

Lecture #4a

Ground Improvement Techniques for Soil Liquefaction of Sands & Silty Sands

- Deep Dynamic Compaction

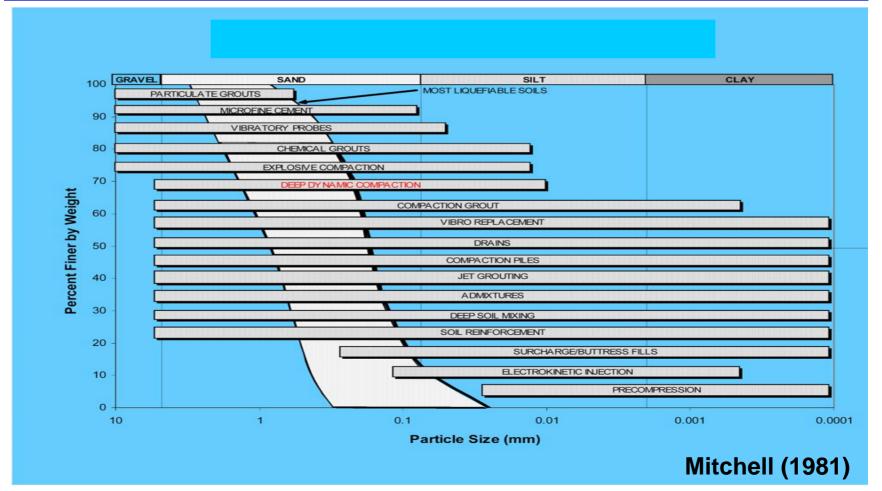
S. Thevanayagam

Associate Professor

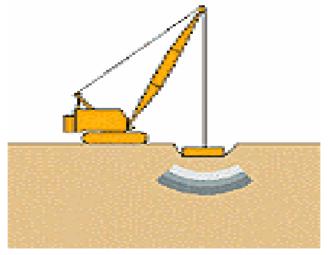
Department of Civil Structural & Environmental Engineering
Director of Education, MCEER
University at Buffalo, NY, USA
Acknowledgments: T. Shenthan, R. Nashed; MCEER, FHWA

Workshop on Earthquakes and Soil Liquefaction, Griffith University, Australia, December 14, 2007 Organized by Prof. A. Balasubramaniam

Outline of Presentation


- Background
- Recent Advances
- Current Design Practice
- Objectives
- DC Simulation Model
- Field Comparisons
- Design Guidelines
- Design Example
- Conclusions

Grain Size Ranges & Suitability of Improvement Methods



Dynamic Compaction

- Simple and economical.
- Pounder (5 to 35 Mg).
- Falling Height (10 to 40 m).

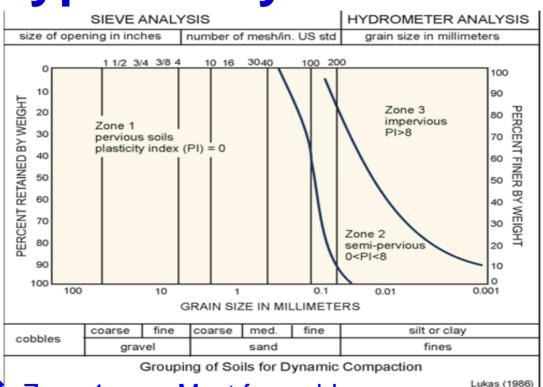
W/O Wick Drains

(For Sand Deposits with Little or No Fines)

Dynamic Compaction

Impact using falling heavy weights to densify soils at depth.

- Advantages: Simple and Economical. Suitable for sands.
- Disadvantages: Limited Influence Depth. Site Disturbance. Limitations in silty sands.


DC Equipment

Soil Types & Dynamic Compaction

Zone 1: Most favorable.

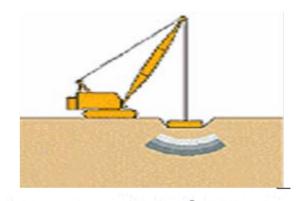
Zone 2: Only if excess pore pressures dissipate.

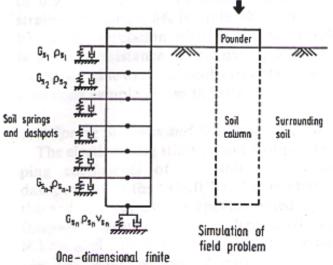
❖ Zone 3: Not recommended.

Dynamic Compaction Applications

- Densify Soils
- Reduce foundation settlements
- Reduce seismic subsidence
- Permit construction on fills
- Densify garbage dumps
- Improve mine spoils
- Induce settlements in collapsible soils

Densification Mechanism & Modeling


Densification:

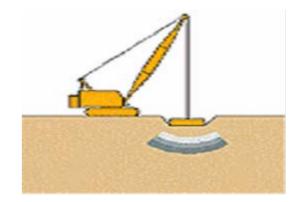

High-induced intergranular stresses by shockwave.

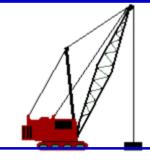
❖ <u>Simulation:</u>

1-D column model (drained)

- Dry soils.
- Free-draining saturated sands.
- Saturated silty soils. (No)

element model




Densification Mechanism in Saturated Sands

Densification:

Liquefaction & Dissipation of pore pressures and associated densification.

