Lecture #5 Introduction to Network for Earthquake Engineering Simulation Laboratory @ UB

S. Thevanayagam Associate Professor

Department of Civil, Structural and Environmental Engineering State University of New York, Buffalo, NY, USA Workshop, Australia, Dec.14, 2007

NSF NEES

Slide To be Added

UB-NEES Laboratory History

- Founded in 1975 as the "Structural Engineering Laboratory" Enhanced with a strong floor in new building in 1981.
- Upgraded to Earthquake Engineering capabilities in 1983 by adding a 5-DOF shake table.
- Served as the flagship lab for the (National) Multidisciplinary Center for Earthquake Engineering Research - (N)MCEER since 1986
- Upgraded to current size in 2000-2004 by adding the Network for Earthquake Engineering Simulation capabilities
- Currently provides services to:
 - CSEE instructional
 - MCEER / NSF-NYS research
 - NEES / NSF research
 - INDUSTRIES qualification and development related testing

UB - NEES Vision

Develop a *Versatile* National Large-Scale Earthquake Engineering Facility

Combine State of the Art Experimental Equipment, On-Line Experimental Control Methods and a Diverse Staff of Expert Researchers for:

- -The development of the physical infrastructure and capabilities to test full size or large sub-scale structures and components
- -The development of new experimental techniques and approaches to earthquake engineering
- -The development of new earthquake resistant design concepts and systems
- -The development of new analytical and computational methods (supported by experimental data)
- -The development of network-based collaborative research activities and data sharing

Ketter Hall Expansion

- 13,000sq,ft.
 - -600 sq.ft. for control and server rooms
 - -800 sq. ft. of elevated observation space
 - -1,500 sq. ft. of renovated space
- 3,400 sq.ft. strong floor
- 1,800 sq. ft. reaction wall
- 115 ft. long shake table trench

40-ton overhead crane

Ketter Hall Expansion

- 13,000sq,ft.expansion
 - -600 sq.ft. for control and server rooms
 - -800 sq. ft. of elevated observation space
 - -1,500 sq. ft. of renovated space
- 3,400 sq.ft. strong floor
- 1,800 sq. ft. reaction wall
- 115 ft. long shake table trench
- 40-ton overhead crane

Relocatable Shake Tables

• Two 6-DOF Shake Tables (3.6x3.6m)

- -Conventional Control Techniques
- -MTS Adaptive Control Techniques

Relocatable Shake Tables

Two 6-DOF Shake Tables (3.6x3.6m)

Relocatable Shake Tables

Large Dynamic and Static Actuators and Controllers

- 3 x 100 tons Dynamic Actuators (0-100Hz)
- 2 x 200 tons Static Actuators
- Flex-Test Controllers and Software
- STS Controller (MTS469) Custom Made

Hydraulic Supply and Distribution

<u>System</u>

 4 x 900HP Hydraulic Pumps Operating at 3000psi (Space for a 5th Pump)

 Integrated Accumulators and Distribution System

1600 gpm System Flow Capacity

2-D Large Scale Geotechnical Laminar Box

- Modular Multilayer-Laminate-Bearing Design; 5.0x2.75x6.2m (85 cubic meter maximum capacity)
- Simulate 2-D Ground Response for Soil-Foundation-Structure Interaction Studies at or Near Full Scale
- 1-g Geotechnical Studies (Compliment Centrifuge)

2-D Large Scale Geotechnical Laminar Box

Other Complementary Facilities Centrifuge at RPI & UC Davis

Fig. I-4. RPI-NEES: RPI 150g-ton geotechnical centrifuge

GEOTECHNICAL RESEARCH

Some New Possibilities are

- Verify and develop design approaches
- Investigate lateral spreading effects on piles
- Investigate lateral spreading effects on pile group
- Validate applicability of centrifuge test results
- Understand the mechanisms and involved physics
- Develop correct scaling laws
- Explore superstructure effects
- Validate remediation techniques
- Investigate effects of Quay-wall/Abutment movement on pile foundations

Soil-Structure Interaction

- Determine the influence of bi-axial, soil-structure interaction on bridge response using one, or more, large laminar soil boxes on a very large shake table at full scale and on a set of tables at near-full-scale.
- Superstructure inertia effects could be modeled either by a full-scale bridge superstructure spanning two or more boxes.
- Superstructure inertia effects could be modeled by using hybrid testing techniques and actuators applied to the column cap to simulate superstructure inertia loads.
- Use one or more centrifuges for component validation work. Both piled-foundation and abutment back-wall interaction studies should be undertaken. This work should also be supplemented by soil-pile interaction studies on single piles and pile groups in both stiff and soft soils using a full-scale soil pit and biaxial actuators at the pile cap.

Liquefaction

- Determination of the magnitude and effect of liquefaction-induced forces and displacements on piled foundations at full-, or near full-, scale using a large laminar soil box.
- Verify Experimental Results using near-full scale using laminar boxes
- Study Scale effects by conducting parallel experiments using one or more centrifuges.
- Understand the mechanism and physics of lateral spreads, and scale effects. Develop correct scaling laws.
- Once calibrated, a range of foundation configurations could be studied using multiple centrifuge experiments

Validate Ground Remediation

 Payload projects on the above experiments by introducing ground improvement – Study before-and-after response of the system in the respective experiments.

New testing capabilities

- Effective Force Method
- Pseudo-dynamic testing
- Real 7 ime Dynamic Hybrid Testing (new developement)

Real-Time Dynamic Hybrid Testing (RTDHT)

- Integrated Use of Shake Tables, Actuators, Reaction Wall, Strong Floor and Computational Resources (Unique to UB)
- Inertia Effects in the Physical Model-Different from Real-Time Pseudo Dynamic Testing
- Force-Based Substructure and Actuators in Force Control Necessitated by the Above
- Parallel computer built for this type of testing technique

Typical Applications of RTDHT

 Building and Cable Stayed Bridge Segments With RTDHT Using Two Shake Tables, the Reaction Wall and Large Actuators

Typical Applications of RTDHT

 Cable Stayed Bridge Segments With RTDHT Using Two Shake Tables, the Reaction Wall and Large Actuators

Telepresence and Collaboration Rooms

- Ketter 140 and 133A have undergone renovation establishing new telepresence and collaboration rooms
- The telepresence room was completed January 2004 and provides for:
 - Video Conferencing
 - Audio and Video Streaming
 - Data Streaming
 - Data Visualization
- Collaboration Room for Visiting Researchers

UB-IT Infrastructure for Networking, Data Acquisition and Telepresence

Collaboration Projects

- 6-span bridge model
 - Span and one column are numerical models
 - Other 4 columns are experimental models

Funding for the Development of the New UB-NEES Facility

 The Development of the New UB-NEES Facility Was Supported Through Collaborative Sources of Funding

 The National Science Foundation Under Awards: 	
• CMS-0086611	(\$4.6M)
 CMS-0086612 including the LAN Supplement 	(\$6.6M)
- The State University of Construction Fund	(\$6.0M)
- The UB-School of Engineering	(\$3.2M)
- The Department CSEE	(>\$0.8M)

Total Investment:

~\$21.2M

Opening Ceremonies September 26, 2004

"Night Life at UB"

Questions?

