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drained / undrained (conditions and analysis)

In undrained conditions, no water movement takes place and,
therefore, excess pore pressures are built up

AU # 0, Ac # Ac’

In drained conditions, No excess pore pressures are built up
AU = 0, Ao = Ac'’

drained analysis appropriate when

— permeability is high

— rate of loading is low

— short term behavior is not of interest for problem considered

undrained analysis appropriate when
— permeability is low and rate of loading is high
— short term behavior has to be assessed



triaxial test (NC soils) — drained / undrained
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triaxial test (OC solls) — drained / undrained
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stress paths in undrained triaxial test — NC / OC
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Strength parameters

d Mohr-Coulomb parameters in terms of effective stress

r=Cc'+o'tan ¢’
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Strength parameters

d Mohr-Coulomb parameters in terms of effective stress
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Strength parameters

O Mohr-Coulomb parameters in terms of total stresses
QO Only undrained conditions!

A —c' +o' '
T T=C+o lane total stresses
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Effective stresses

O Soil behaves as if it was cohesive
Q C, (= Su) : undrained shear strength
O C, only changes if drainage occurs (no change if undrained conditions prevail)



What is the critical case: drained or undrained?
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note that for soils in general:

«factor of safety against failure is /fower for short
term (undrained) conditions for loading problems
(e.g. embankment)

«factor of safety against failure is lower for long
term (drained) conditions for unloading problems
(e.g. excavations)

however ...



What is the critical case: drained or undrained?
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eFor very soft NC soil, factor of safety against failure may
be /ower for short term (undrained) conditions for
unloading problems (e.g. excavations)

eFor very stif OC soil, factor of safety against failure may
be /ower for short term (undrained) conditions for
loading problems (e.g. embankment)



FE modeling of undrained behavior

e what Plaxis does when specifying
type of material behaviour: undrained

e both changes in ¢' and u are considered

e constitutive equations are formulated in terms of o

Ao'=D'A¢

ewe need to compute D

Ao = DAg




FE modeling of undrained behavior

principle of effective stress > Ao =Aoc'+Ao;
with Ag, =[Ap, Ap, Ap, 0 0 Of
since the strains are the same in each phase,
Aoc'=D'Ae

1, O K
Ao, =D;A¢ D, =K]|’ AL
0, O, n
pore fluid stiffness, related to the
bulk modulus of pore fluid (water) K;

K

e

112

O weneedD Ao =DAeg
Ac'+Ac; =Ac=DAe=D'Ae+D;Ae=(D'+ D, )A¢
i —

D =D'+D,




FE modeling of undrained behavior

QO Example: linear elastic model + plane strain
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FE modeling of undrained behavior

QO Example: linear elastic model + plane strain

D =D'+D,
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FE modeling of undrained behavior

QO Example: linear elastic model + plane strain
D =D+D,
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FE modeling of undrained behavior

all the above (which is valid for any soil (or model) for which the
principle of effective stress applies) can be easily combined with
the FEM

* instead of specifying the components of D, specify D', and K,
D=D+D, then same as in the drained case

e when calculating stresses,

AO'f — KeAgv ‘ AG — AG'-I‘AG]:
Aoc'=D'A¢

a value must be set for K,
the pore-fluid is assigned a bulk modulus that is substantially

larger than that of the soil skeleton (which ensures that during
undrained loading the volumetric strains are very small)



FE modeling of undrained behavior

PLAXIS automatically adds stiffness of water when undrained
material type is chosen using the following approximation:

K, E,  2G(+v,)
“R S 3(-2v,) 3(-2v,)

K

total

E'(1+vu)

total — 3(1 _ 2Vu)(1+v') assuming v, = 0.495

Notes:
* this procedure gives reasonable results only for v' < 0.35 !

e in Version 8 B-value can be entered explicitely for undrained materials
e real value of K,/n — 12106 kPa (for n = 0.5)



modeling undrained behavior with PLAXIS

method A (analysis in terms of effective stresses):
type of material behaviour: undrained
effective strength parameters (MC: c', ¢', ')
effective stiffness parameters (MC: E;;', V')

method B (analysis in terms of effective stresses):
type of material behaviour: undrained
total strength parametersc=c, ¢ =0,y =0
effective stiffness parameters E. ', V'

method C (analysis in terms of fotal stresses):
type of material behaviour: drained
total strength parametersc=c, ¢ =0,y =0
total stiffness parameters E,, v, = 0.495




FE modeling of undrained behavior (method A)

 analysis in terms of effective stress
 type of material behaviour: undrained
e U changes (excess pore water pressures generated)

- constitutive equations are formulated in terms of G’
Ac'=D"'Ae

In the case of Mohr Coulomb model:

effective strength parameters c’, ¢’, v
effective stiffness parameters E.,', v'

- the total stiffness matrix is computed as: D = D'+D;



FE modeling of undrained behavior (method A)

A

t
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— single set of parameters in terms of effective stress (undrained,
drained, consolidation analysis consistent)
— realistic prediction of pore pressures (if model is appropriate)

— the undrained analysis can be followed by a consolidation
analysis (correct pore pressures, correct drained parameters)