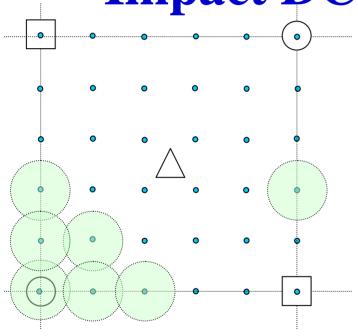
Parameters Affecting Densification by D.C.

Site Specific Conditions

- \clubsuit Hydraulic conductivity k and fines content FC.
- ❖ Pre-compaction density pre-Dr.
- Layering, etc.

D.C. Operational

Parameters


- Energy per impact.
- No. of impacts.
- Time cycle between impacts.
- * Impact grid pattern.
- Impact print spacing.

Impact DC Grid Pattern

- Primary pass
- Secondary pass
- △ Tertiary pass
- Wick drain
- Drain influence zone

Typically involves

- Weights of 10 to 30 tons
- Drop heights of 50 to 100 ft
- Impact grids of 7 x 7 ft to 20 x 20 ft

Important Factors

- Effective Depth -- Maximum depth of ground improvement
- Zone of Major Densification -- About upper 2/3 of effective depth
- Energy Level -- Energy per blow (weight times drop height)
- Energy Intensity Factor -- Involves energy level, spacing, and number of blows

Soil Types, Energy Levels & Degree of Improvement

Type of Deposit	Applied Energy Normally Used	Improvement Expected
Pervious coarse grained soil Zone 1 Semi-pervious fine grained soil Zone 2 Zone 3 Landfills	20-25 txm/m³ 25-35 txm/m³ Not Applicable 60-110 txm/m³	Excellent Moderate to Good Not applicable Excellent

Note: Standard Proctor energy equals 60.5 txm/m3; 1 txm/m3 = .10255 ton-ft/ft32

Important Design Steps

- Perform site investigation
- Develop settlement influence diagrams
- Develop initial Dynamic Compaction program
- Develop numerical performance prediction
- Develop QA/QC plans

Current Design Practice - Empirical

$$d_{\text{max}} = n\sqrt{WH}$$

Soil Type	Degree of Saturation	Recommended n value*
	High	0.5
Pervious soil deposits – Granular soil	Low	0.5 to 0.6
Semi-pervious soil deposits – Primarily silts with plasticity index < 8	High	0.35 to 0.4
	Low	0.4 to 0.5
Impervious soil deposits –Primarily clayey soils with plasticity index > 8	High	Not recommended
	Low	0.35 to 0.4 Soils should be at water content less than the plastic limit

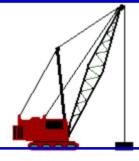
^{*}Cumulative energy 1~ 3 MJ/m²

(FHWA 1995)

Use Past experience.
Use Field trials for design.

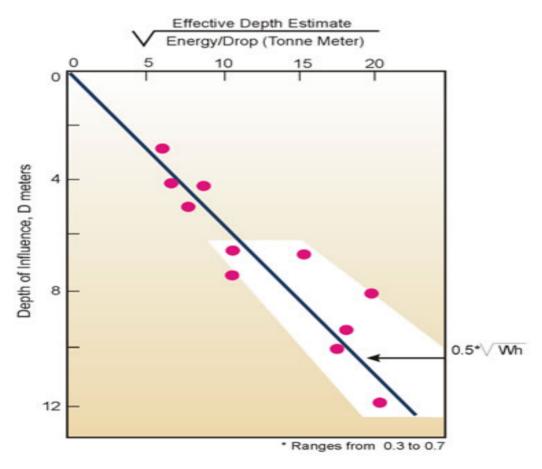
Current Design Practice - Typical Energy Intensity

$$E = \frac{N_I W H P}{S^2 d_{\text{max}}}$$


Type of deposit	Applied Energy (E) (K J/m³)	Percent Standard Proctor Energy
Pervious coarse grained soils	200 to 250	33 to 41
Semipervious fine grained soils and clay fills above the water table	250 to 350	41 to 60
Landfills	600 to 1100	100 to 180

^{*} Standard Proctor energy equals 600 KJ/m³

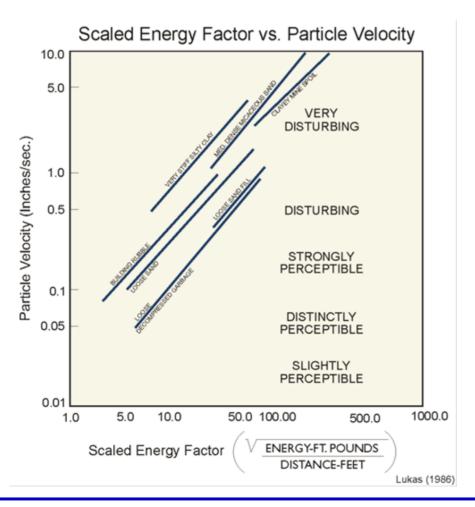
(FHWA 1995)


Applied energy guidelines



Depth of Improvement

Important Dynamic Compaction Construction Conditions


- Minimum 100-150 ft clearance from any structure
- Review site for vibration sensitivity

Construction Vibration Control

Dynamic Compaction Quality Control

- Crater depths (map)
- Surface elevation monitoring
- Decrease in depth of weight penetration with successive drops
- Pore pressures
- Geophysical monitoring

