and at the same time allowing the pore 

water to pass through. The general guideline of the drain 

permeability is given by: 

 soilfilter kk 2



An effective filtration can minimise soil particles from 

moving through the filter. A commonly employed 

filtration requirement is given by: 
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O95 indicates the approximate largest particle that would effectively pass through the filter.  

D85   indicates the diameter of clay particles corresponding to 85% passing.  



The discharge capacity of the prefabricated vertical drain 

is required to analyse the drain (well) resistance factor 

the actual discharge capacity, is then given by 

 reqfcctw qFFFq 

where tF , cF , and fcF  are the influence factors due to time, drain deformation and 

clogging, respectively 



The term qreq is the theoretical discharge capacity calculated from 

Barron‘s theory of consolidation, which is given by 
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where, f is the final settlement of the soft soil equivalent to 25% of the length of the 

drain installed to the soft ground, 10U  is the 10 percent degree of consolidation, l  is 

the depth of the vertical drain, hc  is horizontal coefficient of consolidation and hT  is 

the time factor for horizontal (lateral) consolidation. 



Indraratna and Redana (1998) proposed that the estimated smear zone is about 3-

4 times the cross-sectional area of the mandrel. The proposed relationship was 

verified using the specially designed large-scale consolidometer (Indraratna and 

Redana, 1995). The schematic section of the consolidometer and the location of 

the recovered specimen are shown in Figures 



Locations of small specimens obtained to determine the consolidation and permeability characteristics (Indraratna and Redana, 1998) 



Approximation of the smear zone around the mandrel. 



Factors Influencing the Vertical Drain Efficiency  

Smear Zone  

Jamiolkowski et al.(1981) proposed that  the diameter of the 

smear zone (ds) and the cross sectional area of mandrel can be 

related as 
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where md  is the diameter of the circle with a area is equal to the cross sectional area of 

the mandrel. 



Table 2.1 Short-term discharge capacity (m
3
/year) of eight band drains measured in 

laboratory (Hansbo, 1981) 

Lateral pressure (kPa) 
Drain Type 

40 80 250 500 

Geo-drain 26 20 20 16 

21 20 18 10 

24 22 14 12 

15 14 14 12 

10 5 1 Clogged 

21 19 17 15 

-- 17 13 12 

Other drain types 

19 17 9 4 

 



Vertical drains are commonly installed in square or triangular 

patterns. The influence zone (R) is a controlled variable, since it 

is a function of the drain spacing (S) as given by: 

R = 0.546 S for drains installed in a square pattern 

R = 0.525 S for drains installed in a triangular pattern 

 



 

Plan of drain well pattern and zone of influence of each well 



Jamiolkowski and Lancellota (1981) suggested that the smear 

zone is given by 

   ms rtod 65

mr  is the radius of a circle with an area equal to the mandrel‘s greatest cross- sectional 

area, or the cross-sectional area of the anchor or tip, which ever is greater. 



Development of Vertical Drain Theory  

• The basic theory of radial consolidation around a vertical sand drain system is 

an extension of Terzaghi’s (1925) one-dimensional consolidation theory.  

• The theory of vertical drain was probably first solved by Kjellman (1948). His 

solution based on equal vertical strain hypothesis, was developed on the 

assumption that horizontal sections remain horizontal throughout the 

consolidation process.  

• Barron (1948) presented the most comprehensive solution to the problem of 

radial consolidation by drain wells. He studied the two extreme cases of free 

strain and equal strain and showed that the average consolidation obtained in 

these cases is nearly the same. The ‘free strain hypothesis’ assumes that the 

load is uniform over a circular zone of influence for each vertical drain, and 

that the differential settlements occurring over this zone have no effect on the 

redistribution of stresses by arching of the fill load.  



Development of Vertical Drain Theory  

• Barron (1948) considered the influence of well resistance and smear on the 

consolidation process due to vertical well drains.  

• Takagi (1957) extended Barron‘s solution to incorporate a variable rate of 

loading 

• Richart (1959) presented a convenient design chart for the effect of smear, 

where the influence of variable void ratio was also considered.  

• Hansbo (1960) presented a solution by pointing out that the Darcy‘s law might 

not be valid when the hydraulic gradient is in the range of magnitudes 

prevailing during most consolidation processes in practice. However, in this 

equal strain solution, the effect of smear and well resistance were not 

considered.  

• A simplified solution to the problem of smear and well resistance was 

proposed by Hansbo (1979, 1981), giving results almost identical with those 

given by Barron (1948) and Yoshikuni and Nakanodo (1974). 



Barron‘s solution is based on the following assumptions: 

(a) all vertical loads are initially carried by excess pore water 

pressure, u, which means that the soil is saturated,  

(b) the applied load is assumed to be uniformly distributed and all 

compressive strain within the soil occurs in the vertical direction,  

(c) the zone of influence of the drain is assumed to be circular and 

axisymmetric,  

(d) permeability of the drain is infinite in comparison with that of 

the soil, and  

(e) Darcy‘s law is valid. 



Schematic of soil cylinder with vertical drain (after Hansbo,1979) 



The three dimensional consolidation of radial drainage (Barron, 

1948) is given by 
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where t  is the time elapsed after the load is applied, u  is the excess pore water 

pressure at radius r  and at depth z . 

