Engineering & Groundwater Geophysics:

Essentials

By

Prof. Bob Whiteley
Senior Principal, Coffey Geotechnics

Roads & Highways

Groundwater

Project Stages

- Pre-feasibility
- Feasibility & design
- Detailed design
- Construction & monitoring
- Rehabilitation/remediation

Geotechnics: Supporting Technical Disciplines

Geotechnics & Geoscience are characterised by:

- Uncertainty- how much?
- Idealization how much?
- Approximation (± 25% is good but not good enough)
- > RISK!

Prediction & Design

Geophysics is a form of non-destructive in situ testing (NDT) whose objective is to provide enhanced subsurface information in a more cost-effective manner than by invasive methods such as drilling.

Site Investigation Objectives & Scope

Site characterisation for a defined purpose:

For example

- > determine nature, thickness, dip & variability of strata
- > determine relevant physical/chemical properties of strata
- > determine groundwater level & variations
- ➤ Establish a geological, hydrogeological & geotechnical model for the site

Obtain this information in the most technically accurate and economic manner

Scope must accord with purpose not SI budgets!!!!

Site Investigation Components

 Site Exploration (or testing) —search for buried features/objects/hazards

 Parameter Specification -depth/size/geophysical property/geotechnical property

Site Investigation Phases

Preliminary

- assess general site suitability & plan subsequent investigations
- Methods: geological survey, site inspection, existing logs

General exploration

- identify most suitable areas & general site characterisation
- Methods: simple exploration, sampling and testing

Detailed

- Characterise properties of specific subsurface features
- Methods: carefully selected exploration techniques, sampling and testing

Site Exploration Methods:

- Test Pits
- Boreholes
- Probes (in-situ tests)
- Geophysics (surface & borehole)

Methods applied depend on,

- sampling requirements
- extent of investigation
 - site conditions
 - budgets

traditional methods of investigation by drilling

"Geophysics supplements rather than displaces traditional methods"

Traditional Drilling
Methods – not much
change

Geological Model:Traditional Approaches

We can still get it very wrong!!!

Traditional Site Investigation

GEOLOGICAL MODEL – you can get it very wrong if you start interpolation from the top

GEOLOGICAL MODEL – better if you start from the bottom but you still no guarantees !!!

With Geophysics – actual soil thicknesses

SILICEOUS CALCAREMTE

NO CORE

APPROXIMATE BEDROCK LEVEL

coffey

Traditional Drilling Methods – not much change

Traditional Grid Drilling or Sampling

Total Site area

=As

As = 10

and the state of t	Probability of Detection	As/Ac = 10	As/Ac = 100	As/Ac=1000
	100	16	160	1600
	98	13	130	1300
	90	10	100	1000
	75	8	80	800
	50	5	50	500
	40	4	40	400
	30	3	30	300

Advances in Computer Technology

Speed: 10,000 MIPS

Storage: 100 Gigabytes

Notebook

c. 2009

TRADITIONAL?

NEW?

Advances in geophysical imaging parallel advances in medical imaging

Investigation Method

Scale of Sample

Sample size/
Site size

Traditional drill & sample

mm to m

1: 1,000,000

+ geophysics

m

1:10,000

"Geophysics enhances ground knowledge"

In Situ soil testing methods SPT CPT PMT VST DMT Standard Prebored Vane Cone **Flat Plate** Penetration Penetration **Dilatometer** Pressuremeter Shear Test Test Test Test Test coffey

RELEVANCE OF IN-SITU TESTS TO DIFFERENT SOIL TYPES

What about groundwater?