Dynamic Compaction Acceptance Testing

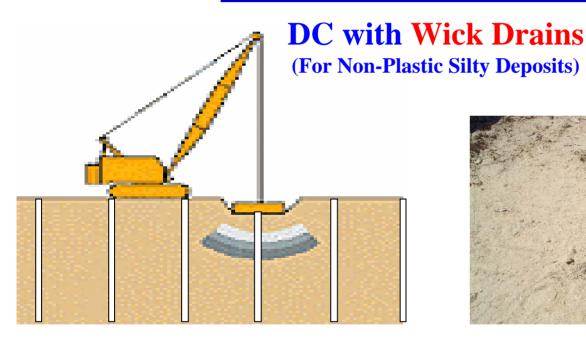
- Large-Scale Load Test (where CPT & SPT are unreliable i.e. construction rubble and cobbles)
- Standard Penetration Test (SPT)
- Cone Penetrometer Test (CPT)
- Pressuremeter Test (PMT)
- Dilatometer Test (DMT)
- Shear-Wave Velocity Profile

Limitations of DC - in Silty Soils

Limited Densification

- Rapid increase in pore pressure
- Very Slow Dissipation
- Limiting Energy transmitted into the soil
- Little densification

Solution

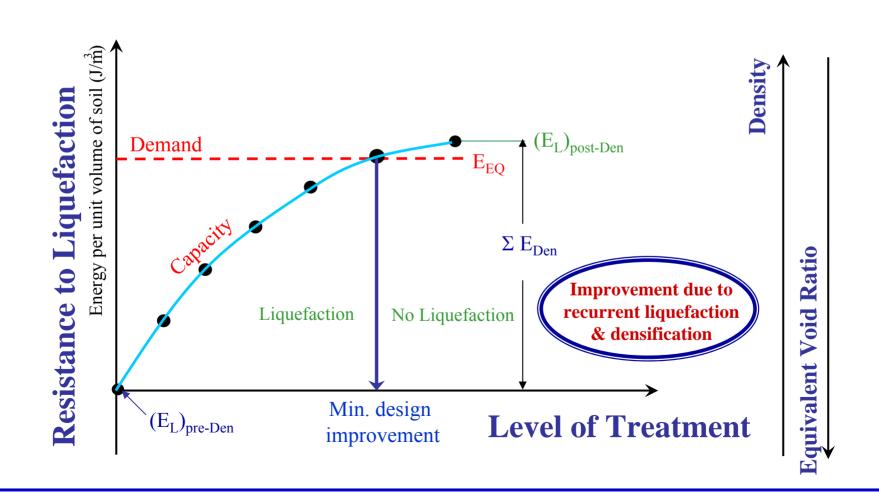

- Enhance Drainage during Installation using wicks
- Increase Energy transmitted to cause soil liquefaction
- Increased/Repeated Densification
- Increase Resistance to Liquefaction

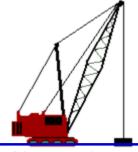
Recent Advances

Supplementary Wick Drains

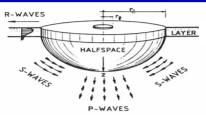
- Enhance densification during compaction in <u>Silty Soils</u>
- Design is Empirical

Recent Research @UB - (R. Nashed)

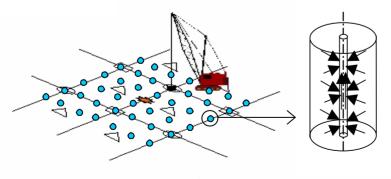

- Develop numerical model to simulate and analyze soil densification during DC processes.
- ❖ Identify parameters controlling post-improvement soil density.
- Verify the model by comparing with field data
- Develop design guidelines for densification of silty soils.



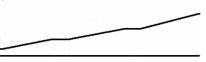
Energy-Based Liquefaction Mitigation Design



DC Densification Process



Seismic waves induced due to surface impact


Energy dissipation & pore pressure generation

Pore pressure dissipation

Density

Densification & increase in liquefaction resistance

Dynamic Compaction Numerical Simulations

- Vibratory Energy
 - Radiation & Attenuation Relations
 - Dissipation & Pore Pressure Generation
- Pore Pressure Dissipation
- Soil Densification

<u>METHODS</u>

An analytical technique was developed to simulate the process based on:

- Mechanics of energy dissipation in soil due to surface impact.
- ❖ Attenuation relationships to estimate the energy dissipated in the soil.
- Experimental data based on energy principles to estimate generated pore pressures.
- Coupled consolidation equations to quantify densification.

Governing Equations

$$\frac{du}{dt} = C_r \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right) + C_v \frac{\partial^2 u}{\partial z^2} + \frac{\partial u_g}{\partial t}$$

$$\varepsilon_{v} = \int m_{v}.d\sigma'$$

where,

• u = pore pressure

• t = time

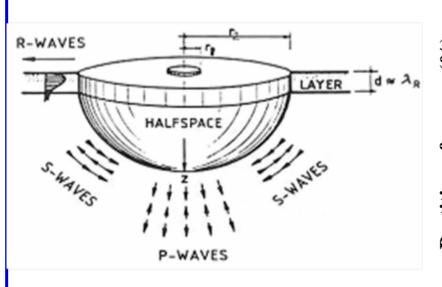
• $C_r \& C_v$ = radial and vertical coefficients of consolidation, respectively

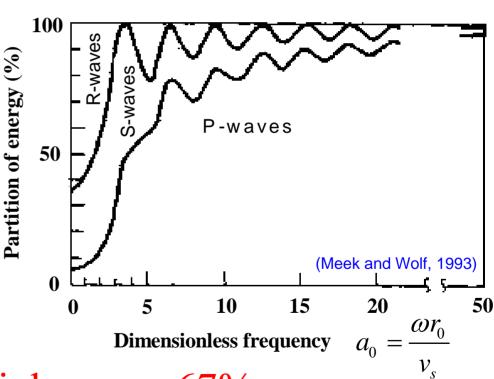
• r = radial distance

• u_g = pore pressure generated due to surface impact

• $\gamma_{\rm w}$ = unit weight of water

• ε_{v} = Volumetric Strain


• m_v = Volume Compressibility (stress and density dependent)



