

Effects of Soil Suction on Resilient Modulus and Pavement Design

Don Cameron, Uni South Australia

School of Natural and Built Environments

Topics

- 1. Soil suction soil movements
- 2. Resilient modulus (M_R)
- 3. M_R and Soil suction
- 4. Predictive models for M_R
- 5. Australian research

1. INTRODUCTION

- Clay soils expand or shrink as moisture is gained or lost
- Soil make-up and clay mineralogy impact on the rate of movement
- ★ So too does the soil mass structure
 - shrinkage cracking in particular
- * "Suction" better identifies soil desiccation than moisture content

1.1 Soil Suction - introduction

- ★ Soil suction = affinity for water
- Dry soils soak up water like a dry sponge
 matric suction, u_m
- ★ Matric suction = capillary action + particle attraction
- Fine soils have tremendous capillary potential due to small voids
- Saline soils attract water (osmosis)solute suction, u_s

School of Natural and Built Environments

Soil Suction - intro cont'd

- ★ Desiccation = increase in total or matric suction
 - solute suction increases if salts remain, since salt concentration increases in pore fluid
- * Recent theory re unsaturated soil behaviour has concentrated on matric suction
- Solute suction can provide significant total suctions even when the soil is almost saturated (+1MPa)
- Matric suction dominates seasonal suction change

Soil Suction

- Matric suction is expressed as the difference between pore air, u_a, and pore water pressure, u_w (pore water is in tension), i.e. (u_a – u_w)
 - Saturated soil, u_m = 0
- ***** Suction related to effective stress?

$$\sigma' = (\sigma - u_a) + \chi (u_a - u_w)$$

 χ = proportion of water in the voids

 χ = 0 for dry soil and 1 for saturated soil

School of Natural and Built Environments

Soil Suction

- * Khalili & Khabbaz 1998 gave empirical estimates of variation of χ based on ratio of u_m to AEV
 - AEV = value of suction when air enters the soil during drying
 - Requires determination of the Soil Water Retention Curve or SWRC

Drawbacks of SWRC

- Initial saturation process
- ★ Curves can take +3 months to generate
- Volume changes should be measured
- Highly plastic clays ("expansive clays") difficult to work with and interpret

School of Natural and Built Environments

Units of suction

- ★ Pressure kPa or MPa
 - Field maximum usually 10 MPa
- Log of suction has been shown to be best for correlations with most soil properties
- * Old pF unit:
 - Log₁₀(u (kPa)) +1.01
 - Field maximum usually 5 pF
 - Field total suction minimum > 3 pF (100 kPa)

Routine measurement of suction

- ★ UniSA, Wescor Dew Point Hygrometer
 - Relative Humidity (RH) approach
 - Measures total suction
 - RH of small air space in equilibrium with sample reflects soil suction level
 - Dew point temperature more reliable than RH
 - High relative humidities usually 95-100%
 - Constant temperature room and careful operators

UniSA

School of Natural and Built Environments

Wescor dew point hygrometer

Routine measurement of suction

- * To estimate matric suction, need to measure solute suction
- ★ Electrical conductivity measurements of solutions
 - One week of readings
 - Simple measurement, EC proportional to u_s
 - Correct for water content
 - Does not indicate types of salt can lead to errors
- * Alternatively try filter paper technique

School of Natural and Built Environments

1.2 Suction and soil movement

- AS2870 pragmatic approach to estimating soil movements
- * Shrinkage index, I_{ps}, is the rate of vertical strain of soil subjected to a pF change in total suction
 - Assumes little influence of load
 - Soil is laterally unrestrained
- I_{ps} adjusted before estimating movement to account for:
 - increasing overburden & lateral restraint with depth

Suction and soil movement

- ★ I_{ps} from Shrink-Swell testing?
 - simple equipment
 - no suction measurement
 - one week to test
 - full range of moisture change wetting & drying
 - larger sample
 - empirical derivation

Movement Estimate for lps = 4 % per pF

School of Natural and Built Environments

1.3 Suction and soil strength

* Fredlund, Vanapalli, Xing and Pufahl (1995)

$$\tau_f = c' + (\sigma_n - u_a) tan (v' + (u_a - u_w) tan \phi^b)$$

** tan φ^b concept OK until a threshold suction reached – thereafter, lower rate of strength increase

Resilient Modulus

School of Natural and Built Environments

Modern Pavement Design

Subgrade Deformations:

elastic & permanent

- 1. Resilient modulus, M_R
 - elastic strains under cyclic loading
- 2. Permanent strains?

Permanent strains?

$$\epsilon_p = AN^b$$

where

$$A = a \left(\frac{\sigma_d}{\sigma_s}\right)^m$$
 (Li & Selig 1998)

where σ_s = static unconfined compressive strength (Li & Selig 1998)

2. Resilient modulus, M_R

cyclic deviator stress

$$M_R = \frac{\sigma_d}{\epsilon_{vr}}$$

cyclic resilient strain

 σ_3 = constant

Resilient modulus of clay soils

 $\mbox{M}_{\mbox{\scriptsize r}}$ decreases with $\mbox{\sigma}_{\mbox{\scriptsize d}}$ to an "asymptotic value"

Deviator stress

School of Natural and Built Environments

M_R & Moisture Content, w

- * Res Mod varies non-linearly with w
- * Res Mod of compacted samples varies with density & moisture state (relative to OMC)
- Soil *plasticity* also contributes: M_R = fn(w/PI)

Edwards, Frost & Thom (2005) - PI = Plastic Index

3.1 M_R & Matric Suction, u_m

Compacted samples, unconfined M_R

- I. Richards (1968) $M_R \propto \sqrt[3]{\sigma'}$
 - → M_R increase greatest for changes of u_m from wet to moist

