Field Vane Test (FVT)

- 1. In situ test developed to measure undrained shear strength (s_u) of finegrained soils
- Calibrated against back analysis of embankment failures, i.e., stability problems
- 3. Widely used as a frame of reference for other in situ tests and laboratory tests for interpretation of s_u

FVT - Equipment and Mechanics

- Push thin bladed vane into soil, rotate and measure torque
- Usual geometry: rectangular with 4 blades, sized to match expected strength of soil, H/D = 2

Nilcon Vane Borer

Nilcon Vane test tracing

Scribe on wax paper with trace that includes:

- rod friction (via slip coupling)

Geonor Vane

Rod Measuring Unit Ball Bearing Protective Protective Housing Pipe Protective: Pipe Vane Rod Vane

Acker Drill Co. Vane

GeoMil Electric Vane Tester

- Computer control and data acquisition
- 0.1 to 20 degrees per second
- real time plotting of torque vs rotation

Pictures from GeoMil

FVT – Deployment Methods

Protected Rods

and Rods

Rods with Slip Coupling

FVT – Test Variables

- 1. Installation
- 2. Consolidation Time
- 3. Shear Rate
- 4. Progressive Failure
- 5. Vane size
- 6. Vane Shape

FVT – Test Procedure

- 1. ASTM D2573 "Standard Test Method for Field Vane Shear Test in Cohesive Soil"
- 2. Rectangular vane w/ H/D = 2
- 3. Test at \geq 5 diameters from base of borehole
- 4. Wait time after insertion? \rightarrow 1 to 5 min
- 5. Rotate $\leq 0.1^{\circ}/s = 6^{\circ}/min$, $t_f \sim 2 5 min$
- 6. After failure rotate ~ 10 times to measure s_{ur}
- 7. Test interval ≥ 2 ft

FVT Standards and Guidelines

Examples of some differences (after Lunne 2006)

Parameters	ASTM ¹	BS ²	NGF ³	SGF⁴	CEN⁵
Vane blade diameter (mm)	38.1 / 50.8 63.5 / 92.1	50 / 75	55 / 65	40 – 100	40 – 100
Thickness of blade (mm)	1.6 / 3.0	??	2.0	0.8 – 3.0 / avg. ≤ 2.0	0.8 - 3.0
Procedure depth of insertion	5x hole dia.	3x hole dia.	0.5 m below shoe	5x hole dia.	5x hole dia. or 0.5 m
Rate of rotation	6°/min	6-12°/min	12°/min	not specified	6 - 12°/min
Time to failure	2 to 5 min	5 min	1 to 3 min	2 to 4 min	not specified
s _{ur} - min # revolutions	5 - 10	not given	25	20	≥ 10
Delay time	< 5 min	-	< 5 min?	2 - 5 min	2 – 5 min
Interval between tests	> 0.76 m	0.5 m	0.5 - 1.0 m?	> 0.5 m	≥ 0.5 m

Common vane shapes

FVT – Installation Disturbance

- Depends on vane dimensions and soil properties
- 2. Use Perimeter Ratio $\alpha = 4e/\pi D$
- 3. Want low α , therefore D or \downarrow e
- 4. Typical commercial vanes $\alpha = 4$ to 8%

Influence of Perimeter Ratio

(after LaRochelle et al. 1973)

FVT – Consolidation Time

- Generate excess pore pressures during deployment – depends on OCR
- 2. What to do?
- 3. Usually 1 to 5 min after installation

Influence of Consolidation time

FVT – Rate of Shearing

- 1. Strain rate effects
- 2. $V = r\omega$
- 3. Therefore must consider r and ω
- 4. Effect is function of soil type

Influence of Rate of Shearing

(after Chandler 1988)

FVT – Interpretation of Data

- 1. Measured data: vane geometry and torque
- 2. Typical assumptions (from Flaate 1966)
 - undrained shear
 - no disturbance
 - small area ratio
 - no progressive failure
 - isotropic conditions

FVT – Calculations

$$T = s_u(\pi DH)(D/2) + 2s_u(\pi D^2/4)(D/a)$$

where

T = torque

s_{...} = undrained shear strength

D = diameter of vane

H = height of vane

a = shape factor

Contribution of top and bottom surfaces is relatively minor

Stress

distribution

FVT – Calculations (cont)

Typically use H/D = 2 and assume a = 3, therefore

$$s_{IJ} = 6T/7\pi D^3$$

FVT - Remolded Strength

- Measure remolded shear strength = s_{ur}
- 2. Compute sensitivity S_t as

$$s_t = s_u/s_{ur}$$

- Remains the best in situ geotechnical tool to measure St

Example Field Vane profiles at UMass Amherst National Geotechnical Experimentation Site

- A lacustrine Varved clay deposit with an upper desiccated crust

FVT – Correction Factors

Bjerrum (1972) suggested s_u(FVT) needs to be corrected for stability analysis

$$s_u = \mu s_{u(FVT)}$$

where μ = 1/FS based on stability of embankments. To compensate for disturbance, strain rate, anisotropy and progressive failure

[after Bjerrum 1972]

Embankment failures $\rightarrow s_u(ave) = \mu s_u(FV)$

Mesri (1975) Interpretation of Bjerrum (1972, 1973)

Bjerrum (1972, 1973) developed relationships:

- $s_u(FVT)/\sigma'_{v0}$ vs PI for "young" (OCR = 1) clays
- $s_u(FVT)/\sigma'_{v0}$ vs PI and σ'_p/σ'_{v0} for "aged" (OCR > 1) clays and
- $s_u(mob) = \mu s_{u(FVT)}$ with $\mu = f(PI)$

Mesri (1975) combined first set of data into:

 $-s_u(FVT)/\sigma'_p vs PI$

then coupled with second set of data to find:

 $-s_u(mob) = 0.22\sigma'_p$ independent of PI

Example: estimation of stress history (σ'_p)

Preload fills for abutments of two river bridges, Northern Ontario

FVT – Recommendations

- Rectangular vane with constant cross section,
 H/D = 2
- 2. Calibrated torque head, gear driven
- 3. Insert slowly and begin test within 1 min.
- 4. Peak, post-peak, & remolded strength
- 5. Report geometry of vane used + gear system
- 6. Use Bjerrum's correction factor for stability problems only