Partition of Energy

* Rayleigh wave: 67%

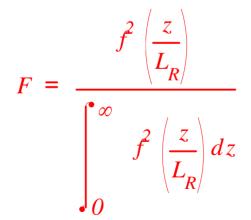
❖ Body wave: 33%

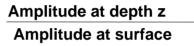
Energy Dissipated/ unit volume Due to Impact

* Rayleigh wave:

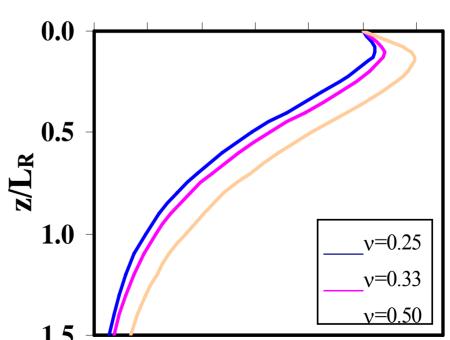
$$w_R(r,z) = F(0.67WH) \frac{\alpha e^{-2\alpha r}}{\pi r}$$
Impact zone

Wave front

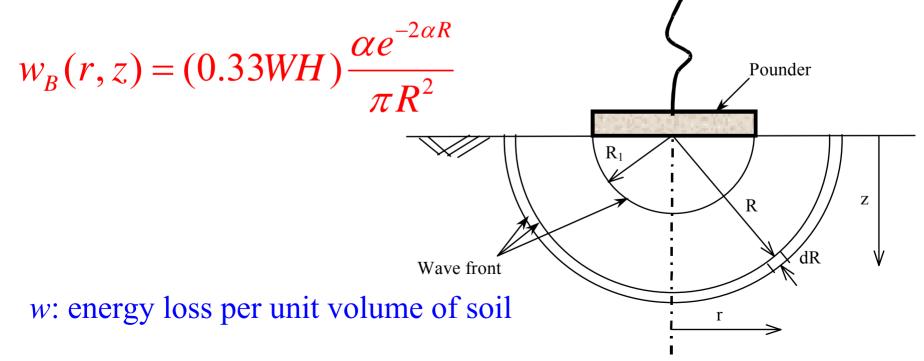




Rayleigh Wave Attenuation With Depth

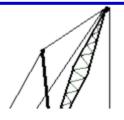

$$w_R(r,z) = F(0.67WH) \frac{\alpha e^{-2\alpha r}}{\pi r}$$

w: energy loss per unit volume of soil



Energy Dissipated/ unit volume Due to Impact

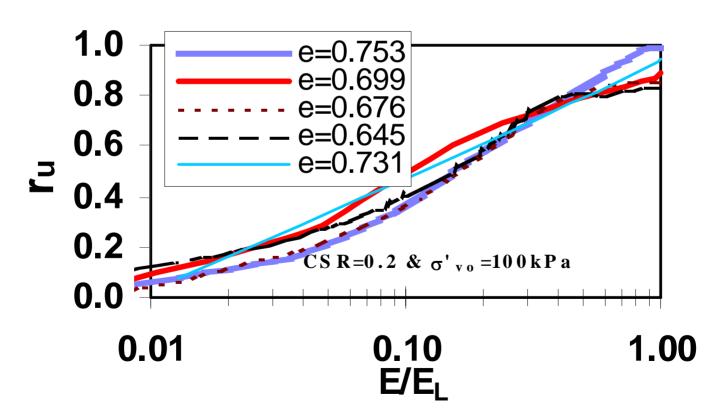
❖ Body wave:



Material Damping Attenuation Coefficient

α (m ⁻¹)		Soil	
Class	5 Hz	50 Hz	
I	0.01 -0.03	0.1 - 0.3	Weak or soft soils (N < 5)
II	0.003 - 0.01	0.03 - 0.1	Competent soils (5 < N < 15)
III	0.0003 - 0.003	0.003 - 0.03	Hard soils (15 < N < 50)
IV	< 0.0003	< 0.003	Hard, competent rock (N > 50)

❖ Field measurements of ground vibrations induced by dynamic compaction, ball dropping, and vibroflotation.



Energy-Based Liquefaction Model

$$\mathbf{r}_{\mathbf{u}} = 0.5 \mathbf{Log}_{10} (100 \mathbf{E} / \mathbf{E}_{\mathbf{L}})$$

Energy Dissipation – Pore pressure relationship

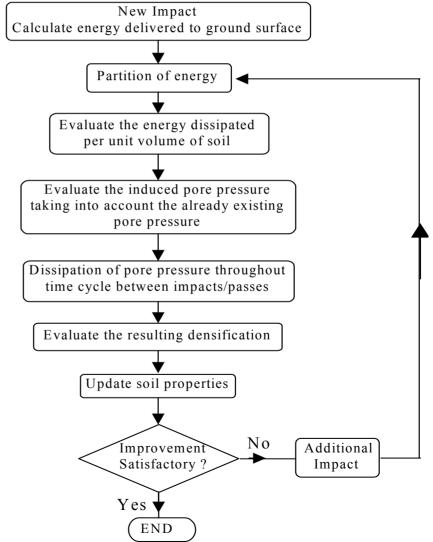
$$r_u = 0.5 \log_{10} \left(100 \frac{w_c}{w_L} \right), \quad \frac{w_c}{w_L} \rangle 0.05$$
 (Thevanayagam et al. 2002)

