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Grain Size Ranges & Suitability of Improvement Methods

Mitchell (1981)
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Dynamic Compaction

Simple and economical.
Pounder (5 to 35 Mg).

Falling Height (10 to 40 m).

W/O Wick Drains
(For Sand Deposits with Little or No Fines)
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Advantages:
Simple and Economical.
Suitable for sands. 

Disadvantages:
Limited Influence Depth. 
Site Disturbance.
Limitations in silty sands.

DC Equipment

Dynamic Compaction
Impact using falling heavy weights to 
densify soils at depth.
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Soil Types & Dynamic Compaction

Zone 1: Most favorable.
Zone 2: Only if excess pore pressures dissipate. 
Zone 3: Not recommended.
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Dynamic Compaction Applications

• Densify Soils
• Reduce foundation settlements 
• Reduce seismic subsidence 
• Permit construction on fills 
• Densify garbage dumps 
• Improve mine spoils 
• Induce settlements in collapsible soils
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Densification Mechanism & Modeling

Densification:
High-induced intergranular 
stresses by shockwave.

Simulation:
1-D column model 
(drained)

• Dry soils.
• Free-draining saturated sands.
• Saturated silty soils. (No)
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Densification Mechanism in 

Saturated Sands

Densification:
Liquefaction & Dissipation of pore 
pressures and associated 
densification.
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Parameters 
Affecting Densification by D.C.

Site Specific Conditions

Hydraulic conductivity k
and fines content FC.

Pre-compaction density 
pre-Dr.
Layering, etc.

D.C. Operational 
Parameters

Energy per impact.
No. of impacts.
Time cycle between 
impacts.
Impact grid pattern.
Impact print spacing.
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Impact DC Grid Pattern

Primary pass
Secondary pass
Tertiary pass
Wick drain
Drain influence zone

Typically involves
• Weights of 10 to 30 tons 
• Drop heights of 50 to 100 

ft 
• Impact grids of 7 x 7 ft to 

20 x 20 ft 
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Important Factors

• Effective Depth -- Maximum depth of 
ground improvement

• Zone of Major Densification -- About upper 
2/3 of effective depth

• Energy Level -- Energy per blow (weight 
times drop height)

• Energy Intensity Factor -- Involves energy 
level, spacing, and number of blows
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Soil Types, Energy Levels & 
Degree of Improvement
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Important  Design Steps

• Perform site investigation
• Develop settlement influence diagrams
• Develop initial Dynamic Compaction 

program
• Develop numerical performance prediction
• Develop QA/QC plans
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Current Design Practice - Empirical

WHnd =max
Soil Type Degree of Saturation Recommended n value*

High 0.5

Low 0.5 to 0.6

High 0.35 to 0.4

Low 0.4 to 0.5

High Not recommended

Low
0.35 to 0.4

Soils should be at water content less 
than the plastic limit

Impervious soil deposits –Primarily 
clayey soils with plasticity index > 8

Semi-pervious soil deposits –
Primarily silts with plasticity index < 

8

Pervious soil deposits – Granular soil

(FHWA 1995)*Cumulative energy 1~ 3 MJ/m2

Use Past experience. Use Field trials for design. 
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2
max

IN WHPE
S d

=

Type of deposit Applied Energy (E)  
(K J/m3) 

Percent 
Standard 

Proctor Energy 

Pervious coarse grained soils 200 to 250 33 to 41 

Semipervious fine grained soils 
and clay fills above the water table 250 to 350 41 to 60 

Landfills 600 to 1100 100 to 180 

 * Standard Proctor energy equals 600 KJ/m3

Applied energy guidelines
(FHWA 1995)

Current Design Practice – Typical Energy Intensity
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Depth of Improvement
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Important Dynamic Compaction 

Construction Conditions

• Minimum 100-150 ft clearance from any 
structure 

• Review site for vibration sensitivity 
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Construction Vibration Control
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Dynamic Compaction Quality 