— C, Is a consequence of the model, not an input parameter!!



modeling undrained behavior with PLAXIS

method A (analysis in terms of effective stresses):
type of material behaviour: undrained
effective strength parameters c', ¢', y'

effective stiffness parameters E.,', v

method B (analysis in terms of effective stresses):
type of material behaviour: undrained
total strength parametersc=c, ¢ =0,y =0

effective stiffness parameters E.,', v

method C (analysis in terms of fotal stresses):
type of material behaviour: drained
total strength parametersc=c, ¢ =0,y =0
total stiffness parameters E,, v, = 0.495




FE modeling of undrained behavior (method C)

e analysis in terms of total stress

e type of material behaviour: drained (in spite of modelling an
undrained case)

e u does not change

e constitutive equations are formulated in terms of &

total strength parametersc =c, ¢ =0, y =0
total stiffness parameters E, v, = 0.495

Ao =DA¢g



FE modeling of undrained behavior (method C)
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— parameters in terms of total stress

— no prediction of pore pressures (only total stresses
are obtained)

— the undrained analysis can not be followed by a
consolidation analysis

— C, Is an input parameter!!



modeling undrained behavior with PLAXIS

method A (analysis in terms of effective stresses):
type of material behaviour: undrained
effective strength parameters c', ¢', y'

effective stiffness parameters E.,', v

method B (analysis in terms of effective stresses):
type of material behaviour: undrained
total strength parametersc=c, ¢ =0,y =0

effective stiffness parameters E.,', v

method C (analysis in terms of fotal stresses):
type of material behaviour: drained
total strength parametersc=c, ¢ =0,y =0
total stiffness parameters E,, v, = 0.495




FE modeling of undrained behavior (method B)

e analysis in terms of effective stress

 type of material behaviour: undrained

e U changes

- constitutive equations are formulated in terms of ¢’ (but
strength in total stresses!)

total strength parametersc=c, ¢ =0,y =0
effective stiffness parameters E.,', V'

Ac'=D'Asg
Ao =D A¢
D=D+D;

Resulting undrained stiffness parameters

3 E
2 1+

; v, =0.495



FE modeling of undrained behavior (method B)
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parameters in terms of total stress and effective stress
prediction of pore pressures (generally unrealistic)
the undrained analysis should not be followed by a

consolidation analysis (pore pressures unrealistic)

C, is an input parameter!!



Undrained shear strength from the Mohr Coulomb model

Plane strain: effective stress path rises vertically
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Undrained shear strength from the Mohr Coulomb model

e The Mohr Coulomb model in terms of effective stresses
OVERESTIMATES the undrained shear strength of soft clays!
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Undrained shear strength from advanced models

 Although it is possible, in a few simple cases, to obtain an analytical
expression for c, it is advisable to perform a numerical “laboratory”

test to check the value of undrained shear strength actually supplied
by the model

O It is important to perform the numerical “laboratory” test under the
same condition as in the analysis
QO Plane strain, triaxial, simple shear
QO Correct initial stresses
QO Compression, extension, simple shear

d Not all ¢, values are achievable with a particular model



Soft soil model

Parameters
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Soft soil model

Parameters
c'=0.1kPa ¢'=23° K =1-sing'=0.609
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Influence of dilatancy on undrained shear strength

if we set 7 # 0 then, negative volumetric plastic deformations
occur at failure:

Ae, = A&l + A&’ (elastic-plastic behavior)
Ae =0 (undrained conditions)
Vv

Ag <0 = Ag, >0=Ap'=K'Ag, >0
At failure: Ag=MAp'= Aq>0
At=As'sing' = At >0

result: unlimited increase of g (or ?), i.e. infinite strength!!

Therefore, in undrained analysis, dilatancy, ¥, must be set to zero!



Influence of constitutive model and dilatancy

simulation of undrained triaxial compression test — MC / HS model - q vs ¢,
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Influence of constitutive model and dilatancy

simulation of undrained triaxial compression test — MC / HS model - g vs p’
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summary

FEM analysis of undrained conditions can be performed in effective
stresses and with effective stiffness and strength parameters
(Method A)

Method A must be used:
— If consolidation/long term analysis are required
— advanced soil models are adopted

undrained shear strength is a result of the constitutive model
care must be taken with the choice of the value for dilatancy angle

Methods B and C provide alternative ways to analyze undrained
problems but:

— the constituive model dos not generally represent the true soll
behaviour (before failure)

— potentially useful for stability problems in undrained conditions
(specification of undrained shear strength is straightforward)






Nicoll Highway Collapse, Singapore

L]
)

i, - —

_é ""'“'.:‘r“ _._ E.— —,_.

b B

24/3/04 |



Nicoll Highway Collapse, Singapore
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Nicoll Highway Collapse




Nicoll Highway Collapse




Nicoll Highway Collapse

e Undrained stabilty problem. Method A and Mohr Coulomb
constituive model used for design analysis




Nicoll Highway Collapse
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Nicoll Highway Collapse

Elevation, RL (m)
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Nicoll Highway Collapse

Elevation, RL (m)
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Nicoll Highway Collapse
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