Pore pressure Dissipation

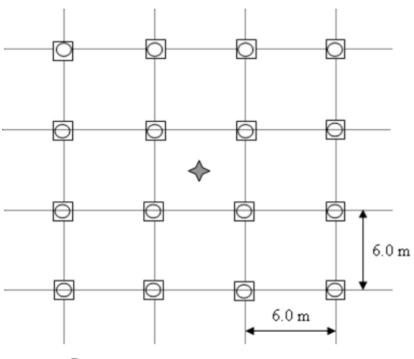
$$\frac{du}{dt} = C_r \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right) + C_v \frac{\partial^2 u}{\partial z^2} + \frac{\partial u_g}{\partial t}$$

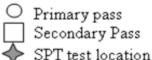
Densification

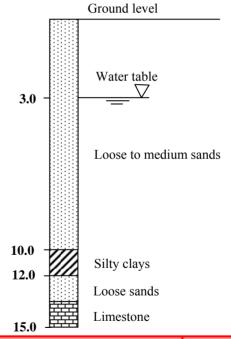
$$\varepsilon_{v} = \int m_{v}.d\sigma'$$



Modeling DC Processes



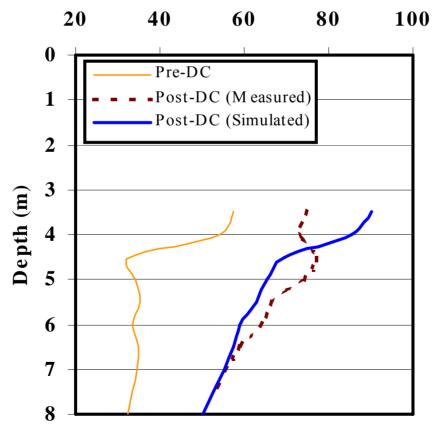


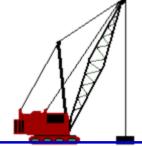

University at BuffaloThe State University of New York

Field Comparisons - Sand

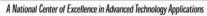
Kampung Pakar Site, Malaysia (Sand w/o wick drains)

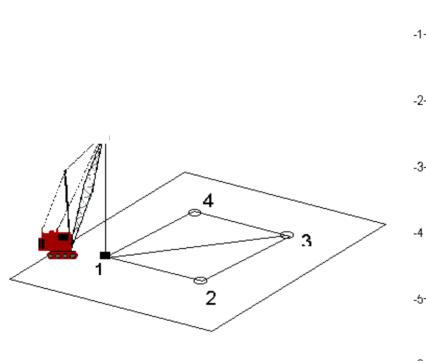
Impact Parameters	1 st pass	2 nd Pass	
Pounder weight (tonne)	15.0	15.0	
Drop height (m)	20.0	25.0	
No. of impacts at each grid point	10	6	

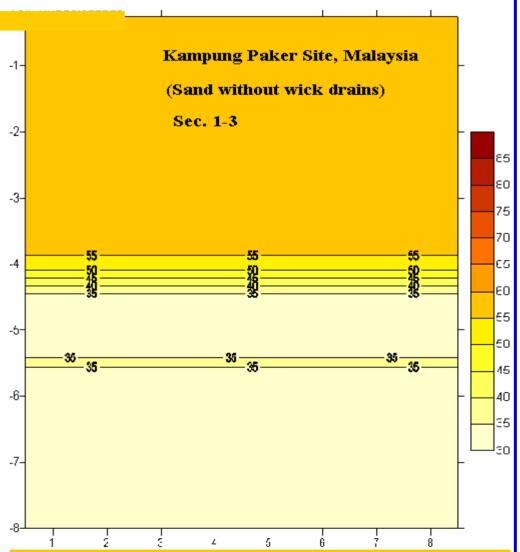


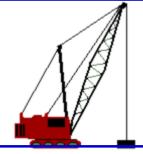

Field Comparisons - Sand

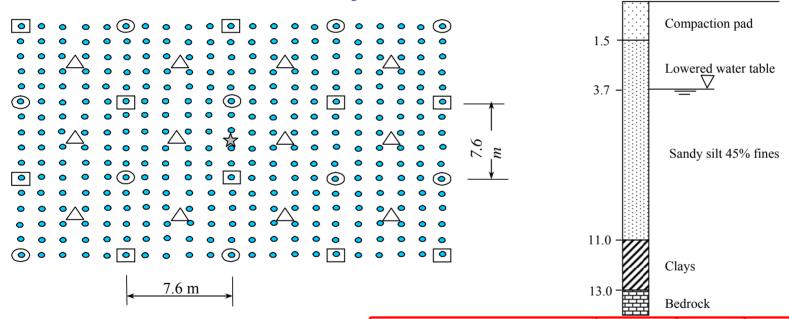
Kampung Pakar Site, Malaysia (Sand w/o wick drains)


Relative density, D_r (%)