Control

• Crater depths (map) 
• Surface elevation monitoring 
• Decrease in depth of weight penetration with 

successive drops 
• Pore pressures 
• Geophysical monitoring 
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Dynamic Compaction 
Acceptance Testing

• Large-Scale Load Test (where CPT & SPT 
are unreliable i.e. construction rubble and 
cobbles) 

• Standard Penetration Test (SPT) 
• Cone Penetrometer Test (CPT) 
• Pressuremeter Test (PMT) 
• Dilatometer Test (DMT) 
• Shear-Wave Velocity Profile
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Limitations of DC - in Silty Soils

Limited Densification
– Rapid increase in pore pressure
– Very Slow Dissipation
– Limiting Energy transmitted into the soil
– Little densification
Solution
– Enhance Drainage during Installation using wicks
– Increase Energy transmitted to cause soil liquefaction
– Increased/Repeated Densification
– Increase Resistance to Liquefaction
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Recent Advances

DC with Wick Drains
(For Non-Plastic Silty Deposits)

Supplementary Wick Drains
– Enhance densification during compaction in Silty Soils
– Design is Empirical

Wicks
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Recent Research @UB – (R. Nashed)

Develop numerical model to simulate and analyze soil 
densification during DC processes.

Identify parameters controlling post-improvement soil density.

Verify the model by comparing with field data

Develop design guidelines for densification of silty soils.
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Energy-Based Liquefaction Mitigation Design

Σ EDen

En
er

gy
 p

er
 u

ni
t v

ol
um

e 
of

 so
il 

(J
/m3 )

(EL)pre-Den

(EL)post-Den
EEQ

E
qu

iv
al

en
t V

oi
d 

R
at

io

R
es

is
ta

nc
e 

to
 L

iq
ue

fa
ct

io
n

D
en

si
ty

Level of Treatment

Improvement due to
recurrent liquefaction

& densification

Min. design 
improvement

Demand

Liquefaction No Liquefaction

Capaci
ty



____________________________________
DC Densification Process

Seismic waves induced
due to surface impact 

Energy dissipation & pore 
pressure generation

Pore pressure dissipation 

Densification & increase in
liquefaction resistance 

P & S-Waves

R-Waves

1
ru

Density
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Vibratory Energy 
Radiation &  Attenuation Relations
Dissipation & Pore  Pressure Generation

Pore Pressure Dissipation
Soil Densification

Dynamic Compaction
Numerical Simulations
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METHODS

An analytical technique was developed to simulate the 
process based on:

Mechanics of energy dissipation in soil due to surface impact.

Attenuation relationships to estimate the energy dissipated in the soil.

Experimental data based on energy principles to estimate generated 
pore pressures.

Coupled consolidation equations to quantify densification.
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Governing Equations

where, 
• u = pore pressure
• t = time
• Cr & Cv = radial and vertical coefficients of consolidation, respectively
• r = radial distance
• ug = pore pressure generated due to surface impact
• γw = unit weight of water
• εv = Volumetric Strain
• mv = Volume Compressibility (stress and density dependent)

∫= '. σε dmvv

2 2

2 2

1 g
r v

udu u u uC C
dt r r tr z

∂⎛ ⎞∂ ∂ ∂
= + + +⎜ ⎟∂ ∂∂ ∂⎝ ⎠
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Rayleigh wave: 67%
Body wave: 33%

Partition of Energy
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Energy Dissipated/ unit volume 

Due to Impact
Rayleigh wave:
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Rayleigh Wave 

Attenuation With Depth
Amplitude at depth z
Amplitude at surface
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w: energy loss per unit volume of soil
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Material Damping Attenuation 

Coefficient
α (m-1)

Class
5 Hz 50 Hz

I 0.01 –0.03 0.1 – 0.3 Weak or soft soils (N < 5)

II 0.003 - 0.01 0.03 – 0.1 Competent soils (5 < N < 15)

III 0.0003 – 0.003 0.003 – 0.03 Hard soils (15 < N < 50)

IV < 0.0003 < 0.003 Hard, competent rock (N > 50)

Soil

Field measurements of ground vibrations induced by
dynamic compaction, ball dropping, and vibroflotation.



