

Introduction

- 1. Bridge Management system
- 2. Inspection, evaluation and maintenance
- 3. Fatigue of steel members
- 4. Stress measurement and Bridge Weigh-in-Motion
- 5. Retrofitting, example of orthotropic steel deck
- 6. Corrosion and anticorrosion measure

- Stress measurement of bridge and bridge members
- 2. Static and dynamic
- 3. Stress range histogram
- 4. Bridge Weigh-in-Motion
- 5. Strain Checker

Stress measurement of bridges: Japan

1950's - 1960's: static

Stress and deformation measurement Calculation for design vs. bridge behavior Safety

1960's - 1980's: dynamic

Structural dynamics

Vibration measurement

1990's –2000's: long term monitoring

Stress in service and stress range histogram Bridge Weigh-in-Motion

Stress measurement of bridges: Japan

1980's - 2000's

Digital recording

Durability evaluation

Histogram recorder

Bridge Monitoring

(using communication network)

Strain Checker for easy stress measurement

Monitoring of highway bridges

1. Bridge Monitoring

Short term: 1-3 days, 1 week,

1 month or 1 year

Examples

Weigh-in-Motion and Bridge WIM in Japan

GVW and axle loading

Example of Bridge Monitoring

Semimaru Bridge
 Skewed arch bridge
 Semimaru

Bridge Weigh-in-Motion (Use strain response of bridge member as scale) (Moses, Miki, PWRI, etc.) Bending strain of beam

Reaction Force Method (Ojio and Yamada, Nagoya U.)

Influence Line of Reaction Force

• Edges in response wave correspond to axle loads.

Compare axle spacing with database of trucks identify truck type

Measurement of trucks in service by WIM and BWIM

Distribution of GVW Daily Trucks on NR23

One week

Emphasis on heavy loading

NR 23 Yokkaichi Viaduct West Bound Slow Lane

NR 23 Yokkaichi Viaduct West Bound Passing Lane

Cumulative frequency distribution of GVW

Equivalent GVW and N

Equivalent GVW is computed by the following equation.

$$Weq = \sqrt[3]{\frac{\sum W_i^3 \cdot n_i}{\sum n_i}}$$

Number of Trucks (N)

100 100 Distribution of Axle Load **Axle Load Slow and Passing Lanes Equivalent Axle Load** 250 - Mon from axle load over 100 kN -Tue 200 Wed wed Axle Load (kN) Thu Axle Load (kN) Thu - Fri 150 Fri 150 -Sat Sat -Sun Sun 100 100 50 50 0 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 Cumulative Frequency (N)

NR 23 Yokkaichi Viaduct West Bound Slow Lane

Cumulative Frequency (N)

NR 23 Yokkaichi Viaduct West Bound Passing Lane

Cumulative frequency distribution of Axle Load

Equivalent Axle Load and N Slow Lane

Equivalent axle load is computed by the following equation.

$$Weq = \sqrt[3]{\frac{\sum W_i^3 \cdot n_i}{\sum n_i}}$$

Slow Lane

Distribution of Axle Load Slow and Passing Lanes

NR 23 Yokkaichi Viaduct West Bound Slow Lane

100

100

NR 23 Yokkaichi Viaduct West Bound Passing Lane

200t Truck Crane 6 axles 200t LTM1200N

Catalog of truck crane

200t Truck Crane 6 axles

Carrier (6-axle truck)

34ton

Crane

72ton

Fully Equipped Crane

160ton

Summary of BWIM Study

- 1. BWIM using reaction force method is simple and effective to obtain GVW, axle loads and truck type in service.
- 2. Overloaded trucks were found on major highway and national routes in Japan. Situation may be the same in other Asian countries.
- 3. Law enforcement is necessary to control such heavy trucks to maintain highway bridges in good condition.

Strain Checker for easy stress measurement