University at BuffaloThe State University of New York

Field Comparisons - Sandy Silt

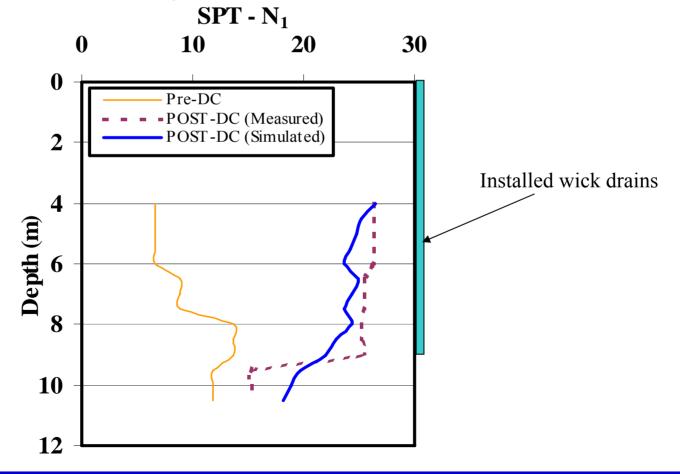
Steinaker Dam Project, Utah (Sandy silt w/ wick drains)

$\overline{}$	
\bigcirc	Primary phase
	Secondary phase

△ Tertiary phase

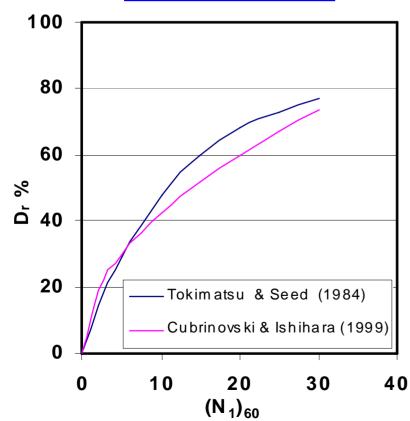
Testing location
Wick drain

Impact Parameters	Initial ironing	1 st pass	2 nd pass	3 rd pass
Pounder weight (tonne)	30.0	30.0	30.0	30.0
Drop height (m)	18.0	30.0	30.0	30.0
No. of impacts at each grid point	2	30	30	20



Field Comparisons - Sandy Silt

Steinaker Dam Project, Utah (Sandy silt w/ wick drains)



Relative Density Verses (N₁)₆₀

For Clean Sands

For Silty Sands

Equivalent clean sand blow count is used (NCEER 1997)

$$(N_1)_{60cs} = A + B(N_1)_{60}$$

$$A = 0.0, B = 1.0$$

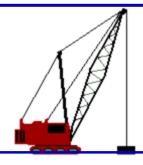
for
$$FC \le 5\%$$

$$A = 5.0$$
. $B = 1.2$

$$A = e^{\left[1.76 - \left(\frac{190}{FC^2}\right)\right]}$$

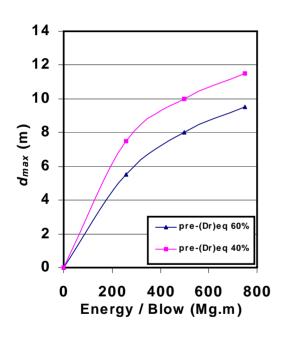
$$B = \left[0.99 + \left(\frac{FC^{1.5}}{1000} \right) \right]$$

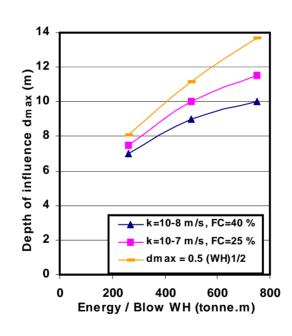
The parameters controlling post-improvement density have been identified:

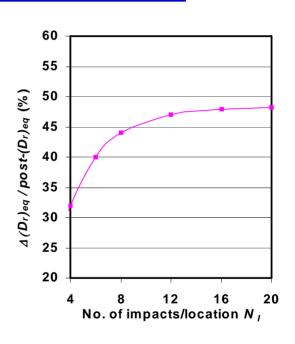

I. Site-Specific Conditions:

- Pre-improvement relative density or $(N_1)_{60cs}$.
- Hydraulic conductivity k and silt content FC.

II. DC Operational Parameters:


- Energy per impact WH.
- \bullet Total number of impacts per grid point N_{r} .
- \diamond Wick drain spacing S_{w} .
- Impact grid spacing S.
- ❖ Time cycle between impacts T.

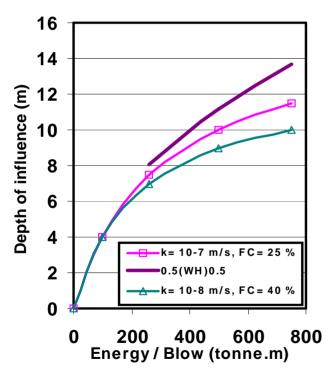


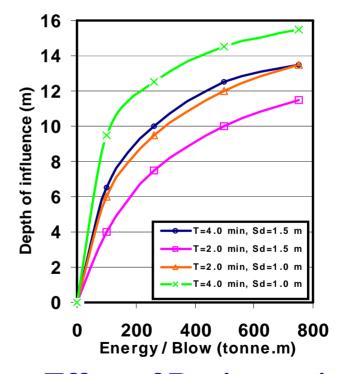


Numerical Simulations and Parametric Study

Effect of pre-(D_r)_{eq}

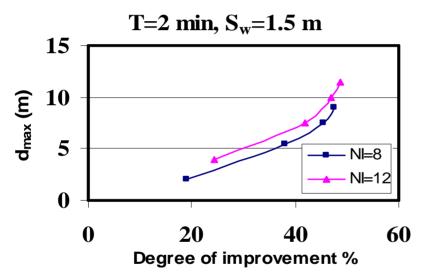
Effect of Hydraulic Conductivity (k) and Fines Content (FC)