____________________________________Energy-Based Liquefaction Model
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Energy Dissipation – Pore pressure 

relationship

100.5 log 100 , 0.05c c
u

L L

w wr
w w

⎛ ⎞
= 〉⎜ ⎟

⎝ ⎠
Pore pressure Dissipation

Densification
∫= '. σε dmvv

(Thevanayagam et al. 2002)
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Yes 

No 

New Impact 
Calculate energy delivered to ground surface 

 
 

Partition of energy 
 
 

Evaluate the energy dissipated 
per unit volume of soil 

 
 

Evaluate the induced pore pressure 
taking into account the already existing 

pore pressure 
 
 

Dissipation of pore pressure throughout 
time cycle between impacts/passes 

 
 

Evaluate the resulting densification 
 
 

Update soil properties 
 
 
 

                                             Improvement                        Additional
                                             Satisfactory ?                          Impact 

 
 
 

END 

Modeling DC Processes
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Impact Parameters 1st

pass
2nd

Pass
Pounder weight (tonne) 15.0 15.0

Drop height (m) 20.0 25.0

No. of impacts at each grid point 10 6

Kampung Pakar Site, Malaysia (Sand w/o wick drains)
Field Comparisons – Sand

Ground level

Water table

Loose to medium sands

Loose sands

Silty clays

Limestone

10.0

3.0

15.0

12.0
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Field Comparisons – Sandy Silt

Steinaker Dam Project, Utah (Sandy silt w/ wick drains)

Impact Parameters Initial
ironing

1st

pass
2nd

pass
3rd

pass
Pounder weight (tonne) 30.0 30.0 30.0 30.0

Drop height (m) 18.0 30.0 30.0 30.0

No. of impacts at each grid 
point 2 30 30 20

Compaction pad

Lowered water table

Sandy silt 45% fines

Clays

Bedrock

11.0

3.7

13.0

1.5

7.6 m

Primary phase
Secondary phase

Tertiary phase
Testing location
Wick drain

7.
6  

m
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The parameters controlling post-improvement 
density have been identified:

I. Site-Specific Conditions:
Pre-improvement relative density or (N1)60cs.
Hydraulic conductivity k and silt content FC.

II. DC Operational Parameters:
Energy per impact WH.
Total number of impacts per grid point NI.
Wick drain spacing Sw.
Impact grid spacing S.

Time cycle between impacts T.
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Effects of Fines & Drain Spacing

Effect of Fines 
(drain S=1.5m)

Effect of Drain spacing S 
& Impact Time  Lag T; (k=10-7 m/s)
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Design Charts and Design Guidelines

T=2 min, Sw=1.5 m
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S
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  C h o o se  ch a rts  se t fo r  d ep o s it k  &  p re -(N 1)6 0 c s 

S ta rt w ith  tr ia l  p a ram e te rs : 
S  =  1 5 .0  m , S w  = 1 .5  m , N I =  8  &  T  =  2  m in  
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Design Example
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PWP After Impact PWP Before Next Impact Relative Density

Density & 
PorePressure

Changes around a 
wick drain During 

Dynamic Compaction
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Conclusions

Current practice of design DC applications relies 
mainly on field pilot tests, past experience, and 
empirical equations based on field observations. No 
analytical procedure available to analyze the problem.
A computational simulation model is presented for 
simulation of DC processes in saturated sand and non-
plastic silty deposits.
The simulation model is based on energy principals 
governing liquefaction resistance and coupled 
consolidation equations.
The model has been verified through comparison with 
well-documented case histories in both sand and silty 
soil deposits and found to perform reasonably well.
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Conclusions

The effects of site-specific conditions and field    
operational parameters on the achievable densification 
have been studied.

Design guidelines for liquefaction mitigation of non-
plastic silty soils using DC combined with wick drains 
have been presented.

The recommended guidelines are expected to advance 
the use of DC to mitigate liquefaction potential in non-
plastic silty soils, and reduce the reliance on expensive 
field trials.
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THANK YOU

Questions…
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