For radial flow only, the above equation becomes 
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The solution of the excess pore pressure for radial flow only, ru  of the above equation 

based on ‘equal strain’ assumption is given by:  
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where, D  is the diameter of soil cylinder, the drain spacing factor,  nF  is given by:  
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where, wr/Rn   is drain spacing ratio 



The average excess pore water pressure is given  by:  
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 (2.21) 

The average degree of consolidation, hU , in the soil body is given by:  

  







 


nF

T
expU h

h
8

1  (2.22) 

where the time factor hT  is defined as: 
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The coefficient of radial drainage consolidation, hc , is represented by:  
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where w  is unit weight of water, and va  is the coefficient of compressibility of the 

soil, e  is the void ratio, and hk  is the horizontal permeability of the soil.  



The solution taking account of smear effect is given by:  
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The smear factor v is given by 
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In the above expression, s  is the extent factor of the smear zone with respect to the 

size of the drain and is given by ws r/rs   



The average degree of consolidation including smear is now given by 
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Curves of average radial excess pore water pressure, ru , and average degree of 

consolidation, hU  (purely radial flow) versus time factor hT  for various values of n 

are shown in Figure  



Approximate Equal Strain Solution  

Hansbo (1981) derived an approximate solution for vertical drain based on the ‘equal 

strain hypotheses’ by taking both smear and well resistance into consideration. By 

applying Darcy‘s law, the rate of flow of internal pore water in the radial direction can 

be estimated. The total flow of water from the slice, dz , to the drain, 1dQ , is equal to 

the change of flow of water from the surrounding soil, 2dQ , which is proportional to 

the change of volume of the soil mass. The average degree of consolidation, U , of the 

soil cylinder with vertical drain is given by:  
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In a simplified form:  
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The effect of smear only is given by 
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The effect of well resistance only is given by 
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If both smear and well resistance are ignored, this parameter becomes 

   750.nln 



Plane Strain Consolidation Model  

Most finite element analyses on embankments are conducted based on the plane strain assumption. 

However, this kind of analysis poses a problem, because the consolidation around vertical drains is 

axisymmetric. Therefore, to employ a realistic 2-D finite element analysis for vertical drains, the 

equivalence between the plane strain and axisymmetric analysis needs to be established. The 

matching of axisymmetric and plane strain conditions can be done in three ways:  

1. geometric matching approach œ the spacing of the drains is matched while keeping the 

permeability the same  

2. permeability matching approach œ permeability coefficient is matched while keeping the 

spacing of drains to be the same.  

3. combination of permeability and geometric matching approach œ plane strain permeability is 

calculated for a convenient drain spacing.  



Indraratna and Redana (1997) represented the average degree of 

consolidation in plane strain condition as 
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where 0u  = initial pore pressure; u  = pore pressure at time t (average values); hpT  

= time factor in plane strain 
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where, hpk  and hp'k  are the undisturbed horizontal and corresponding smear zone 

permeability, respectively 



The geometric parameters  ,   and the flow term   are given by: 
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where, zq  = the equivalent plane strain discharge capacity.  



At a given stress level and at each time step, the average degree of consolidation for 

both axisymmetric ( U
h 

) and equivalent plane strain (U 
hp 

) conditions are made equal, 

hence: 

hph UU    

 



Combining 

with the original Hansbo (1981) theory, the time factor ratio can be 

given by following equation: 
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By assuming the magnitudes of R  and B  to be the same, Indraratna and Redana 

(1997) presented the relationship between hpk  and hp'k  as follow 
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Conversion of an axisymmetric unit cell into plane strain condition: a) Axisymmetric Radial Flow b) Plane Strain 



Consolidation around Vertical Drains  

Rate of Consolidation  

The main reason for using pre fabricated vertical drain is to reach the 

desired degree of consolidation within a specified time period. But in a 

vertical drain system, both radial and vertical consolidation should be 

considered in calculating the specified time period. Carillo (1942) 

gave the combined effect as 

   vr UUU  111

where, U  is the overall degree of consolidation; rU  is the average degree of 

consolidation due to radial drainage; vU  is the average degree of consolidation due to 

vertical drainage 



Coefficient of Consolidation with Radial Drainage  

Log U vs. t Approach  

Aboshi and Monden (1963) presented a curve fitting method using log U and linear t. 

This method is developed by taking ‘log’ on both sides of Barron‘s solution, which 

results in the following expression:  
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This equation represents the theoretical time factor for radial consolidation of perfect 

drains without considering the effect of smear. The coefficient of radial consolidation 

( hc ) is determined by plotting the logarithm of the average degree of consolidation 

against the linear consolidation time (log U  vs. hT ), where a linear slope provides the 

hc  value (as shown in Figure). 

Aboshi and Monden (1963) method for determining hc  



Plotting Settlement Data  

Asaoka (1978) developed a method where a series of settlements ( 1 , …, 1I , i , 

1i etc.), which are observed at constant time intervals are plotted as shown in Figure .  



The coefficient of radial drainage consolidation in this method is derived using Barron‘s 

(1948) solution, which is given by:  
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