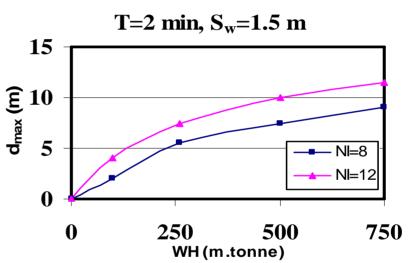

Effect of Number of Impacts N_I



Effects of Fines & Drain Spacing

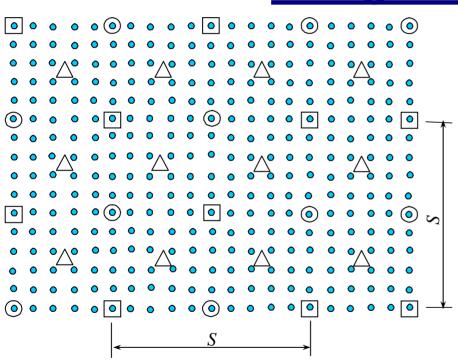
Effect of Fines (drain S=1.5m)

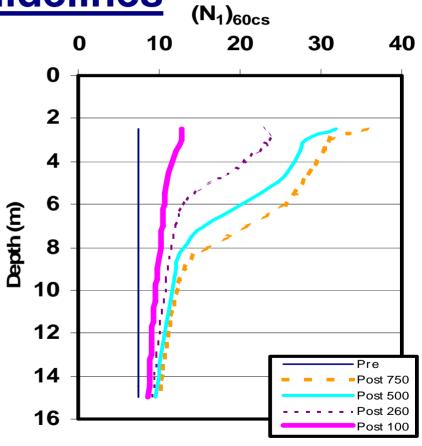

Effect of Drain spacing S & Impact Time Lag T; (k=10⁻⁷ m/s)



Design Charts and Design Guidelines

Example Design Chart


For silty sand deposit with $k=10^{-7}$ m/sec, FC = 25 %, and equivalent $pre-D_r$ of 40 %.



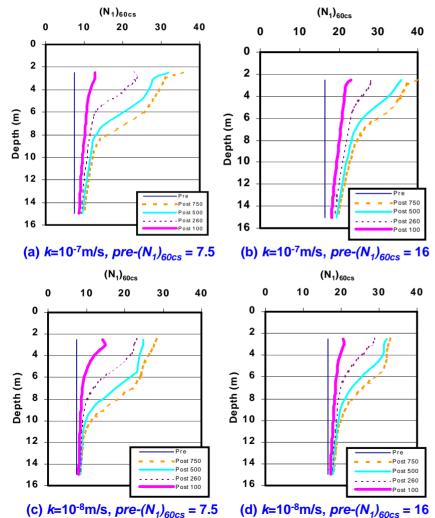
Design Guidelines

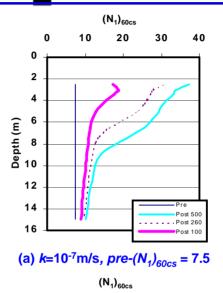
- O Primary phase
- ☐ Secondary phase
- △ Tertiary phase
- Wick drain

Impact Grid Pattern

Example Design Chart

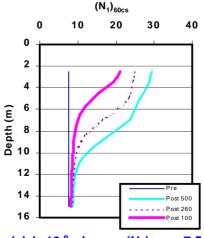
(Post 750: WH = 750 Mg. m)

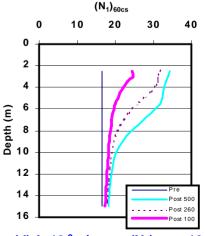



母

University at Buffalo

The State University of New York




Pre- and post-improvement $(N_1)_{60cs}$ for S = 15.0 m

(c) $k=10^{-8}$ m/s, $pre-(N_1)_{60cs} = 7.5$

(d) $k=10^{-8}$ m/s, $pre-(N_1)_{60cs} = 16$

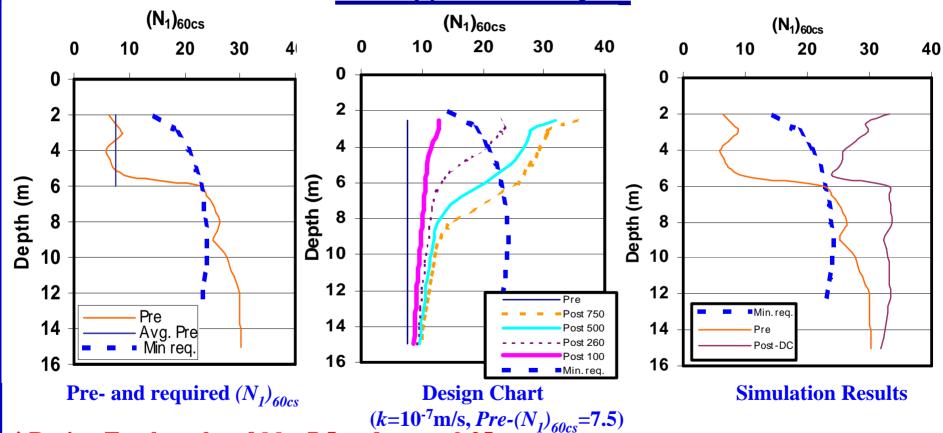
Pre- and post-improvement $(N_1)_{60cs}$ for S = 12.0 m