Soil strength – similar observations

Fredlund, Vanapalli, Xing & Pufahl (1995)

3.2 M_R & Total Suction, u_T

- # M_R \propto log(u_T)
 - compacted samples, constant dry density Phillip & Cameron (1995)
- $\# M_R \propto u_T$
 - compacted Kirkland soil Khoury & Zaman (2005)

UniSA

School of Natural and Built Environments

4. Models for Prediction of M_R

4.1 Models based on stress

$$M_{R} = K_{o} \left(\frac{\sigma_{m}}{p_{a}} \right)^{k_{1}} \left(\frac{\tau_{oct}}{\tau_{ref}} \right)^{k_{2}}$$

May & Witczak (1981)

p_a = atmospheric pressure

Octahedral shear stress ratio

AASHTO 2002 Model

Large database - statistical analysis

$$M_{R} = k_{1}p_{a} \left(\frac{\sigma_{m}}{p_{a}}\right)^{k_{2}} \left(\frac{\tau_{oct}}{p_{a}} + 1\right)^{k_{3}}$$

- k₂ not dependent on moisture content

School of Natural and Built Environments

4.2 M_r models with suction

- 1. $M_R = linear fn of (\sigma_d, u_m \& Pl)$
- Brown (1996)
- 3 remoulded clays, M_R to 80 MPa
- 2. May & Witczak equation modified
- Phillip & Cameron (1995)
- K_0 , $k_1 \& k_2 = fn(\log(u_T))$
- 2 remoulded clays

5. RECENT RESEARCH

- Poorly-drained clay subgrades are weak& will settle under repeated loading
- Recent research on rail formations on expansive soils

Rail Cooperative Research Centre for Railway Engineering & Technologies Project 86

Funding ended in 2007

School of Natural and Built Environments

OVERVIEW - cont'd

- * Phillips & White 2002 ballast collects and retains moisture, wetting the subgrade on poorly drained sites
- * Potter & Cameron 2005
 - demonstrated the detrimental effect of moisture on clay subgrades (Victoria and Queensland)

Initial Objective Project 86

- * Maintenance engineers had noticed less track/ballast maintenance near treed areas,
 Melbourne-Adelaide line
- * 3 problem site areas identified where vegetated & non-vegetated sections could be compared
- * 4th site chosen in central Queensland
- ★ Sampling and testing program over seasons

Comparison: companion sites

- sampling over wet & dry periods
- * non-vegetated sites considerably wetter
- consequently, lower shear strengths& M_R values
- ★ Emerald site (Qld) less clear
 - high aridity, high suctions

Impacts on Soil Properties (wet)

Site	τ ₅₀ (kPa)	
	Non- vegetated	Vegetated
Miram	13 - 25	74 - 432
Horsham	13 - 17	43 - 53
Wal Wal	49 - 80	61 - 238

School of Natural and Built Environments

Impacts on Soil Properties (wet)

Site	M _{r asymptote} (MPa)	
	Non- vegetated	Vegetated
Miram	24 - 41	174 - 347
Horsham	22 - 27	61 - 118
Wal Wal	22 - 58	86 - 271

5.2 Review of M_R data

- "Asymptotic" modulus, "undisturbed" samples
- More data from Miram & a new site in Queensland
 - no shear strengths unconfined compression strengths instead, performed on res mod samples

Prediction of M_{R asymptote}

★ Simple format based on stress level & suction (Cameron & Potter 2008)

$$M_{\text{R-as}} = 960 \left(\frac{\text{UCS}}{\sigma_{\text{d}}} \right)^{0.012} + 22 \left(\frac{u_{\text{T}}}{p_{\text{a}}} \right)^{0.574} - 944$$

★ Design estimate for M_R < 300 MPa
</p>

Incorporation of soil plasticity

- Since Cameron & Potter 2008, further Atterberg Limit testing conducted to enable a review of the influence of soil plasticity
- * Liquid Limit (LL) chosen
 - Plastic Index less successful

Revised correlation (1)

for $M_R < 300 MPa$

$$M_R = 14,250 \left(\frac{1}{LL}\right)^{1.6} + 49.6 \left(\log\left(\frac{u_T}{p_a}\right)\right)^{2.12} + 290 \left(\frac{UCS}{\sigma_d}\right)^{0.063} - 286$$

Correlation 2

for $M_R < 300 MPa$

Combined effects of suction & stress level in power functions added to base estimate for "wet soils"

$$M_R = 14,250 \left(\frac{1}{LL}\right)^{1.6} + 59 \left(\log\left(\frac{u_T}{p_a}\right)\right)^{1.41} \left(\frac{UCS}{\sigma_d}\right)^{0.21}$$

Discussion

- ★ Neither equation permits M_R to exceed 210 MPa, although observed values reached 300 MPa
- * However, some over-prediction evident at low levels of observed modulus
- ★ Correlation 1 suggests deviator stress to UCS ratio is not so important: negligible if >1, may gain 45 MPa if ratio drops to 0.1 should be low!

5.3 Impact on Pavement Design

- * Pavements undergo moisture changes
 - * Edges most vulnerable to seasonal moisture change
 - * Centre should reach equilibrium with shallow water table or deep suction values
- * High plasticity subgrades are not easily avoided
- ★ M_R = 10 CBR and soaked CBRs lead to quite conservative design values, i.e. < 100 MPa
 </p>

School of Natural and Built Environments

6. SUMMARY

- Designers should be conservative in their approach to choosing resilient modulus from triaxial test data
 - asymptotic modulus may be appropriate
- ★ Soil suction has a significant impact on M_R
 - effective stress theory not easy to apply, however
- Prediction of M_R of undisturbed clays is complex
 - shear stress ratio, suction & plasticity all have influence
 - equations presented to predict M_{R asymptote} to 210 MPa