DEFINITION OF POROSITY AND PERMEABILITY

POROSITY:

PERMEABILITY:

with hydraulic gradient = $\Delta h / \Delta l$

POROSITY AND PERMEABILITY OF ROCKS

DEFINITIONS

• **POROSITY**: \(\text{quantity of water, existing in rocks } \) (unit: %) \(\text{= volume of water / volume of rocks} \)

PERMEABILITY: | speed of the water, when pushed by pressure (unit : m/s) | = yield per unit of hydraulic pressure gradient

NUMERIC VALUES FOR VARIOUS TYPES OF ROCKS

TYPE OF ROCKS		POROSITY (%)	PERMEABILITY (m/s)
	gravel	30	10-2
UNCONSOLIDATED (Soft sediments)	sand	25	10-4
•	clay	50	10 - ¹²
CONSIGNATED	massive	1	10 - ¹⁰
sandstone limestone	fissured / fractured	5	10-8
granite , basalt	weathered	15	10 ^{- 6}

NB: These values are only indicative and largely depend on local conditions.

Groundwater impacts can be sudden & dramatic

House collapse over brick sewer

Geotechnical factors must be included in construction risk management systems

Risk = Hazard x Probability of Occurrence (Vulnerability)

Risk cannot be ignored but can be,

managed

minimised

shared

transferred

accepted

"Geophysics is a component of a RISK management system"

risk = hazard

X

probability of occurrence

Geophysical Response = physical property contrast

active volume

x

1/distance (or depth)

x primary field

n = 2 to 5

Geophysical Method	Derived Parameter	General Relationships with other properties
Gravity	Density	Density
Magnetics	Magnetisation	Magnetic iron content, rock type
Electromagnetics	Electrical Conductivity	Salinity, saturation, clay content, porosity
Radar	Dielectric constant	Water content, voids
Resistivity	Electrical Resistivity (1/conductivity)	Salinity, saturation, clay content, porosity
Seismic	Seismic velocity, density	Saturation, strength, density, stiffness

Туре	Material Property	Order of Magnitude Variation
Geotechnical	Stiffness/strength	6
	Permeability	13
	Density	<1
Geophysical	Electrical conductivity	6
	Seismic velocity	1
	Seismic wave attenuation	4
Structural	Made to specification (e.g. steel)	<<1

Geophysical Method	Examples of Geotechnical Application	Examples of Groundwater Application
Gravity	Paleochannels, voids	Volume of saturated sediments
Magnetics	Dykes and sills	Faults & shears
Electromagnetics	Soil classification	Groundwater contamination, salinity mapping, clays
Radar	Pavement condition assessment	Water filled voids
Resistivity	Unstable mass	Groundwater contamination, salinity mapping, clays
Seismic	Bedrock mapping, rippability	Aquifer mapping
Geophysical Logging	Joints, fracture location	Aquifer location, setting well casing

"Nothing yel. ...How about you, Newton?"

Gravity

Density of Natural Materials

Material	Density (gm/cm^3)
Air	~0
Water	1
Sediments	1.7-2.3
Sandstone	2.0-2.6
Shale	2.0-2.7
Limestone	2.5-2.8
Granite	2.5-2.8
Basalts	2.7-3.1
Metamorphic Rocks	2.6-3.0

GRAVITY

$$g = \frac{Gm_1}{r^2}$$

ROCK LEVELS BASED ON GRAVITY INTERPRETATION

MAGNETICS

Internal component of the Earth's magnetic field

External component of the Earth's magnetic field

ROCK MAGNETISATION = INDUCED + REMANENT

0.001

0.1

1.0

Volume percent magnetite v

100

Magnetic properties of rocks

$$\vec{B} = (1+k)\,\mu_0 \vec{H}$$

Magnetic properties of rock depend mainly on the concentration size, shape and dispersion of magnetite

Magnetite content

Magnetic map of fault zone

Resistivity

Ohms Law

$$\mathbf{R} = \mathbf{V}/\mathbf{I}$$

RESISTIVITY (ρ)

$$\rho = \frac{RA}{L}$$
 ohm-metres

where
$$R = \frac{V}{I}$$
 ohms

CONDUCTIVITY (σ)

$$\sigma = \frac{G L}{A}$$
 Siemens/metre

where
$$G = \frac{I}{V}$$
 Siemens

Resistivity (52 m)