University at Buffalo

The State University of New York

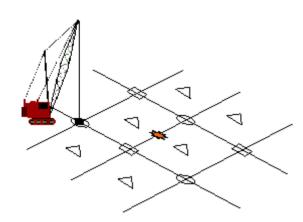
Design Procedure

Choose charts set for deposit $k \& pre-(N_I)_{60cs}$ Start with trial parameters: $S = 15.0 \text{ m}, S_W = 1.5 \text{ m}, N_I = 8 \& T = 2 \text{ min}$

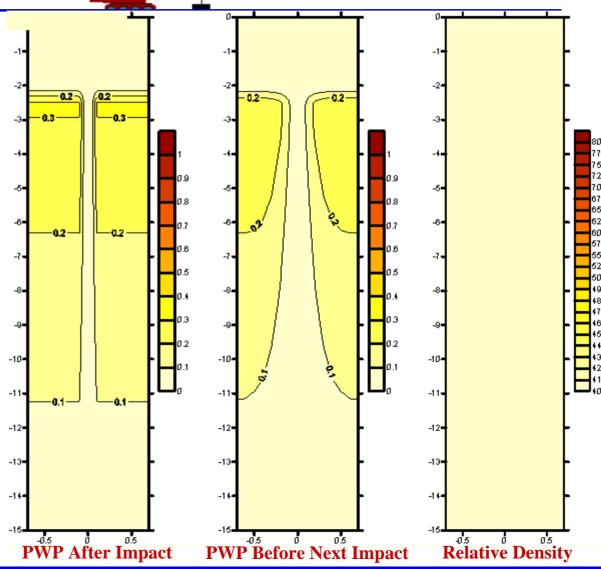

Overlay the min. req. $(N_1)_{60cs}$ profile Find $(d_{max})_{dsn}$ for different impact energies Yes $(d_{max})_{dsn} \ge (d_{max})_{req}$ Νo Use chart with higher N_I and/or TOR smaller S_W and/or SYes N_I , T, S_W , S are practical? No Consider another technique Print final design parameters W, H, N_I, T, S_{W}, S

Design Example

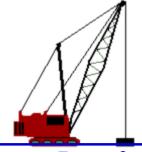
- **Design Earthquake of** M = 7.5 and $a_{max} = 0.25g$.
- **Recommended Compaction Parameters:** $WH = 750 \text{ Mg.m}, N_I = 12, T = 2 \text{ min}, S_w = 1.5 \text{m}$ (rectangular pattern), wick drain equivalent diameter = 5 cm, and S = 15 m.



A National Center of Excellence in Advanced Technology Applications



University at Buffalo


The State University of New York

Density &
PorePressure
Changes around a
wick drain During
Dynamic Compaction

Conclusions

- ❖ Current practice of design DC applications relies mainly on field pilot tests, past experience, and empirical equations based on field observations. No analytical procedure available to analyze the problem.
- A computational simulation model is presented for simulation of DC processes in saturated sand and nonplastic silty deposits.
- ❖ The simulation model is based on energy principals governing liquefaction resistance and coupled consolidation equations.
- The model has been verified through comparison with well-documented case histories in both sand and silty soil deposits and found to perform reasonably well.

Conclusions

- The effects of site-specific conditions and field operational parameters on the achievable densification have been studied.
- Design guidelines for liquefaction mitigation of nonplastic silty soils using DC combined with wick drains have been presented.
- ❖ The recommended guidelines are expected to advance the use of DC to mitigate liquefaction potential in nonplastic silty soils, and reduce the reliance on expensive field trials.

Publications

- **❖** Nashed, R., Thevanayagam, S., Martin, G. R., and Shenthan, T. (2004), "Liquefaction mitigation in silty soils using dynamic compaction and wick drains", Proc. 13th World Conference on Earthq. Eng., Vancouver, Canada, Paper No. 1951.
- **❖**Shenthan, T., Nashed, R., Thevanayagam, S., and Martin, G. R. (2004), "Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction", MCEER Research Progress and Accomplishments 2003-2004: http://mceer.buffalo.edu/publications/resaccom/0304, pp. 205-220.
- **❖Shenthan, T., Nashed, R., Thevanayagam, S., and Martin, G. R.** (2004), "Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction", Earthquake Engineering and Engineering vibrations Journal, Vol.3, No. 1, http://mceer.buffalo.edu/eeev/v3issue1/paper04.htm.
- **❖**Thevanayagam, S., Nashed, R., Shenthan, T., and Martin, G. R. (2005), "Liquefaction and remediation in silty soils", California Depart. of Trans., Caltrans Bridge Research Conference, Sacramento, CA, Paper No. 06-501.

Publications

- **❖**Thevanayagam, S., Nashed, R., Shenthan, T., and Martin, G. R. (2005), "Soil Densification Based on Vibratory and Earthquake Energy Considerations", In "New Applications & Challenging Soils for Ground Improvement Technologies", US-Japan Workshop, September 8-10, 2005, Kyoto, Japan.
- **❖**Nashed, R., Thevanayagam, S., and Martin, G. R. (2006), "A Design Procedure for Liquefaction Mitigation of Silty Soils Using Dynamic Compaction", 8th National Conf. of Earthqu. Eng., Paper No. 1408.
- **❖**Nashed, R., Thevanayagam, S., and Martin, G. R. (2006), "Simulation of dynamic compaction processes in saturated silty soils", Geo Congress 2006, ASCE Paper No. 10926.

THANK YOU

Questions...