

Introduction

- 1. Bridge Management system
- 2. Inspection, evaluation and maintenance
- 3. Fatigue of steel members
- 4. Stress measurement and Bridge Weigh-in-Motion
- 5. Retrofitting, example of orthotropic steel deck
- 6. Corrosion and anticorrosion measure

- 1. Retrofitting
- 2. Arch Bridge
- 3. Pier and girders
- 4. Orthotropic Steel Deck
- 5. Other

Meishin Expressway: Nagoya to Kobe

Open to traffic in 1963
The first expressway in Japan
Economical structures
Financed from the World Bank

せみまる(蝶丸)

平安時代の歌人、琵琶 (ぴわ) の名手。守事大弘の皇子教主 (あつみ) 親王に仕えた雑色 (そうしき) とも僧解天皇の章 4 子ともいわれるが、伝記不明。資目で琵琶士よくし、後をのが れて造成山にわび往まいしたという。(小倉石人一首)にも輝丸 の刺歌があって知られるが、他の〈蘇丸〉や、近松門左衛門作 の人影浄環境(じょうるり) (輝丸) (1701 (元禄14)、大阪竹本 権初節) などに彼の経歴が関色されている。 Tunnel in both sides.
NR1 and train trucks underneath.

Arch Bridge with skew of 62 degree ADT: 83,000 vehicles.

Minimum disturbance to traffics.

Modification was made in 13 nights.

Deterioration

1. Concrete deck

16 cm thick concrete slab Reinforced with steel plates

2. Fatigue crack

Cross beams, stringers, short vertical members and others

Shimo-ueno Viaduct, 1963

架設された立体ラーメン橋の柱と梁

Old Shimo-ueno Viaduct

Tanaka Prize, 2005

Typical fatigue cracks observed in Japan

Butt weld of trough rib **Vertical Stiffener to deck plate** Deck Plate Type-1 Type-5 Trough Rib to Deck Vertical Stiffener Plate Connection to Deck Plate Trough Rib Main Girder Web Vertical Stiffener Cross-Beam Type-6 Type-3 Type-2 Intersection of Trough Cross-Beam to Main Butt Joint of Trough Rib Rib and Cross-Beam Girder Web Connection

Trough rib to deck plate

Fillet weld of trough rib

Courtesy MPE

Crack from trough rib to deck plate

Difficult to inspect, damage to asphalt pavement, and danger to traffics.

FEM Analytical Model of Full Scale Test Specimen

Tenpaku Bridge

Constructed in 1984

2003 deterioration of asphalt pavement, then fatigue crack was found

Courtesy of Nagoya City

GVW measured by BWIM

į	走行車線 1		走行車線2			追越車線		
GVW	Axle	V	GVW	Axle	V	GVW	Axle	V
(t)		(km)	(t)		(km)	(t)		(km)
114.1	6	42	125.1	6	28	93.7	4	38
88.1	6	35	102.3	6	60	71.8	6	45
85.0	6	38	97.2	6	51	70.6	6	64
82.3	4	36	95.3	6	45	69.8	6	55
77.8	6	50	95.1	б	58	69.0	6	74

Courtesy Nagoya City

Crack from root of trough to deck plate

Ya Samol

Case 2: Fatigue cracks in butt weld of ribs

Crack in butt weld with backing bar

AK Bridge: Fatigue crack in butt weld of ribs Had but in the district Kinu-ura Industrial Area 1958 Truss Box girder

Repair and rehabilitation (plan)

Plate attached with one-side bolts. (Ishikari Kako Bridge)

Gauging and re-welding
(Honshu-Shikoku B.A.)
(Fatigue test data)

Replace whole cracked part with new members.

Fatigue tests of butt weld of trough rib

Gauging and re-welding cracked part

Gauging and re-welding cracked part

Importance of information transfer and training of welders

Steps

- 1. Gauging
- 2. Check of root gaps.
- 3. Re-welding
- 4. NDT

Case 3: The upper end of vertical stiffeners

Repair with high strength bolted splices

Fatigue tests

Fatigue test results, Ntoe and N10

Proposed repair method with circular hole

Ease stress concentration with circular hole. Hole saw was used.

Proposed repair method

No crack Circular hole

Small crack Circular hole

Medium crack Circular hole +CFRP sheet?

Large crack Circular hole

+CFRP sheet?

Penetrated crack splice plate
Asphalt pavement to SFRC

To reduce overloaded trucks, warning system

Reduce illegally overloaded trucks

Courtesy Aichi Pref. and PC

New approach to strengthen pavement

Nagoya Expressways used SFRC with asphalt pavement in 1980s in experimental bases.

The SFRC was placed on a new orthotropic steel decks under construction in 2007.

Basic fatigue test for orthotropic steel deck