ELECTRICAL PROPERTIES OF ROCKS

THE ELECTRIC CURRENT FLOWS INTO THE GROUND
THANKS TO THE IONS OF SALTS DISSOLVED IN THE WATER

TYPE OF POROSITY	TYPE OF WATER	TYPE OF ROCK	
matrix	free	000	sand, gravel
fracture	free	\ <u></u>	limestone, sandstone
adherence	bound		clay

THE RESISTIVITY OF ROCKS DEPEND ON:

- THE WATER CONTENT (Porosity).
- THE RESISTIVITY OF THE WATER
- THE GLAY CONTENT.
- THE CONTENT IN METALLIC MINERALS.

VALUES OF RESISTIVITY OF ROCKS:

0.1	ohm.m	SALTED WATER
1	ohm.m	MASSME SULPHIDE
10	ohm.m	CLAY
100	ohm.m	SAND, MARL
1 000	ohm.m	DRY SAND, LIMESTONE
10 000	ohm.m	HARD GRANITE, BASALT

CONDUCTIVITY AND SALINITY OF WATERS

- CONDUCTIVITY (Siemens) = 1 / resistivity (phm.m)
- USUAL UNIT of conductivity = microS / cm

Conductivity (microS / cm) = 104/ resistivity (ohm.m)

SALINITY (mineralization): Total Dissolved Salt (TDS).

TDS $(mg/I) = 0.7 \times conductivity (microS/cm)$

NUMERIC VALUES FOR VARIOUS TYPES OF WATER:

Type of water	Resistivity ohm.m	Conductivity microS / cm	Salinity mg/)
very fresh	200	50	35
fresh	20	500	350
salted	10	1 000	700
very salted (sea water)	0.3	30 000	21 000

Usual rule for drinkable water: resistivity > 10 ohm.m conductivity < 0.7 g/l

RESISTIVITY AND POROSITY OF ROCKS

Relation between the resistivity of and the parasity for non clayey rocks.

ROCK RESISTIVITY = F x WATER RESISTIVITY

 $F = Formation Factor = a / (porosity)^{8}$

Formation factor

= 25

<u>For example:</u>

Water resistivity = 10 ohmm

Porosity = 20% Formation factor = 25 Rock resistivity = 250 ohm.m

This is very site specific and need to be established for each site

Direct Current (DC) Resistivity

Archie's Law for Porous Media w/o clay

 ρ_e = resistivity of the earth

S = fraction of the pores containing fluid

 ρ_w = the resistivity of the fluid

n, a and m are empirical constants

ELECTRICAL RESISTIVITY IMAGING

Electrical Resistivity Image Section showing repeated crossings of shallow and deep channels

Sands/gravels high resistivity

Schematic of meandering channels

Silts and clays

Lithological & soils mapping with Electrical Resistivity Imaging

APPARENT RESISTIVITY CONTOUR PLAN (n=5)

ELECTROMAGNETICS

Electromagnetic Induction (EMI) Surveys

 Active electromagnetic induction techniques

receiver

data output

Applications

transmitter

Profiling

Sounding

EM-31 EM-34

PLOT OF AVERAGE EM31 MEASUREMENTS

EM31 for salinity & shallow groundwater assessment

EM location of buried objects

EM and Resistivity results should agree

Ground Penetrating Radar

Radar reflection at soil/rock interfaces

$$R = \frac{\sqrt{K_1} - \sqrt{K_2}}{\sqrt{K_1} + \sqrt{K_2}} \qquad \frac{\downarrow \qquad K_1}{K_2}$$

Reflected energy = R x Incident energy

TYPICAL RELATIVE PERMITTIVITY, ELECTRICAL CONDUCTIVITY, VELOCITY AND ATTENUATION OBSERVED IN COMMON GEOLOGIC MATERIALS

	Dielectric Constant	Conductivity	Velocity	Attenuation
MATERIAL	К	(mS/m)	v (m/ns)	⟨ ⟨ dB/m⟩
Air ¹	1	0	0.30	0
Distilled Water	. 80	0.01	0.033	$2x10^{-3}$
Fresh Water	80	0.5	0.033	0.1
Sea Water	80	$3x10^{3}$.01	103
Dry Sand	3-5	0.01	0.15	0.01
Saturated Sand	20-30	0.1-1.0	0.06	0.03-0.3
Limestone	4-8	0.5-2	0.12	0.4-1
Shales	5-15	1-100	0.09	1-100
Silts	5-30	1-100	0.07	1-100
Clays	· · · · · · · · · · · · · · · · · · ·	2-1000	0.06	1-300
Granite	4-6	0.01-1	0.13	0.01-1
Dry Salt	5-6	0.01-1	0.13	0.01-1
Ice	3-4	0.01	0.16	0.01

A GPR field record – screening an area

Location

Application of GPR to Buried Services/Objects

Seismic Wave Propagation

Elastic Materials

$$F = k * \Delta L/L$$
 (Hooke's Law)

k = Young's modulus

Seismic Waves

Body waves

P

C

Surface Waves

Love

"Ground Roll" Rayleigh

$$V_s = \sqrt{\frac{\overline{G}}{\overline{\rho}}}$$

S-Wave

$$V_R = 0.9V_s$$

R-Wave

Table I. COMPRESSIONAL	SEISMIC	WAVE	VELOCITIES	(m/s)
Table I. COMPRESSIONAL	SEISIVIIC	**	4 E E O O I I I E O	VIII 47

VELOCITY	ROCK DESCRIPTION	
200 - 400	Soil, unconsolidated surface deposits	
400 - 1400	Unconsolidated clays, silts, unsaturated sands, gravels.	
1400 - 1800	Saturated sands and gravels; compact clays end silts; completely weathered rocks.	
1800 – 2400	Consolidated sediments , probably water saturated; highly weathered / fractured metamorphic and igneous rocks ; weathered and or jointed sandstones and shales.	
2400-3700	Shale, sandstones; weathered and or sheared metamorphic and igneous rocks and limestones.	
3700 - 4500	Slightly weathered and or fractured igneous rocks. Limestones. Some very hard sandstone and shale.	
4500 -6000	Unweathered metamorphic and igneous rocks. Some limestones and dolomite.	

Material
Parameters
Sands & Silts

Geotechnical Classification	SPT N- value	Friction angle, deg	Relative Density (%)
Very Loose Loose	<4 4 - 10	<30 30 – 32	<15 15 - 35
Medium Dense	10 - 30	32 – 35	35 - 65
Dense	30 - 50	35 – 38	65 - 85
Very dense	>50	>38	85 - 100

ROCKS (lab.)
Unconfined
Compressive
Strength

UCS (MPa)	Geotechnical Classification	P- wave Velocity (km/s)
< 10	Low strength rock	< 2.0
10 to 20	Medium strength rock	2.0 - 2.5
20 to 60	High strength rock; stratified, jointed	2.5 – 3.5
> 60	Very high strength rock; stressed	3.5 - 7.0

P-wave velocity & excavation

D9N Ripper Performance

- · Multi or Single Shank Ripper
- Estimated by Seismic Wave Velocities

Seismic body waves in a uniform half-space

Huygen's Principle

Snell's Law

$$\frac{\sin\phi_1}{Vp_1} = \frac{\sin\phi_2}{Vp_2} = \frac{\sin\phi_3}{Vs_3}$$

Critical Refraction

$$\frac{\sin i_c}{V_1} = \frac{\sin (90^\circ)}{V_2}$$

$$\sin i_c = V_1 \over V_2$$

Reflection & Refraction

24 Channel Seismic Field Record **TRACES 1 THROUGH 24** 100 125 30 50 75 100 DISTANCE FROM SOURCE (feet) REFLECTION REFRACTION

Seismic Refraction

Waves passing from slow to fast medium

DIRECT WAVE
REFRACTED WAVE

Seismic refraction uses critically refracted P-waves Waves

Distance

Figures = Seismic velocities

Seismic Reflection uses reflected waves

Field set-up for shallow seismic reflection

TRACING SHALLOW AQUIFERS WITH SEISMIC REFLECTION

Alluvial sequence, Bangkok

Processed seismic reflection section

Surface Wave Seismic

Multi-channel Analysis of surface Waves (MASW)

Rayleigh (R) wave motion

Counterclockwise elliptical motion at surface

Pure vertical motion at about 1/5 wavelength

Clockwise motion at depth

The MASW Method

Multi-channel Seismograph

Layering effects on

Curface Wayee

Basic Principle of Surface Wave Method

Frequency component Geophones **V**_S 0.05 Time (s) 0.1 0.15 0.2 Dispersion curve **Field** V **Testing Inversion Dispersion** analysis

MASW Sections

Landstreamer acquisition

S - Wave Velocities

Geotechnical Classification	S-Wave Seismic Velocity (m/s)
Very soft soils	<100
Soft soils	100 to 300
Stiff soils	200 to 500
Very Stiff soils	500 to 900
Rock	>900

Combined EM & Seismic Technologies

Seismic Tomographic Imaging from boreholes

MEDICAL IMAGING
WITH COMPUTER
AIDED TOMOGRAPHY
(CAT or CT scanning)

ADVANCED PROCESSING

RECONSTRUCTED CROSS-SECTION

A 3D IMAGE IS CONSTRUCTED FROM A SERIES OF SLICES IN 2D IMAGE PLANES

Single Borehole - Site Uniformity Seismic (SUBS) Test

Seismic raypath section – uniform earth

SUBS

- extends the radius of investigation of borehole
- is calibrated at the borehole with a Vertical Seismic Profile (VSP)

Deploying the borehole seismic array

SEISMIC TOMOGRAPHIC IMAGE SLOPE STABILITY ASSESSMENT

Manly

image

ROOF CONDITIONS BENEATH MANLY PALAEOCHANNE L

Geophysical or Wireline Logging

Stratigraphic correlation and formation parameter determination – different geophysical logs in the same borehole

Quantitative Geophysical Log Analysis – Formation parameter determination

Stratigraphic correlation – the same geophysical logs in different boreholes

Designing Geophysical Survey/ Testing Programs

Functions and Operations Flowchart for Geophysical Surveys

Various Elliptical Targets

	Ellipticity	Description	Common Targets
a b 0.3-	0.1-0.2	Elongate or two- dimensional	Contact, fault, shear, dyke, chan- nel, buried-pipe, tunnel.
	0.3-0.5	Lenticular	Alluvial deposits, caverns, landfill, old mine workings.
	0.6-1.0	Equidimensional	Engineering site, water table, sedi- mentary layers, weathering and bed- rock surface, intru- sive stock.

Ellipticity = b/a

Geophysical profiling of elliptical targets with parallel survey lines

d/a = relative line spacing

Assessing Search Efficiency

C = cost index

$$C = N/P$$

where, N = number of line-km of geophysical data gathered per sq. km of area covered.

> P = probability of detection (0 impossible, 1 certain).

However,

$$N \propto \frac{1}{\underline{d}}$$

where d/a = relative line spacing.

A cost factor (K) may be further defined as,

$$K = \frac{a}{pd}$$

and from this a search efficiency index may be defined,

$$E = \frac{\text{Detection probability}}{\text{Cost Factor}}$$
$$= p^2 d/a$$

Search efficiencies for **detection** of a buried elliptical target of unknown orientation with geophysical profiling

